Emerald Ash Borer Readiness and Response Plan for Oregon Wyatt Williams

Total Page:16

File Type:pdf, Size:1020Kb

Emerald Ash Borer Readiness and Response Plan for Oregon Wyatt Williams Emerald Ash Borer Readiness and Response Plan for Oregon Wyatt Williams Oregon Invasive Species Council February 21, 2018, Salem Oregon Department of Forestry Promoting and Practicing Sustainable Forestry Emerald Ash Borer (EAB) • First detected in U.S., 2002 • 100+ million trees killed in 30 states since 1990s • Several ash species at risk EAB in the U.S. • Ecosystem effects Origins of EAB We now know Russia far east is also in native range. Signs/symptoms of EAB “Serpentine” larval Classic, D-shaped exit holes of Epicormic shoots and galleries emerging adults. dead canopies. Toledo, OH Before EAB 2006 Photo: Dan Herms Toledo, OH After EAB 2009 Photo: Dan Herms Some effects of EAB Some effects of EAB Some effects of EAB Pictures of natural areas & native ash in the Midwest. Note dead crowns. Host trees in CA and OR Name Common OR CA Urban Origin Susceptible Fraxinus latifolia Oregon ash Yes Yes Yes OR, WA, CA Yes Fraxinus americana White ash Yes Eastern U.S. Yes Fraxinus pennsylvanica Green ash Yes Eastern U.S. Yes Fraxinus nigra Black ash ? Eastern U.S. Yes Fraxinus quadrangulata Blue ash ? Eastern U.S. Moderate Fraxinus angustifolia Narrow-leafed ash Yes Eurasia Yes Fraxinus uhdei Tropical ash Yes Mexico Yes? Fraxinus excelsior European ash Yes Europe Yes Fraxinus mandshurica Manchurian ash ? East Asia No Fraxinus chinensis Chinese ash ? East Asia No White fringe tree • Chionanthus virginicus • 3 sites in OH with EAB • Oleaceae • 2 species native to SE U.S. • 150 spp. native to SE Asia • Ornamental species – How much is it being sold and spread across the U.S.? Smithsonian Institute Oregon Ash – a widespread and common tree in Oregon, California, and Washington. Our native Oregon ash A common scene in western Oregon. Stand of 100% Oregon ash surrounded by grass seed fields and vineyards. Elevation range %points* Focus for EAB ≤1000' 79% High 1000-2000' 16% Medium 2000-2500' 4% Low *Data from: ODF EAB surveys, 2013-2015 (n=895 points) Oregon Flora Project (n=820 points) Costs of EAB • Economic: Tree removal & replacement, property value losses, timber value losses, survey, research,… • Ecological: changes in water quality, species composition, … Costs of EAB, as of 2011 Federal Local Residential government government Household Property Timber Expenditures Expenditures Expenditures Value Loss Loss Total To date $38M $850M $350M $380M $60M $1.7B Aukema et al. 2011. Economic impacts forest invaders in the U.S. PLoS one. “Emerald ash borers have become the most destructive and costly forest insect to ever invade North America.” – Deborah McCullough Michigan State University Hold onto your Ash! Removal: $435 M ($290/tree) Replacement: $580 M ($387/tree) New EAB invasion in Boulder, CO could cost Denver metro area ~$1 billion! City of Portland Street Tree Inventory 4.8% or 72,000 public ash $21M removal $28M replacement $49M total cost to PDX Oregon’s planning process Date Topic Jan 2017 Core steering group formed Apr 2017 Plan outline, decision to expand core group to include key cities July 2017 Reviewed draft plan (50% complete) Sept 2017 Phone conference with eastern states; proposed Advisory Comm. Oct 2017 Phone conference with neighboring states; invitation to Tribes Nov 2017 Plan 95% complete Jan 2018 Advisory Committee meeting and input Feb 2018 Seek input/approval from OISC April 2018 Final plan complete Plan components • Introduction and background • Define roles of stakeholders • Readiness – Risk Assessment, Detection • Response – Communication plan, quarantine, restoration • Funding • Appendices – Sample press release, IPM sheet, Basic messages • Defined agency roles beforehand • List theorized ecological and economic risks to Oregon • Communicate risk to communities • Publish best practices for Detection/Control • List of Equipment and other supplies needed • If EAB detected, convene stakeholder meeting • Guidance for seeking funding, communication • Suggestions for Restoration/replanting • Latest science for IPM • Lists of Oregon cities with Tree inventories Next steps • Samara group and core members finalizing suggested changes from Jan. Advisory Committee meeting • Living document, updated as needed • Website: www.oregoneab.info • Council Approval for OISC to host this site http: http://www.emeraldashborer.info/ Wyatt Williams Invasive Species Specialist Oregon Dept. of Forestry [email protected] 503-945-7472 Treatments – Eradication/Suppression Delimitation surveys = Hard work! Eradication = Expensive, ineffective. Treatments - Chemical • Tree injections • Systemic insecticides – Imidacloprid – Emamectin benzoate • Costly ($100-$500 per tree) • Repeat applications – every 1-3 years. • Not feasible on large scale Treatments - Biological Control • Tetrastichus planipennisi, plus other species • 21-35% parasitism rate • Not enough? • Rates still rising? Duan et al. 2013 T. Murray ODF conducts statewide survey for EAB EAB trap after 8 weeks. Covered in insects EAB trap after 8 weeks. We spiked the traps with real (but dead) EAB adults to see if technicians could find them. They did! 88% of time. Interagency cooperation! • Goal: Train professionals how to identify key invasive pests • Field courses with mock infestations • SAF, Pesticide, ISA credits • Reports of suspect invaders submitted online Since EAB is here to stay, some suggest breeding resistance into NA ash species Pinoresinol Whitehill et al. 2012 Manchurian ash growing in Qingdao, China. EAB does not kill Asian ash species. Why? Recent evidence for unique chemistry that may convey resistance. www.dontmovefirewood.org Firewood is now number one pathway for movement around U.S. **Colorado population was probably from Landscape trees.
Recommended publications
  • Managing the Emerald Ash Borer
    Managing the Emerald Ash Borer Hunterdon County Division of Parks and Recreation Do you have an ash tree on your property? Opposite Branching Compound leaves 5-9 Diamond-patterned bark White Ash trees grow up to 80 feet tall and have a crown spread of about 50 feet. What is the Emerald Ash Borer? The EAB is an invasive flying beetle. Adult beetles are an emerald green brighter than any other beetle in North America It is the size of a penny The adult beetle nibbles on the leaves of an ash tree. Larvae are cream color and have a 10 segmented abdomen The larvae burrow into tree bark and eat the cambium and phloem of a tree Adult beetles are attracted to the colors purple and green How the EAB kills the Ash tree Larvae feed on the cambium and phloem of a tree, critical for nutrient and water transport. The tree starves death 99.9% of untreated ash trees are killed once infested with the EAB Pictured: A sample from the cambium of an ash tree once the bark is removed. Signs of the EAB Vertical split in Epicormic Crown die off D shaped holes Serpentine tracks bark sprouting Can you save your trees? Begin treatment of high value ash trees throughout NJ NOW. Healthy and vigorously growing, with more than half their leaves. Homeowners can treat trees with trunks less than 20 in. at breast They enhance your landscape. height with 1.47% imidacloprid Valuable to the owner Professionals can treat trees with Showing minimal outward signs of a diameter at breast height EAB infestation greater than 20 in.
    [Show full text]
  • Notes on Fraxinus Profunda (Oleaceae)
    Nesom, G.L. 2010. Notes on Fraxinus profunda (Oleaceae). Phytoneuron 2010-32: 1–6. Mailed 10 August 2010. NOTES ON FRAXINUS PROFUNDA (OLEACEAE) Guy L. Nesom 2925 Hartwood Drive Fort Worth, TX 76109, USA www.guynesom.com ABSTRACT A taxonomic overview is provided for Fraxinus profunda –– including a nomenclatural summary with lectotypes designated for F. profunda and the synonymous F. michauxii , an updated morphological description including a comparison with F. pennsylvanica , and a county-level distribution map. Geographically disjunct records for F. profunda in distinctly inland localities (Mississippi and Alabama) are documented; far-inland records from Tennessee and North Carolina were based on collections of F. biltmoreana . KEY WORDS : Fraxinus profunda , F. michauxii , F. pennsylvanica , Oleaceae Fraxinus profunda occurs primarily along the Atlantic and Gulf coasts into peninsular Florida and in drainages of the Mississippi River and in the Ohio River basin (Little 1977; McCormac et al. 1995). At the northwestern corner of its range, it occurs in bottomlands of the Kankakee River (vPlants 2010), an Illinois/Mississippi River tributary. Limits of the northern range of the species (Michigan, Ontario) have recently been documented in detail (McCormac et al. 1995; Waldron et al. 1996). The trees consistently grow in river swamps and floodplains, especially those seasonally inundated, freshwater tidal wetlands, commonly with bald cypress, swamp cottonwood, and water tupelo. In Illinois, Indiana, Ohio, and northward, they often are found in wet woods and swampy depressions in upland woods as well as till plains and clay lake plains of post-glacial lake beds. Based on the map from Little (1977), Harms (1990) noted that the range of Fraxinus profunda is “quite discontinuous,” but addition of recent records shows a more continuous range (Fig.
    [Show full text]
  • Emerald Ash Borer Biological Control
    Forest Health Technology Enterprise Team http://www.fs.fed.us/foresthealth/technology PROVIDING TECHNOLOGY FOR FOREST HEALTH PROTECTION Emerald Ash Borer Biological Control The emerald ash borer, Agrilus planipennis Fairmaire (EAB) is an exotic invasive wood-boring beetle native to Asia (China, Korea, Japan, and Mongolia) and the Russian Far East and Taiwan. EAB is threatening all species of North America’s ash trees: green ash (Fraxinus pennsylvanica), white ash (F. americana) and black ash (F. nigra). It was first discovered in the United States in Michigan in 2002. It is believed that EAB was accidently introduced in shipping crate materials. By 2008, EAB had been discovered in seven states (Indiana, Illinois, Maryland, Michigan, Ohio, Pennsylvania and West Virginia) as well as parts of Canada. EAB is well suited to US climate conditions and as of 2013, it has Biology and Nature of Ecological Damage now spread to an additional fifteen states. (See map.) Emerald ash borer adults are bright metallic green and about 7.5 to 13.5 mm long and 1.6 mm wide, with the female slightly larger than the male. The adults feed on the leaves of ash trees, but cause little damage. EAB adults mate shortly after emerging. Each female beetle lays 60–90 eggs in their lifetime and the eggs typically hatch in 7–10 days. The dorso-ventrally flattened larvae reach a length of 26 to 32 mm, and are white to cream colored with a brown head. The small larvae bore through the bark and feed on the phloem and young sapwood which inhibits the tree’s ability to transport water and nutrients.
    [Show full text]
  • Communication on Cultural and Environmental Implications of the Emerald Ash Borer Invasion in Maine
    The University of Maine DigitalCommons@UMaine Honors College Spring 5-2020 Communication on Cultural and Environmental Implications of the Emerald Ash Borer Invasion in Maine Salvatore Magnano III University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Entomology Commons, and the Indigenous Studies Commons Recommended Citation Magnano, Salvatore III, "Communication on Cultural and Environmental Implications of the Emerald Ash Borer Invasion in Maine" (2020). Honors College. 613. https://digitalcommons.library.umaine.edu/honors/613 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. COMMUNICATION ON CULTURAL AND ENVIRONMENTAL IMPLICATIONS OF THE EMERALD ASH BORER INVASION IN MAINE by Salvatore Magnano III A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Ecology and Environmental Sciences) The Honors College University of Maine May 2020 Advisory Committee: John Daigle, Professor of Forest Recreation Management, Advisor François Amar, Dean of the Honors College and Professor of Chemistry Robert Northington, Lecturer and Post-Doctoral Research Associate in the School of Biology and Ecology Darren Ranco, Associate Professor of Anthropology and Coordinator of Native American Research Abigail Roche, Doctoral Student and Lecturer in Communication and Journalism Kate Ruskin, Lecturer in Ecology and Environmental Sciences ABSTRACT The introduction of the Emerald Ash Borer (EAB), Agrilus planipennis, in the United States in the early 1990’s, has resulted in a wave of ecological, economic, and cultural impacts that will forever leave a scar in the forests of North America.
    [Show full text]
  • Potenziale Und Risiken Eingeführter Baumarten
    ine nachhaltige, multifunktionale Forstwirtschaft hat den Anspruch, Wälder so zu pfl egen und zu nutzen, dass deren Produktivität, Verjüngungsfähigkeit, EVitalität und biologische Vielfalt erhalten bleiben. In der Vergangenheit hat sich Band 7 Band 7 Göttinger Forstwissenschaften gezeigt, dass weder im Kielwasser der Rohholzerzeugung noch in jenem des Naturschutzes alle Waldfunktionen angemessen erfüllt werden. Die Integration eingeführter Baumarten in einen Waldbau auf ökologischen Grundlagen erfor- dert daher Kompromisse, die sich auf der Basis wissenschaftlicher Erkenntnisse Torsten Vor, Hermann Spellmann, in der Regel auch fi nden lassen. Konkret bedeutet dies, dass der Anbau nicht Andreas Bolte, Christian Ammer (Hrsg.) invasiver eingeführter Baumarten in gewissem Umfang vom Naturschutz ebenso akzeptiert wird, wie seitens der Forstwirtschaft naturschutzfachliche Interessen Potenziale und Risiken berücksichtigt werden, indem bei ihrem Anbau auf eine räumliche Ordnung ge- achtet wird und bestehende Vorkommen invasiver Baumarten zurückgedrängt eingeführter Baumarten werden. Ziel dieser Ausarbeitung ist es vor diesem Hintergrund, die Potenziale und Risiken von 15 eingeführten Baumarten auf der Grundlage wissenschaft- Baumartenportraits mit licher Literatur und langjähriger Forschungsarbeiten auf Versuchsfl ächen der verschiedenen Forschungseinrichtungen und Anbaufl ächen der Forstbetriebe naturschutzfachlicher Bewertung aufzuzeigen, um die zwischen Naturschutz und Forstwirtschaft aufgekommene Diskussion zu versachlichen. Vor, Spellmann, Bolte,
    [Show full text]
  • Oystershell Scale (Lepidosaphes Ulmi) on Green Ash (Fraxinus Pennsylvanica)
    Esther Buck(Senior) Oystershell Scale (Lepidosaphes ulmi) on Green Ash (Fraxinus pennsylvanica) I found a green ash tree (Fraxinus pennsylvanica) outside the law building that was covered with Oystershell Scale, (Lepidosaphes ulmi). Oystershell Scale insects on Green Ash twig Oystershell Scale insects The Green Ash normally has an upright oval growth habit growing up to 50ft tall. The Green Ash that I found was only about 20ft tall. The tree also had some twig and branch dieback. The overall health of the plant was fair, it was on the shorter side and did have some dieback but it looked like it could last for a while longer. The dwarfed growth and dieback of branches and twigs was probably a result of the high infestation of Oystershell Scale (Lepidosaphes ulmi) insect on the branches of the tree. Scale insects feeding on plant sap slowly reduce plant vigor, so I think this sample may have been shorter due to the infestation of Scale insects. As with this tree, heavily infested plants grow poorly and may suffer dieback of twigs and branches. An infested host is occasionally so weakened that it dies. The scale insects resemble a small oyster shell and are usually in clusters all over the bark of branches on trees such as dogwood, elm, hickory, ash, poplar, apple etc. The Oystershell Scale insect has two stages, a crawler stage, which settles after a few days. Then the insect develops a scale which is like an outer shell, which is usually what you will see on an infested host. The scales are white in color at first but become brown with maturity.
    [Show full text]
  • Regional Woody Plant Test Project 2005
    Regional Woody Plant Test Project 2005 CDCS Crop Diversification Centre South Brooks, Alberta Pamphlet #2006-3 Regional Woody Plant Test Project 2005 Christine L. Murray, Ph.D., Nursery Crop Specialist Nigel G. Seymour, Dipl. Hort. Technologist Alberta Agriculture, Food and Rural Development Crop Diversification Centre South SS 4, Brooks, Alberta, Canada T1R 1E6 email: [email protected] Phone (403) 362-1313 Fax (403) 362-1306 [email protected] Phone (403) 362-1350 Fax (403) 362-1306 website: http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/opp4045?opendocument Table of Contents Index - Botanical Names ........................................... i-iv Index - Common Names......................................... iv-vii Introduction ................................................................ viii Acknowledgements ................................................... viii Recent Graduates ........................................................ ix Trial Locations .............................................................. x Definitions of categories in report ............................. xi Summary report of graduates .............................. 1 - 77 Index – Botanical Name Abies balsamea ‘Nana’ .......................................... 1 Caragana roborovskyi ........................................... 7 Acer glabrum ......................................................... 1 Caragana tragacanthoides .................................... 7 Acer negundo ‘Sensation ...................................... 1 Celtis
    [Show full text]
  • Asian Long-Horned Beetle Anoplophora Glabripennis
    MSU’s invasive species factsheets Asian long-horned beetle Anoplophora glabripennis The Asian long-horned beetle is an exotic wood-boring insect that attacks various broadleaf trees and shrubs. The beetle has been detected in a few urban areas of the United States. In Michigan, food host plants for this insect are abundantly present in urban landscapes, hardwood forests and riparian habitats. This beetle is a concern to lumber, nursery, landscaping and tourism industries. Michigan risk maps for exotic plant pests. Other common name starry sky beetle Systematic position Insecta > Coleoptera > Cerambycidae > Anoplophora glabripennis (Motschulsky) Global distribution Native to East Asia (China and Korea). Outside the native range, the beetle infestation has been found in Austria and Canada (Toronto) and the United States: Illinois (Chicago), New Jersey, New York (Long Island), and Asian long-horned beetle. Massachusetts. Management notes Quarantine status The only effective eradication technique available in This insect is a federally quarantined organism in North America has been to cut and completely destroy the United States (NEPDN 2006). Therefore, detection infested trees (Cavey 2000). must be reported to regulatory authorities and will lead to eradication efforts. Economic and environmental significance Plant hosts to Michigan A wide range of broadleaf trees and shrubs including If the beetle establishes in Michigan, it may lead to maple (Acer spp.), poplar (Populus spp.), willow (Salix undesirable economic consequences such as restricted spp.), mulberry (Morus spp.), plum (Prunus spp.), pear movements and exports of solid wood products via (Pyrus spp.), black locust (Robinia pseudoacacia) and elms quarantine, reduced marketability of lumber, and reduced (Ulmus spp.).
    [Show full text]
  • Cytogenetics of Fraxinus Mandshurica and F. Quadrangulata: Ploidy Determination and Rdna Analysis
    Tree Genetics & Genomes (2020) 16:26 https://doi.org/10.1007/s11295-020-1418-6 ORIGINAL ARTICLE Cytogenetics of Fraxinus mandshurica and F. quadrangulata: ploidy determination and rDNA analysis Nurul Islam-Faridi1,2 & Mary E. Mason3 & Jennifer L. Koch4 & C. Dana Nelson5,6 Received: 22 July 2019 /Revised: 1 January 2020 /Accepted: 16 January 2020 # The Author(s) 2020 Abstract Ashes (Fraxinus spp.) are important hardwood tree species in rural, suburban, and urban forests of the eastern USA. Unfortunately, emerald ash borer (EAB, Agrilus planipennis) an invasive insect pest that was accidentally imported from Asia in the late 1980s–early 1990s is destroying them at an alarming rate. All North American ashes are highly susceptible to EAB, although blue ash (F. quadrangulata) may have some inherent attributes that provide it some protection. In contrast Manchurian ash (F. mandshurica) is relatively resistant to EAB having coevolved with the insect pest in its native range in Asia. Given its level of resistance, Manchurian ash has been considered for use in interspecies breeding programs designed to transfer resistance to susceptible North American ash species. One prerequisite for successful interspecies breeding is consistency in chromosome ploidy level and number between the candidate species. In the current study, we cytologically determined that both Manchurian ash and blue ash are diploids (2n) and have the same number of chromosomes (2n =2x = 46). We also characterized these species’ ribosomal gene families (45S and 5S rDNA) using fluorescence in situ hybridization (FISH). Both Manchurian and blue ash showed two 45S rDNA and one 5S rDNA sites, but blue ash appears to have an additional site of 45S rDNA.
    [Show full text]
  • Vegetation Unit Summaries for Springwater Corridor (SCOR)
    Vegetation Unit Summaries for Springwater Corridor (SCOR) Report date: 3/27/2007 '*' = non-native invasive species Visit data as of: 3/27/2007 Unit rSCOR*104 Size: 0.16 Acres NVCS Subclass: Deciduous forest % Tree canopy: 60% % Non-Native Cover: 90 Slope: na Aspect: na Visit date: 8/2/2006 Wetland indicators: Streams, Hydrophilic Vegetation. (Surface water was present) Dominant Trees: red alder (Alnus rubra). Dominant Shrubs: Himalayan blackberry (Rubus discolor*). Shrubs > 20% cover: red-osier dogwood (Cornus sericea ssp. sericea). Dominant Grasses: reed canarygrass (Phalaris arundinacea* > 50% cover). Additional Invasives: yellow flag iris (Iris pseudacorus*), bittersweet nightshade (Solanum dulcamara*). Ecological Health: Fair. Primary Management concerns: heavy level of invasive species, Stream Bank Erosion. Unit rSCOR*105 Size: 7.54 Acres NVCS Subclass: Deciduous woodland % Tree canopy: 55% % Non-Native Cover: 90 Slope: na Aspect: na Visit date: 8/2/2006 Wetland indicators: Streams, Hydrophilic Vegetation. (Surface water was present) Dominant Trees: red alder (Alnus rubra). Dominant Shrubs: Himalayan blackberry (Rubus discolor*). Shrubs > 20% cover: red-osier dogwood (Cornus sericea ssp. sericea). Dominant Grasses: reed canarygrass (Phalaris arundinacea* > 50% cover). Additional Invasives: yellow flag iris (Iris pseudacorus*), bittersweet nightshade (Solanum dulcamara*). Ecological Health: Fair. Primary Management concerns: heavy level of invasive species, Stream Bank Erosion. Unit rSCOR*108 Size: 0.32 Acres NVCS Subclass: Deciduous woodland % Tree canopy: 40% % Non-Native Cover: 90 Slope: na Aspect: na Visit date: 8/2/2006 Wetland indicators: Streams, Hydrophilic Vegetation. (Surface water was present) Dominant Trees: red alder (Alnus rubra). Dominant Shrubs: Himalayan blackberry (Rubus discolor*). Dominant Grasses: reed canarygrass (Phalaris arundinacea* > 50% cover).
    [Show full text]
  • Lilac (Ash) Borer Pupal Skins Extrude from Trunk
    Lilac (Ash) Borer Pupal skins extrude from trunk Name and Description—Podosesia syringae (Harris) [Lepidoptera: Sesiidae] Adult lilac (ash) borers are moths that vary in color from brown to yel- low to orange. They have clear wings with a span of about 1-1 1/8 inches (26-28 mm) and appear wasp-like (fig. 1). Larvae are about 1 inch (2.5 cm) long and are white with brown heads (fig. 2). Hosts—Ash and lilac Life Cycle—There is one generation per year. Mature borer larvae over- winter in tunnels under the bark. Adult moths emerge from March through June to lay eggs on the bark of host trees. The larvae bore into trunks and branches of the sapwood of trees during the summer. Galleries can be up to 6 inches (15 cm) long. Figure 1. Adult ash borer. Photo: Daniel Herms, Ohio State University, Bugwood.org. Damage—The mining of the larvae causes branch dieback (fig. 3). It can also lead to broken branches. The leaves on affected branches turn brown as the branch dies. Extensive mining can also lead to tree death. Entrances to lar- val mines often appear as sunken or cankered areas on the bark of the trunk or branch. Dark, moist sawdust can be found around the Figure 2. Ash borer larva. Photo: James Solomon, USDA Forest gallery entrance (fig. 4). Pupal Service, Bugwood.org. skin remaining in the bark is often also observed (fig. 5). Management—Avoid damaging trees—maintaining trees in good health reduces their susceptibil- ity to attack. There are chemical sprays that are highly effective at Figure 3.
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]