Photogeologic Constraints on the Emplacement of the Medusae Fossae Formation, Mars

Total Page:16

File Type:pdf, Size:1020Kb

Photogeologic Constraints on the Emplacement of the Medusae Fossae Formation, Mars Lunar and Planetary Science XXIX 1085.pdf PHOTOGEOLOGIC CONSTRAINTS ON THE EMPLACEMENT OF THE MEDUSAE FOSSAE FORMATION, MARS. J.R. Zimbelman1, A.K. Johnston1, and S.D. Patel2; 1CEPS/NASM MRC 315, Smithsonian Institution, Washington, D.C. 20560, [email protected]; 2Thomas Jefferson H.S. for Science and Tech., 6560 Braddock Rd., Alexandria, VA 22312. Geologic mapping of the Medusae Fossae Formation This work was supported by NASA grant NAGW- (MFF) has been underway over the past few years to 1390 to JRZ. SDP participated in this effort through the assess the numerous published hypotheses of origin for Mentorship Program of TJHSST. these enigmatic deposits [1]. The mapping effort has concentrated on three 1:500,000-scale Mars Transverse [1] Zimbelman, J.R., 1995, An examination of Mercator (MTM) quadrangles where there is good hypotheses of formation for the enigmatic massive contiguous coverage of Viking Survey mission images deposits in Amazonis Planitia, Mars, Lunar Planet. Sci. with 22 to 33 m/pixel resolution. Results from geologic XXVI , 1559-1560, Lunar and Planetary Institute, mapping of quadrangle MTM 05142 were presented at the Houston. GSA meeting in 1996 [2], and regional geologic mapping [2] Zimbelman, J.R., A.K. Johnston, and C.G. Lovett, of six 1:2,000,000-scale quadrangles covering much of the 1996, Geologic mapping of the Medusae Fossae MFF exposures was presented at the Fall AGU meeting in Formation within MTM quadrangle 05142 on Mars, Geol. 1997 [3]. Initial attempts at assessing the various Soc. Am. Abs. Prog. , 28(7) , A128. geologic hypotheses of origin were presented at the last [3] Zimbelman, J.R., A.K. Johnston, P.S. Russell, and two LPSCs [4,5]. Here we continue this on-going effort C.G. Lovett, 1997, Regional geologic setting of the to understand the MFF deposits by reporting results from Medusae Fossae Formation on Mars, Trans. Am. Geophys. our geologic mapping of MTM 00147, including some of Union , 78(46) , F411. our findings from the regional mapping mentioned earlier. All of these geologic observations will be used to assess [4] Zimbelman, J., D. Crown and D. Jenson, 1996, further the relative strengths and weaknesses of the Initial investigation of the enigmatic massive deposits in various hypotheses of origin [e.g., 5], to be reported at a Amazonis Planitia, Mars, Lunar Planet. Sci. XXVII , 1495- later date. 1496, Lunar and Planetary Institute, Houston. Our mapping to date has revealed that the global-scale [5] Zimbelman, J., D. Crown, J. Grant and D. Hooper, MFF units, labeled at the upper, middle, and lower 1997, The Medusae Fossae Formation, Amazonis Planitia, members of MFF [6], can be further subdivided when Mars: Evaluation of proposed hypotheses of origin, Lunar mapped at the 1:500,000 scale. In particular, both the Planet. Sci. XXVIII , 1623-1624, Lunar and Planetary upper and middle members can be divided into three units Institute, Houston. with clear stratigraphic superposition relations [3,4, this [6] Scott, D.H. and K.L. Tanaka, 1986, Geologic map of work]. The upper surface of most of these subunits appears the western equatorial region of Mars, U.S. Geol. Surv. to be relatively strongly indurated, forming a caprock to Misc. Invest. M ap I-1802-A , scale 1:15,000,000. the more friable underlying materials. Erosional patterns [7] Mars Orbital Laser Altimeter Press Release on the unit surfaces that comprise the upper member imply information from the first aerobraking pause. Groundtrack erosional winds from differing directions, suggestive of a locations available on the Web at: geologic record of changing climatic wind regimes [7], http://ltpwww.gsfc.nasa.gov/tharsis/mola.html and all of the subunit surfaces display distinct yardang [8] Mars Orbital Camera Press Release MOC2-19A trends that often can be correlated over distances of and -19B, showing a portion of the Medusae Fossae several hundred km. Regional mapping indicates that the Formation at very high resolution. Available on the Web subdivision of the global units also likely includes the at: http://www.msss.com/mars/global_surveyor/ lower member of MFF, which is concentrated well west of MTM 00147 [3]. The on-going Mars Global Surveyor camera/images/12_31_97_release/3104/index.html (MGS) mission is already returning important new data that will likely have an important impact on interpretations of MFF, such as the new topographic profiles from the Mars Orbital Laser Altimeter (MOLA) [7] and very high resolution images of MFF taken by the Mars Orbital Camera (MOC) [8]. Once MGS reaches its final mapping orbit, now scheduled for March 1999, these new data will play a crucial role in evaluating the likely origin of the MFF materials. We conclude that the distinct physical properties displayed by various portions of the subunits, in addition to the possibility that sufficient time may have elapsed between subunits for major shifts to take place in erosive wind regimes, represent important new data that must be accommodated by any successful hypothesis of origin for MFF. In collaboration with D. Crown, J. Grant, and D. Hooper, these observations are being applied to the various hypotheses of origin, and we anticipate soon being able to present ‘truth tables’ of observable characteristics for each hypothesis..
Recommended publications
  • The Medusae Fossae Formation As the Single Largest Source of Dust on Mars
    ARTICLE DOI: 10.1038/s41467-018-05291-5 OPEN The Medusae Fossae Formation as the single largest source of dust on Mars Lujendra Ojha1, Kevin Lewis1, Suniti Karunatillake 2 & Mariek Schmidt3 Transport of fine-grained dust is one of the most widespread sedimentary processes occurring on Mars today. In the present climate, eolian abrasion and deflation of rocks are likely the most pervasive and active dust-forming mechanism. Martian dust is globally 1234567890():,; enriched in S and Cl and has a distinct mean S:Cl ratio. Here we identify a potential source region for Martian dust based on analysis of elemental abundance data. We show that a large sedimentary unit called the Medusae Fossae Formation (MFF) has the highest abundance of S and Cl, and provides the best chemical match to surface measurements of Martian dust. Based on volume estimates of the eroded materials from the MFF, along with the enrichment of elemental S and Cl, and overall geochemical similarity, we propose that long-term deflation of the MFF has significantly contributed to the global Martian dust reservoir. 1 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA. 2 Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA. 3 Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada. Correspondence and requests for materials should be addressed to L.O. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:2867 | DOI: 10.1038/s41467-018-05291-5 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05291-5 ust is ubiquitous on Mars and plays a key role in con- formation on Mars today is likely abrasion of mechanically weak temporary atmospheric and surface processes.
    [Show full text]
  • Physical Properties (Particle Size, Rock Abundance) from Thermal Infrared
    N95- 16181 LPI Technical Report 94-04 19 I ” A MARS PATHFINDER LANDING ON A RECENTLY from the Hibes Montes islands. In agreement with [4], streamlined DRAINED EPHEMERAL SEA: CERBERUS PLAINS, 6”N, interchannel islands indicate fluid flow to the northeast, from 188OW. G. R. Brakenridge. Surficial Processes Laboratory, Cerberus and into Amazonis Planitia and the deeper (-3000 m Department ofGeography,Dartmouth College, Hanover NH03755, altitude) basin therein. This could not have occurred unless fluid USA. levels reached over the spillway; again, the basin must have once filled to--1000 m altitude. and this too suggests water andnot lava Along a 500 km-wide belt extending between 202’ and 18OoW as the fluid involved. The Cerberus Sea probably formed in much the and lying astride the martian equator, moderately low-albedo, same manner as did the outflow channels, but the surface discharge uncratered smooth plains exhibit low thermal inertia and potentially occurred within a topographic basin, and the basin itself was fit favorable conditions for the preservation of near-surface ice. The filled before overtopping the lowest spillway and discharging ex- Cerberus Plains occupy a topographic trough as much as 2 km below cess water and ice into Amazonia Planitia. Slow filling, perhaps the planetary datum [ 1,2]. and the denser atmosphere at these under a perennial ice cover, could instead have occurred if a global altitudes would also favor long residence times for near-surface ice groundwater system exists [ 121 or if regional geothermal sources once emplaced [3]. The plains have previously been interpreted as such as recently present at Elysium or Orcus Patera stimulated the result of young (Late Amazonian) low-viscosity lava flows [4] or large-scale hydrothermal circulation [7] and water discharge along similarly youthful fluvial deposition [5,6].
    [Show full text]
  • Modern Mars' Geomorphological Activity
    Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, Matthew Chojnacki, Susan Conway, Colin Dundas, Candice Hansen, Alfred Mcewen, et al. To cite this version: Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, et al.. Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity. Geomorphology, Elsevier, 2021, 380, pp.107627. 10.1016/j.geomorph.2021.107627. hal-03186543 HAL Id: hal-03186543 https://hal.archives-ouvertes.fr/hal-03186543 Submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity 2 3 Authors: Serina Diniega1,*, Ali M. Bramson2, Bonnie Buratti1, Peter Buhler3, Devon M. Burr4, 4 Matthew Chojnacki3, Susan J. Conway5, Colin M. Dundas6, Candice J. Hansen3, Alfred S. 5 McEwen7, Mathieu G. A. Lapôtre8, Joseph Levy9, Lauren Mc Keown10, Sylvain Piqueux1, 6 Ganna Portyankina11, Christy Swann12, Timothy N. Titus6,
    [Show full text]
  • THE ANOMALOUS RADAR TRANSPARENCY of CENTRAL ELYSIUM PLANITIA and AMAZONIS PLANITIA. D. E. Stillman, R. E. Grimm and K. P. Harris
    40th Lunar and Planetary Science Conference (2009) 2412.pdf THE ANOMALOUS RADAR TRANSPARENCY OF CENTRAL ELYSIUM PLANITIA AND AMAZONIS PLANITIA. D. E. Stillman, R. E. Grimm and K. P. Harrison, Department of Space Studies, Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, [email protected]. Introduction: The Shallow Radar instrument E are flat (Fig. 3). Many assumptions must be made to (SHARAD) on the Mars Reconnaissance Orbiter determine the material composition from a ’ at a sin- (MRO) has been successful at penetrating into icy de- gle frequency, however such a high ’ rules out any posits [1-3], but most of the rocky units are opaque to possibility of massive ice (glaciers). Dry basalts, ice- SHARAD. The main exceptions to this are the young- rich basalts, and/or inter-mixed units of basalt and ice est major volcanic surfaces, Cerberus Fossae 2 and 3 cannot be ruled out by the ’. However, rootless cones units and Amazonis Planitia 2 north unit [4]. We sug- are only found in areas with one subsurface reflector; gest that these units have low radar loss because they therefore our interpretation is that these are dry basal- have so far been insufficiently exposed to liquid water. tic flows underlain by fluvial sediments [18]. The Geologic Interpretation: SHARAD transparent value of ’ is representative of a dry basalt with a bulk units stretch from Central Elysium Planitia (CEP) (5 o o o density of 2.8-3.3 [19], which are the most likely val- S–10 N, 150–180 E) through Marte Vallis and into ues for basalt [20].
    [Show full text]
  • Spaceflight Engineering 2018 Landing Sites.Key
    Spaceflight Engineering 2018 Landing Sites Landing Site #1: Schiaparelli Crater The Schiaparelli Crater is a large impact crater on Mars, located in the Sinus Sabaeus quadrangle. Coordinates: (2.71ºS, 16.77ºE) The crater measures 459 km in diameter Landing Site #2: Milankovic Crater The Milankovic crater is another large impact crater on Mars. It is located much further north than the Schiaparelli crater, in the flat plain of Vastitas Borealis. Coordinates: (54.7ºN 146.7ºW) The Milankovic crater is 118.4km in diameter Landing Site #3: Arcadia Planitia The Arcadia Planitia is a large flat plains region in the northern hemisphere of Mars. It lies just south of the northern polar ice cap. Coordinates: (47.2ºN 184.3ºE) This area has been a particular interest for many scientists because the possibility of ground ice has led to discussion about water. Location and Setting: Ismenius Cavus Mission statement: Your company’s mission goes here Location and Setting: Aram Chaos Coord: 2.8°N, 338.9°E Elevation: 3.4 km - A crater that once contained water -Clay minerals consistent with fine-grained deposits at lake bottom ● -Past habitability in subsurface environment -Hesperian atmosphere preservation– evaporite minerals Location and Setting: Hellas Chasma Coord:Mission 34.64°S 65.47°E statement: Hellas Chasma is a deep, elongated, Yoursteep-sided company’s depression 148 KM Diameter Notmission much known about it. goes here Purpose To earn more about Mars’ Hesperian period and fluvial activity Examine sediments Biggest impact crater Advantages Research done on distance and time away from other sites in the Hellas Basin It suggests fluvial activity Largest impact crater, may be able to learn more Disadvantages Very little research done on Hellas Chasma May be an interesting site, but not much to go off of other than geomorphology Planum Boreum • Northern polar plain on Mars • Around 1.5x size of Texas • Permanent ice cap with several different layers • Spirals in land formed from katabatic wind 87.32ºN 54.96ºE -8,520 ft.
    [Show full text]
  • The Role of Volatiles in the Evolution of the Surface of Mars
    The role of volatiles in the evolution of the surface of Mars A thesis submitted for the Degree of Doctor of Philosophy of the University of London by Julie Ann Cave University of London Observatory Annexe Department of Physics & Astronomy University College London University of London 1991 1 ProQuest Number: 10797637 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10797637 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 To the best mum and dad in the world. “In a word, there are three things that last forever: faith, hope and love; but the greatest of them all is love. ” 1 Corinthians, 13:13 2 “Education is the complete and harmonious development of all the capac­ ities with which an individual is endowed at birth; a development which requires not coercion or standardisation but guidance of the interests of every individual towards a form that shall be uniquely characteristic of him [or her].” Albert Barnes—philanthropist 3 Acknowledgements I would like to thank Professor John Guest for the encouragement and supervision he has given to me during the period of my thesis, and, in particular, for introducing me to the wonders of the planets, and for encouraging me to undertake this project in the first place.
    [Show full text]
  • Geologic Map of Tooting Crater, Amazonis Planitia Region of Mars
    Prepared for the National Aeronautics and Space Administration Geologic Map of Tooting Crater, Amazonis Planitia Region of Mars By Peter J. Mouginis-Mark Pamphlet to accompany Scientific Investigations Map 3297 Tooting crater has a diameter of 27.2 km and formed on virtually flat lava flows within Amazonis Planita, Mars. The impact crater, which is located approximately 1,300 km west of the summit of Olympus Mons volcano, is very young and so provides a rare opportunity to map geomorphic units that are typically lost to erosion at older craters. Tooting crater is classified as a Multiple-Layered-Ejecta (MLE) crater. 2015 U.S. Department of the Interior U.S. Geological Survey  Contents Introduction...............................................................................................................................................................................................................1 Origin of Crater Name .............................................................................................................................................................................................1 Data ............................................................................................................................................................................................................................1 Topography ...............................................................................................................................................................................................................1
    [Show full text]
  • The Stratigraphy of Mars
    PROCEEDINGS OF THE SEVENTEENTH LUNAR AND PLANETARY SCIENCE CONFERENCE, PART 1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B13, PAGES E139-E158, NOVEMBER 30, 1986 The Stratigraphyof Mars KENNETH L. TANAKA U. $. GeologicalSurvey, Flagstaff A detailedplanetwide stratigraphy for Mars hasbeen developed from global mapping based on Viking imagesand cratercounting of geologicunits. The originalNoachian, Hesperian, and AmazonianSystems are divided into eight seriescorresponding to stratigraphicreferents. Characteristic crater densitiesand materialreferents of eachseries are (1) Lower NoaehianIN(16)] (numberof eraten > 16 km in diameter perl06 km 2) > 200]basement material; (2) MiddleNoachian IN(16) = 100-200]cratered terrain material; (3) Upper Noaehian[N(16)= 25-100; N(5) = 200-400]intercrater plains material; (4) Lower Hesperian IN(5) = 125-200]ridged plains material; (5) Upper Hesperian[N(5) = 67-125;N(2) = 400-750]complex plainsmaterial; (6) LowerAmazonian IN(2) = 150-400]smooth plains material in southernAcidalia Planitia; (7) Middle AmazonianIN(2) = 40-150] lava flowsin AmazonisPlanitia; and (8) UpperAmazonian IN(2) < 40] flood-plainmaterial in southernElysium Planitia. Correlations between various crater size-frequency distributionsof highland materials on the moon and Mars suggestthat rocks of the Middle Noachian Seriesare about 3.92-3.85b.y. old. Stratigraphicages eompi!ed for unitsand featuresof variousorigins show that volcanism,tectonism, and meteoritebombardment have generallydecreased through Mars' geologichistory. In recenttime,
    [Show full text]
  • NI\S/\ NF02148 All Blank Pages
    , .. - NASA Contractor Report 3593 NASA-CR-3593 19820026437 A Bibliography of Planetary Geology Principal Investigators and Their Associates, 1981-1982 SEPTEMBER 1982 IIUIII'I 'IU IIII UII' IIUI 11'11 'lUI I'll lUI NI\S/\ NF02148 All Blank Pages Intentionally Left Blank To Keep Document Continuity NASA Contractor Report 3593 A Bibliography of Planetary Geology Principal Investigators and Their Associates, 1981-1982. Jeffrey B. Plescia, Compiler Jet Propulsion Laboratory Pasadena, Caltf 91109 Prepared for Office of Space Science and Applications NI\S/\ National Aeronautics and Space Administration· Scientific and Technical' Information Branch 1982 CONTENTS PAGE General Interest Topics ••••••••••••••••••••••••••••••••••••••••••• 3 Solar System, Comets, Asteroids and Small Bodies •••••••••••••••••• 7 Geologic Mapping, Geomorphology and Stratigraphy.................. 15 Structure, Tectonics, Geologic and Geophysical Evolution.......... 23 Impact Craters: Morphology, Density and Geologic Studies ••••••• 31 Volcanism Studies................................................. 41 Fluvial, Mass Wasting and Periglacial Processes................... 53 Eolian Studies.................................................... 61 Regolith, Volatile, Atmosphere and Climate Studies................ 67 Remote Sensing, Radar and Photometry.............................. 73 Cartography, Photogrammetry, Geodesy, and Altimetry............... 83 Author/Editor Index............................................... 89 A BIBLIOGRAPHY OF PLANETARY GEOLOGY PRINCIPAL INVESTIGATORS
    [Show full text]
  • Geologic Map of the Northern Plains of Mars
    Prepared for the National Aeronautics and Space Administration Geologic Map of the Northern Plains of Mars By Kenneth L. Tanaka, James A. Skinner, Jr., and Trent M. Hare Pamphlet to accompany Scientific Investigations Map 2888 180° E E L Y S I U M P L A N I T I A A M A Z O N I S P L A N I T I A A R C A D I A P L A N I T I A N U T O P I A 0° N P L A N I T I A 30° T I T S A N A S V 60° I S I D I S 270° E 90° E P L A N I T I A B O S R E A L I A C I D A L I A P L A N I T I A C H R Y S E P L A N I T I A 2005 0° E U.S. Department of the Interior U.S. Geological Survey blank CONTENTS Page INTRODUCTION . 1 PHYSIOGRAPHIC SETTING . 1 DATA . 2 METHODOLOGY . 3 Unit delineation . 3 Unit names . 4 Unit groupings and symbols . 4 Unit colors . 4 Contact types . 4 Feature symbols . 4 GIS approaches and tools . 5 STRATIGRAPHY . 5 Early Noachian Epoch . 5 Middle and Late Noachian Epochs . 6 Early Hesperian Epoch . 7 Late Hesperian Epoch . 8 Early Amazonian Epoch . 9 Middle Amazonian Epoch . 12 Late Amazonian Epoch . 12 STRUCTURE AND MODIFICATION HISTORY . 14 Pre-Noachian . 14 Early Noachian Epoch .
    [Show full text]
  • Geomorphic Processes and Landforms, Lunar Planet
    Lunar and Planetary Science XXX 1028.pdf MGS MOC THE FIRST YEAR: GEOMORPHIC PROCESSES AND LANDFORMS. M. C. Malin and K. S. Edgett, Malin Space Science Systems, P.O. Box 910148, San Diego, CA 92191-0148, U.S.A. ([email protected], [email protected]). Introduction: During its first year of operation Ocean Hypothesis: MOC has seen no definitive (Sept. 1997 to Sept. 1998), the Mars Global Surveyor “smoking gun” landforms that can be attributed to (MGS) Mars Orbiter Camera (MOC) obtained high oceans that might have once covered some or all of the resolution images (2–20 m/pixel) that provide new northern plains and adjacent lowlands. More than 20 information about landforms and geomorphic processes images were targeted to test specific shore features pro- on Mars. This paper summarizes some of the year’s posed in peer–reviewed publications. Some of these results—observations pertaining to sedimentology are images show no shore features—e.g., the west side of described in a companion paper [1]. the Olympus Mons aureole, and around massifs in the Volcanic Landforms: (1) Young, Fluid Plains Cydonia Mensae. Other images show a contact be- Lavas. The plains surfaces of the Elysium Basin, tween two geomorphic units, but the unit on the pro- Amazonis Planitia, and Marte Vallis are dominated by posed “seaward” side is topographically higher than on relatively young features (including kilometer-sized, the “landward” side, while others show a contact with rotated plates and flat plates separated by sinuous pres- the correct geomorphic relationship but no coastal sure ridges) whose dimensions indicate vast lava floods landforms, and still others show no contact or shore- and ponds.
    [Show full text]
  • Signature Redacted /6F Department of Earth, Atmospheric and Planetary Sciences May 6, 2011
    The Formation History of Olympus Mons from Paleo-Topography by Lauren M. Jozwiak Submitted to the Department of Earth, Atmospheric and Planetary Sciences in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Earth, Atmospheric and Planetary Sciences at the Massachusetts Institute of Technology June 2011 Copyright 2011 Lauren M. Jozwiak. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Author Signature redacted /6f Department of Earth, Atmospheric and Planetary Sciences May 6, 2011 Certified by Signature redacted Linda Elkins-Tanton T hesis Supervisor Signature redacted Accepted by_ Samuel Bowring ehaj' mmittee on Undergraduate Program MASSACHUSETTS INSTITUTE OF TECHNOLOGY OCT 24Z017 LIBRARIES ARCHIVES The Formation History of Olympus Mons from Paleo-Topography By Lauren M. Jozwiak Submitted to the Department of Earth, Atmospheric, and Planetary Science May 6, 2011 In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Earth, Atmospheric, and Planetary Sciences Abstract The formation of the volcano Olympus Mons, is linked directly to the geodynamic history of both Tharsis, and Mars as a whole. We sought to constrain the bulk formation period using paleo-topographic evidence. On the northeastern edge of the flexural trough, we located a lava flow whose path is radically discordant with current down-slope directions, indicating entrenchment prior to large-scale flexural trough formation. To constrain the end of bulk formation, we used the aureole deposits that surround the flanks of Olympus Mons, and were a consequence of crustal fracture under the weight of Olympus.
    [Show full text]