Arterial Stiffness Predicts Mortality in Individuals with Type 1 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Arterial Stiffness Predicts Mortality in Individuals with Type 1 Diabetes Diabetes Care 1 Arterial Stiffness Predicts Anniina Tynjal¨ a,¨ 1,2,3 Carol Forsblom,1,2,3 Valma Harjutsalo,1,2,3,4 Mortality in Individuals With Per-Henrik Groop,1,2,3,5 and Daniel Gordin,1,2,3,6 on behalf of the Type 1 Diabetes FinnDiane Study Group https://doi.org/10.2337/dc20-0078 OBJECTIVE Type 1 diabetes is accompanied by a significant burden of cardiovascular disease (CVD), which is poorly explained by traditional risk factors. We therefore aimed to explore whether arterial stiffness estimated by the augmentation index (AIx) predicts mortality in individuals with type 1 diabetes. RESEARCH DESIGN AND METHODS After baseline examination comprising pulse wave analysis by applanation to- nometry alongside assessment of traditional cardiovascular risk factors, 906 indi- viduals with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study were followed up for a median of 8.2 (5.7–9.7) years. Associations be- tween baseline hemodynamics, including AIx, and all-cause mortality as well as a composite of cardiovascular and/or diabetes-related mortality were investigated using multivariable Cox regression models. RESULTS The 67 individuals who died during follow-up had higher baseline AIx (28% [21–33] vs. 19% [9–27]; P < 0.001) compared with those alive. This association was CARDIOVASCULAR AND METABOLIC RISK independent of conventional risk factors (age, sex, BMI, HbA1c, estimated glo- merular filtration rate [eGFR], and previous CVD event) in Cox regression analysis 1Folkhalsan¨ Institute of Genetics, Folkhalsan¨ Re- (standardized hazard ratio 1.71 [1.10–2.65]; P 5 0.017) and sustained in a search Center, Helsinki, Finland 2 subanalysis of individuals with chronic kidney disease. Similarly, higher AIx was Abdominal Center Nephrology, Helsinki Univer- sity Hospital, University of Helsinki, Helsinki, associated with the composite secondary end point of cardiovascular and diabetes- Finland related death (N 5 53) after adjustments for sex, BMI, eGFR, previous CVD event, 3Research Program for Clinical and Molecular and height (standardized hazard ratio 2.30 [1.38–3.83]; P 5 0.001). Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland 4 CONCLUSIONS National Institute for Health and Welfare, Hel- sinki, Finland AIx predicts all-cause mortality as well as a composite cardiovascular and/or 5Department of Diabetes, Central Clinical School, diabetes-related cause of death in individuals with type 1 diabetes, independent of Monash University, Melbourne, Victoria, Australia 6 established cardiovascular risk factors. Joslin Diabetes Center, Harvard Medical School, Boston, MA Corresponding author: Per-Henrik Groop, per- henrik.groop@helsinki.fi Cardiovascular disease (CVD) is the leading cause of the excess morbidity and Received 11 January 2020 and accepted 15 June mortality observed in individuals with type 1 diabetes, and the standardized mortality 2020 ratio is known to increase by each stage of diabetic nephropathy (1,2). This © 2020 by the American Diabetes Association. predisposition is only partly attributable to traditional risk factors, and, in fact, Readers may use this article as long as the work is properly cited, the use is educational and not for cardiovascular risk scores developed for the general population and type 2 diabetes profit, and the work is not altered. More infor- are poorly applicable in type 1 diabetes (3). Thus, a unique risk factor profile is likely to mation is available at https://www.diabetesjournals prevail in these individuals and merits further characterization. .org/content/license. Diabetes Care Publish Ahead of Print, published online July 9, 2020 2 Arterial Stiffness and Mortality in Diabetes Diabetes Care Arterial stiffness is a well-known pre- Study Population which no autopsy has been performed. dictor of mortality in the general pop- In this substudy, individuals with avail- Therefore, we combined cardiovascular ulation and in selected groups, including able baseline data on arterial stiffness by and/or diabetes-related causes of death those with type 2 diabetes, yet no lon- the year 2015 were included. Further into one secondary end point in the gitudinal studies have been carried out in inclusion criteria were age .18 years, survival analysis, alongside all-cause and individuals with type 1 diabetes (4,5). type 1 diabetes diagnosed by 40 years of cardiovascular mortality. Interestingly, arterial stiffening seems to age, and insulin treatment initiated occur early in individuals with type 1 within 1 year of the diagnosis. The base- Statistical Methods diabetes, as their pulse pressure (PP), a line population comprised 906 individu- Univariable analyses of established car- crude estimate of arterial stiffness, in- als (416 men) with a mean age of 43.2 diovascular risk factors and hemodynamic creases up to 15–20 years earlier than in years (SD 12.2), including 134 individuals variables from pulse wave analysis were healthy control subjects (6). This phe- with chronic kidney disease (CKD), de- run to detect differences between those nomenon of early arterial aging made fined as an estimated glomerular filtra- who died during follow-up and those who us hypothesize that arterial stiffness tion rate (eGFR) ,60 mL/min/1.73 m2, survived. The x2 tests were used for di- might be an important mediating factor ongoing hemodialysis, or having received a chotomous variables and t tests or Mann– leading to premature death in type 1 renal transplant, as well as 98 individuals Whitney U tests for continuous variables. diabetes. Because microangiopathy is a with a previous CVD event, defined as Data are presented as mean 6 SD (nor- major manifestation of complicated type 1 myocardial infarction, coronary revascu- mally distributed) or median with inter- diabetes, we further hypothesized that larization, stroke, lower extremity revas- quartile range (nonnormally distributed) early signs of arterial stiffening could cularization, or nontraumatic amputation. for continuous variables and as percen- be detected by the augmentation index tages for dichotomous variables. (AIx), which, as a measure of arterial Pulse Wave Analysis Longitudinal analysis was performed pulse wave reflections, is particularly Applanation tonometry (SphygmoCor; At- using Kaplan-Meier survival curves with affected by stiffness in the small resis- Cor Medical, Sydney, New South Wales, log-rank tests. For multivariable analyses, tance arteries (7). We previously showed Australia) is a noninvasive reproducible continuous covariates were standardized that AIx correlates with microvascular method to estimate central (aortic) blood by dividing the difference of each value and macrovascular complications in type pressure variables and arterial stiffness and the covariate mean by the SD of that 1 diabetes in a cross-sectional setting (8). through pulse wave analysis (10,11). A covariate. The best-fit regression model The aim of this study was therefore to high-fidelity micromanometer (SPC-301; for each end point was selected using the explore whether AIx predicts all-cause as Millar Instruments, Houston, TX) is used Akaike information criterion and further well as cardiovascular and/or diabetes- to record peripheral pressure waveforms adjusted for sex and the variable of in- related mortality in type 1 diabetes. from the radial artery of the right arm, and terest from pulse wave analysis. Indepen- three readings with a pattern of at least dent associations with mortality were 20 valid waveforms are selected for the determined by Cox regression analysis RESEARCH DESIGN AND METHODS analysis. The software generates a cen- and are presented as standardized hazard The Finnish Diabetic Nephropathy tral pressure waveform using a validated ratios (sHRs) with 95% CI. P values ,0.05 Cohort transfer function. This enables determi- were considered statistically significant. This prospective observational follow-up nation of central systolic blood pressure study is part of the ongoing nationwide (CSBP) and diastolic blood pressure (CDBP); RESULTS 5 2 Finnish Diabetic Nephropathy (Finn- central PP (CPP) CSBP CDBP; central Baseline Characteristics Diane) Study, in which .5,400 individ- mean arterial pressure (CMAP) 5 1/3 3 After a median follow-up of 8.2 (5.7–9.7) uals with type 1 diabetes have been CSBP 1 2/3 3 CDBP; central end-systolic years, 67 (7.4%) individuals had died characterized since 1997. The study pro- pressure (CESP); ejection duration; as well (Table 1). These individuals were older, tocol has been approved by the local as subendocardial viability ratio (SEVR), had a longer diabetes duration, higher which indirectly estimates myocardial ethics committees, and written informed office SBP, PP, HbA1c, and triglycerides, as consent was obtained from each partic- perfusion. To assess stiffness in the small well as lower BMI and eGFR at baseline, ipant. The FinnDiane protocol has been resistance arteries, AIx is calculated as a compared with those who survived. Sim- previously described in detail (9). Briefly, quotient of two measures: the difference ilarly, those who died had more often baseline data on cardiovascular risk of the second and the first systolic peak been prescribed antihypertensive and factors and diabetic complications are of the pressure waveform (corrected for lipid-lowering medication and had more collected from standardized question- heart rate) and CPP. often a previous CVD event at baseline. In naires and medical files, as well as through the pulse wave analysis, AIx (28% [21–33] clinical examination and biochemical
Recommended publications
  • Elevated High-Sensitive C-Reactive Protein, Large Arterial Stiffness and Atherosclerosis: a Relationship Between Inflammation and Hypertension?
    Journal of Human Hypertension (2005) 19, 511–513 & 2005 Nature Publishing Group All rights reserved 0950-9240/05 $30.00 www.nature.com/jhh COMMENTARY Elevated high-sensitive C-reactive protein, large arterial stiffness and atherosclerosis: a relationship between inflammation and hypertension? CJ Boos and GYH Lip Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK Journal of Human Hypertension (2005) 19, 511–513. doi:10.1038/sj.jhh.1001858 Published online 19 May 2005 Cardiovascular disease (CVD) is currently the lead- pneumoniae, and is synthesized primarily by the ing cause of death and disability in the developed liver in response to IL-6 and IL-1b. As a risk world, and will soon overtake infectious disease as assessment tool, it has several good points — it is the pre-eminent cause of death worldwide.1 Athero- very stable, with very little difference in values sclerosis is the most important contributor to this between fresh or frozen plasma and has a long half- substantial disease burden. Whereas previously life of up to 20 h.5 It normally circulates at very low considered a bland process, our current under- levels, but acute inflammatory processes induce standing of atherosclerosis suggests that it is a marked hepatic synthesis of hsCRP, which can dynamic and progressive disease arising from a induce a 100-fold serum increase.6 combination of endothelial damage/dysfunction, Evidence has shown that, even in apparently thrombosis and inflammation.2,3 healthy subjects,
    [Show full text]
  • Download PDF File
    CLINICAL CARDIOLOGY Cardiology Journal 2020, Vol. 27, No. 6, 742–748 DOI: 10.5603/CJ.a2018.0109 Copyright © 2020 Via Medica ORIGINAL ARTICLE ISSN 1897–5593 eISSN 1898–018X Increased systemic arterial stiffness in patients with chronic thromboembolic pulmonary hypertension Monika Sznajder, Olga Dzikowska-Diduch, Katarzyna Kurnicka, Marek Roik, Dominik Wretowski, Piotr Pruszczyk, Maciej Kostrubiec Department of Internal Medicine and Cardiology with Venous Thromboembolism Center, Medical University of Warsaw, Poland Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a complication of venous thromboembolism (VTE) resulting from non-dissolving thromboemboli in the pulmonary arteries. Previous observations indicate a higher prevalence of atherosclerosis and cardiovascular risk factors in patients with VTE and CTEPH. The purpose of the present study was to evaluate the arterial stiffening assessed by pulse wave velocity (PWV), a marker of arterial stiffness, in CTEPH patients in comparison with a matched control group (CG). Methods: The study group consisted of 26 CTEPH patients (9 male and 17 female, age 69 ± 10 years) and 22 CG (10 male, 12 female, age 67 ± 8 years). In all subjects a physical examination, carotid- -femoral PWV and transthoracic echocardiography were performed. Right heart catheterization was done in all CTEPH. Results: Chronic tromboembolic pulmonary hypertension patients had significantly higher PWV than CG (10.3 ± 2.5 m/s vs. 9 ± 1.3 m/s, p < 0.05), even though systolic blood pressure was higher in CG (120 ± 11 vs. 132 ± 14 mmHg, p = 0.002). PWV correlated only with age and pulmonary vascular resistance (PVR) in CTEPH (r = 0.45, p = 0.03 and r = 0.43, p = 0.03, respectively).
    [Show full text]
  • Associations of Non-High-Density Lipoprotein Cholesterol, Triglycerides
    Hypertension Research (2019) 42:1223–1230 https://doi.org/10.1038/s41440-019-0251-5 ARTICLE Associations of non-high-density lipoprotein cholesterol, triglycerides and the total cholesterol/HDL-c ratio with arterial stiffness independent of low-density lipoprotein cholesterol in a Chinese population 1,2 3 2 1,2 Jia Wen ● Yun Huang ● Yao Lu ● Hong Yuan Received: 6 September 2018 / Revised: 10 January 2019 / Accepted: 21 February 2019 / Published online: 27 March 2019 © The Author(s) 2019. This article is published with open access Abstract Several lipid parameters are closely associated with residual cardiovascular risk. We aimed to confirm that in a range of low- density lipoprotein cholesterol (LDL-c) levels (from <70 mg/dl to ≥160 mg/dl), other lipid parameters, such as triglyceride (TG) level, non-high-density lipoprotein cholesterol (non-HDL-c) level, and the total cholesterol (TC)/HDL-c ratio, are still related to arterial stiffness, which is a recognized marker of atherosclerosis. In this cross-sectional study, we measured brachial-ankle pulse wave velocity (baPWV), as well as clinical and biochemical indices in 16,733 Chinese adult volunteers 1234567890();,: 1234567890();,: who underwent health check-ups from January 2014 to January 2015. Arterial stiffness was defined as the upper quartile of baPWV. We applied multivariable logistic regression models to examine the associations between lipid parameters and arterial stiffness. Both men and women with high baPWV were more likely to have an atherogenic lipid phenotype. Among participants with LDL-c <70 mg/dl, participants with non-HDL-c ≥100 mg/dl had a multivariable adjusted OR for arterial stiffness of 1.66 (1.11–2.50) compared to those with non-HDL-c <100 mg/dl; participants with TG ≥150 mg/dl had an OR of 2.44 (1.61–3.71) compared to those with TG <150 mg/dl; and participants with a TC/HDL-c ratio ≥4 had an OR of 1.74 (1.15–2.65) compared to those with a TC/HDL-c ratio <4.
    [Show full text]
  • Cardiovascular Health and Arterial Stiffness: the Maine-Syracuse Longitudinal Study Georgina E
    The University of Maine DigitalCommons@UMaine Maine-Syracuse Longitudinal Papers Maine-Syracuse Longitudinal Study 2014 Cardiovascular health and arterial stiffness: The Maine-Syracuse Longitudinal Study Georgina E. Crichton University of South Australia Merrill F. Elias University of Maine, [email protected] Michael A. Robbins University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/ longitudinal_papers Repository Citation Crichton, Georgina E.; Elias, Merrill F.; and Robbins, Michael A., "Cardiovascular health and arterial stiffness: The aine-SM yracuse Longitudinal Study" (2014). Maine-Syracuse Longitudinal Papers. 62. https://digitalcommons.library.umaine.edu/longitudinal_papers/62 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine-Syracuse Longitudinal Papers by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HHS Public Access Author manuscript Author Manuscript Author ManuscriptJ Hum Hypertens Author Manuscript. Author Author Manuscript manuscript; available in PMC 2015 January 01. Published in final edited form as: J Hum Hypertens. 2014 July ; 28(7): 444–449. doi:10.1038/jhh.2013.131. Cardiovascular Health and Arterial Stiffness: The Maine Syracuse Longitudinal Study Georgina E Crichton, PhD1,2, Merrill F Elias, PhD, MPH3,4, and Michael A Robbins, PhD3,4 1Nutritional Physiology Research Centre, University of South Australia, Adelaide, Australia 2Centre de Recherche Public Santé, Centre d’Etudes en Santé, Grand-Duchy of Luxembourg 3Department of Psychology, University of Maine, Orono, Maine, USA 4Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA Abstract Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction.
    [Show full text]
  • Influence of Age, Risk Factors, and Cardiovascular and Renal Disease on Arterial Stiffness: Clinical Applications
    AJH 2002; 15:1101–1108 Reviews Influence of Age, Risk Factors, and Cardiovascular and Renal Disease on Arterial Stiffness: Clinical Applications Athanase Benetos, Bernard Waeber, Joseph Izzo, Gary Mitchell, Lawrence Resnick, Roland Asmar, and Michel Safar Age is the main clinical determinant of large artery stiff- Although large artery stiffness increases with age inde- ness. Central arteries stiffen progressively with age, pendently of the presence of cardiovascular risk factors or whereas peripheral muscular arteries change little with other associated conditions, the extent of this increase may age. A number of clinical studies have analyzed the effects depend on several environmental or genetic factors. Hy- of age on aortic stiffness. Increase of central artery stiff- pertension may increase arterial stiffness, especially in ness with age is responsible for earlier wave reflections older subjects. Among other cardiovascular risk factors, and changes in pressure wave contours. The stiffening of diabetes type 1 and 2 accelerates arterial stiffness, whereas aorta and other central arteries is a potential risk factor for the role of dyslipidemia and tobacco smoking is unclear. increased cardiovascular morbidity and mortality. Arterial Arterial stiffness is also present in several cardiovascular stiffening with aging is accompanied by an elevation in and renal diseases. Patients with heart failure, end stage systolic blood pressure (BP) and pulse pressure (PP). renal disease, and those with atherosclerotic lesions often Although arterial stiffening with age is a common situa- develop central artery stiffness. Decreased carotid disten- tion, it has now been confirmed that older subjects with sibility, increased arterial thickness, and presence of cal- increased arterial stiffness and elevated PP have higher cifications and plaques often coexist in the same subject.
    [Show full text]
  • Large Arterial Stiffness: an Important Therapeutic Target
    Journal of Human Hypertension (2000) 14, 533–535 2000 Macmillan Publishers Ltd All rights reserved 0950-9240/00 $15.00 www.nature.com/jhh COMMENTARY Large arterial stiffness: an important therapeutic target JR Cockcroft1 and IB Wilkinson2 1Department of Cardiology, Wales Heart Research Institute, University Hospital, Heath Park, Cardiff CF4 4XN, UK; 2Clinical Pharmacology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK Keywords: arterial stiffness; pulse wave analysis; drug therapy; blood pressure; wave form In the current issue of the Journal of Human Hyper- closely related to diastolic pressure, is the product tension, Mahmud and Feely1 report on the use of of peripheral vascular resistance and cardiac output. pulse wave analysis (PWA) to assess the effect of the Pulse pressure, however, is mainly determined by angiotensin II receptor antagonist, valsartan, on large artery compliance and the pattern of left ven- arterial stiffness in patients with resistant hyperten- tricular ejection. Therefore, in middle-aged and sion. This timely report emphasises the importance older subjects, the available evidence suggests that of arterial stiffness as a predictor of cardiovascular arterial stiffness is a more important predictor of car- risk, and the changing perception of the various diovascular risk than peripheral vascular resistance. components of blood pressure over the last 100 Direct assessment of aortic stiffness using measure- years. ment of the pulse wave velocity (PWV) in patients with end-stage renal failure,9 and hypertension10 Arterial stiffness and cardiovascular risk confirms this view. The importance of arterial blood pressure as a determinant of cardiovascular risk has been clearly Pulse wave analysis demonstrated by a number of observational and Arterial stiffness can be measured in a number of intervention studies conducted since the introduc- ways.11 Ultrasound and MRI can be used to assess tion of the mercury sphygmomanometer at the turn local distensibility and/or compliance, and a variety of the last century.
    [Show full text]
  • Relationship Between Peripheral Arterial Stiffness and Estimated Pulmonary Pressure by Echocardiography in Systemic Sclerosis
    Acta Cardiol Sin 2017;33:514-522 Original Article doi: 10.6515/ACS20170220A Pulmonary Arterial Hypertension Relationship between Peripheral Arterial Stiffness and Estimated Pulmonary Pressure by Echocardiography in Systemic Sclerosis Burabha Pussadhamma,1 Wannipa Suwannakrua,1 Panorkwan Toparkngarm,1 Chaiyasith Wongvipaporn,1 Chingching Foocharoen2 and Ratanavadee Nanagara2 Background: Pulmonary hypertension (PH) is an important lethal manifestation of systemic sclerosis (SSc). Evidence of an association between peripheral and pulmonary arterial vasculopathy in SSc has been demonstrated. We hypothesized that peripheral arterial stiffness could predict PH in SSc. Methods: We performed a cross-sectional study among patients with SSc who underwent Cardio-Ankle Vascular Index (CAVI, VaSera VS-1000; Fukuda Denshi, Tokyo, Japan) and transthoracic echocardiography (TTE) examination to evaluate peripheral arterial stiffness and PH, respectively. The correlation between CAVI score and PH hemodynamics [right ventricular systolic pressure (RVSP) and tricuspid regurgitation velocity (TRV)] was studied. Results: A total of 145 patients underwent both CAVI and TTE evaluation. The mean (standard deviation, SD) patient age was 51.5 (12.3) years; female patients constituted 72% of the subjects. Diffuse SSc occurred in 75% of the cases. The mean (SD) CAVI score was 7.6 (0.9), and the mean (SD) RVSP was 29.9 (11.2) mmHg. Correlation coefficient (r) between CAVI score and RVSP in overall, limited, and diffuse SSc were 0.107 (p = 0.200), 0.040 (p = 0.815), and 0.194 (p = 0.043), respectively. CAVI scores were borderline or abnormal (³ 8) in 30.3% of subjects. PH was classified intermediate or high probability (TRVmax ³ 2.9 m/s) in 19.3% of the subjects.
    [Show full text]
  • Peripheral Arterial Stiffness in Acute Pulmonary Embolism and Pulmonary Hypertension at Short-Term Follow-Up
    Journal of Clinical Medicine Article Peripheral Arterial Stiffness in Acute Pulmonary Embolism and Pulmonary Hypertension at Short-Term Follow-Up Silvia Papa 1 , Cristiano Miotti 1 , Giovanna Manzi 1, Gianmarco Scoccia 1 , Federico Luongo 1 , Federica Toto 1, Claudia Malerba 1, Nadia Cedrone 2, Elena Sofia Canuti 1, Annalisa Caputo 1, Giulia Manguso 1, Serena Valentini 1, Susanna Sciomer 1 , Francesco Ciciarello 1, Giulia Benedetti 1, Francesco Fedele 1, Carmine Dario Vizza 1 and Roberto Badagliacca 1,* 1 Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; [email protected] (S.P.); [email protected] (C.M.); [email protected] (G.M.); [email protected] (G.S.); [email protected] (F.L.); [email protected] (F.T.); [email protected] (C.M.); [email protected] (E.S.C.); [email protected] (A.C.); [email protected] (G.M.); [email protected] (S.V.); [email protected] (S.S.); [email protected] (F.C.); [email protected] (G.B.); [email protected] (F.F.); [email protected] (C.D.V.) 2 Internal Medicine Department, Ospedale S. Pertini, 00157 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-49979016 Abstract: Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe and under-recognized complication of acute pulmonary embolism (PE). Forty consecutive patients with acute PE (Group 1), Citation: Papa, S.; Miotti, C.; Manzi, predominantly female (22, 55%) with a mean age of 69 ± 15 years, were matched for demographic G.; Scoccia, G.; Luongo, F.; Toto, F.; data with 40 healthy subjects (Group 2), 40 systemic hypertension patients (Group 3) and 45 prevalent Malerba, C.; Cedrone, N.; Canuti, E.S.; idiopathic pulmonary arterial hypertension (IPAH) patients (Group 4).
    [Show full text]
  • Arterial Stiffness and Hypertension Young S
    Oh Clinical Hypertension (2018) 24:17 https://doi.org/10.1186/s40885-018-0102-8 REVIEW Open Access Arterial stiffness and hypertension Young S. Oh Abstract Measures of the functional and structural properties of blood vessels can be used to assess preclinical stage of vascular disorders. Recent experimental and population studies show that arterial stiffening precedes development of high blood pressure, and can be used to predict future cardiovascular events. Arterial stiffness was also shown to be reversible in several experimental models of various conditions. Since reversing arterial stiffness could prevent development of hypertension and other clinical conditions, understanding the biological mechanisms of arterial stiffening and investigating potential therapeutic interventions to modulate arterial stiffness are important research topics. For research and application in general clinical settings, it is an important step to develop reliable devices and a standardized arterial stiffness measurement protocol. Keywords: Hypertension, Arterial, Aortic stiffness, Cardiovascular disease, Vascular biology Introduction precedes high blood pressure. These animal models in- The walls of large arteries, especially the aorta, lose elas- cluded: (i) diet-included obesity model, (ii) elastin gene ticity over time, and this process results in increased ar- knock-out model, (iii) stroke-prone Dahl salt-sensitive terial stiffness. Arterial stiffening, at least in part, reflects rat model, (iv) klotho gene knock-out model, and (v) gradual fragmentation and loss of elastin fibers and ac- type 2 diabetes model. In clinical studies, a consistent cumulation of stiffer collagen fibers in the arterial wall temporal sequence of arterial stiffness preceding hyper- [1]. Increased arterial stiffness is closely linked to in- tension was also observed in the Framingham Heart creased risk of hypertension and other diseases, such as Cohort Study [4].
    [Show full text]
  • Aortic Stiffness Current Understanding and Future Directions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 57, No. 14, 2011 © 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2010.12.017 STATE-OF-THE-ART PAPER Aortic Stiffness Current Understanding and Future Directions João L. Cavalcante, MD,*§ João A. C. Lima, MD, MBA,† Alban Redheuil, MD, PHD,‡ Mouaz H. Al-Mallah, MD, MSC*ʈ Detroit, Michigan; Baltimore, Maryland; Paris, France; Cleveland, Ohio; and Riyadh, Saudi Arabia The aorta stiffens with aging, a process that is accelerated by arterial hypertension. Decreased arterial compli- ance is one of the earliest detectable manifestations of adverse structural and functional changes within the vessel wall. The use of different imaging techniques optimized for assessment of vascular elasticity and quantifi- cation of luminal and vessel wall parameters allows for a comprehensive and detailed view of the vascular sys- tem. In addition, several studies have also documented the prognostic importance of arterial stiffness (AS) in various populations as an independent predictor of cardiovascular morbidity and all-cause mortality. Measure- ment of AS by applanation tonometry with pulse-wave velocity has been the gold-standard method and is well- validated in large populations as a strong predictor of adverse cardiovascular outcomes. Because aortic stiffness depends on the prevailing blood pressure, effective antihypertensive treatment is expected to reduce it in propor- tion to the blood pressure reduction. Nevertheless, drugs lowering blood pressure might differ in their effects on structure and function of the arterial walls.
    [Show full text]
  • Arterial Stiffness and Incidence of Diabetes
    Diabetes Care 1 Arterial Stiffness and Incidence of Iram Faqir Muhammad,1 Yan Borne,´ 1 Gerd Ostling,¨ 1,2 Cecilia Kennback,¨ 2 Diabetes: A Population-Based Mikael Gottsater,¨ 1,2 Margaretha Persson,1,2 Cohort Study Peter M. Nilsson,1,2 and Gunnar Engstrom¨ 1 https://doi.org/10.2337/dc17-1071 OBJECTIVE Diabetes is known to be associated with increased arterial stiffness. However, the temporal association between increased carotid-femoral pulse wave velocity (c-f PWV) and diabetes is unclear. The aim of this study is to explore the relationship between arterial stiffness, as determined by c-f PWV, and incidence of diabetes. RESEARCH DESIGN AND METHODS The study population included participants from the Malmo¨ Diet and Cancer cardio- vascular cohort, using measurements from the 2007–2012 reexamination as base- line. Arterial stiffness was evaluated by measuring c-f PWV (SphygmoCor). After excluding participants with prevalent diabetes (according to measurements of fast- ing glucose, oral glucose tolerance tests, and physician’s diagnoses), the final study population consisted of 2,450 individuals (mean age = 71.9 6 5.6 years). Incidence of diabetes was followed by linkage to local and national diabetes registers. Cox pro- portional hazards regression was used to assess the incidence of diabetes in relation to the tertiles of c-f PWV, adjusted for potential confounders. RESULTS CARDIOVASCULAR AND METABOLIC RISK During a mean follow-up of 4.43 6 1.40 years, 68 (2.8%) participants developed diabetes. Crude incidence of diabetes (per 1,000 person-years) was 3.5, 5.7, and 9.5, respectively, for subjects in the first, second, and third tertiles of c-f PWV.
    [Show full text]
  • Diabetes and Risk of Arterial Stiffness: a Mendelian Randomization Analysis
    Diabetes Volume 65, June 2016 1731 Min Xu,1,2,3 Ya Huang,1,2,3 Lan Xie,4 Kui Peng,1,2,3 Lin Ding,1,2,3 Lin Lin,1,2,3 Po Wang,1,2,3 Mingli Hao,1,2,3 Yuhong Chen,1,2,3 Yimin Sun,4,5 Lu Qi,6 Weiqing Wang,1,2,3 Guang Ning,1,2,3 and Yufang Bi1,2,3 Diabetes and Risk of Arterial Stiffness: A Mendelian Randomization Analysis Diabetes 2016;65:1731–1740 | DOI: 10.2337/db15-1533 We aimed to explore the causal association between arterial elasticity (3). In T2D patients, increased arterial type 2 diabetes (T2D) and increased arterial stiffness. stiffness is a strong risk factor for cardiovascular outcomes GENETICS/GENOMES/PROTEOMICS/METABOLOMICS We performed a Mendelian randomization (MR) analy- and early mortality (4). Growing epidemiology evidence has sisin11,385participantsfromawell-defined commu- shown that T2D is associated with increased arterial stiff- nity study in Shanghai during 2011–2013. We genotyped ness (5–8). However, randomized controlled trials (RCTs) 34 T2D-associated common variants identified in East assessing the effect of glucose lowering on cardiovascular Asians and created a genetic risk score (GRS). We outcomes have yielded mixed results (9–12). Because con- assessed arterial stiffness noninvasively with the mea- ventional epidemiological studies are subject to a variety of surement of brachial-ankle pulse wave velocity (baPWV). bias, such as confounding or reverse causation, systematical We used the instrumental variable (IV) estimator to qual- investigations of causal relation between T2D and arterial ify the causal relationship between T2D and increased stiffening are needed.
    [Show full text]