Large Arterial Stiffness: an Important Therapeutic Target

Total Page:16

File Type:pdf, Size:1020Kb

Large Arterial Stiffness: an Important Therapeutic Target Journal of Human Hypertension (2000) 14, 533–535 2000 Macmillan Publishers Ltd All rights reserved 0950-9240/00 $15.00 www.nature.com/jhh COMMENTARY Large arterial stiffness: an important therapeutic target JR Cockcroft1 and IB Wilkinson2 1Department of Cardiology, Wales Heart Research Institute, University Hospital, Heath Park, Cardiff CF4 4XN, UK; 2Clinical Pharmacology Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK Keywords: arterial stiffness; pulse wave analysis; drug therapy; blood pressure; wave form In the current issue of the Journal of Human Hyper- closely related to diastolic pressure, is the product tension, Mahmud and Feely1 report on the use of of peripheral vascular resistance and cardiac output. pulse wave analysis (PWA) to assess the effect of the Pulse pressure, however, is mainly determined by angiotensin II receptor antagonist, valsartan, on large artery compliance and the pattern of left ven- arterial stiffness in patients with resistant hyperten- tricular ejection. Therefore, in middle-aged and sion. This timely report emphasises the importance older subjects, the available evidence suggests that of arterial stiffness as a predictor of cardiovascular arterial stiffness is a more important predictor of car- risk, and the changing perception of the various diovascular risk than peripheral vascular resistance. components of blood pressure over the last 100 Direct assessment of aortic stiffness using measure- years. ment of the pulse wave velocity (PWV) in patients with end-stage renal failure,9 and hypertension10 Arterial stiffness and cardiovascular risk confirms this view. The importance of arterial blood pressure as a determinant of cardiovascular risk has been clearly Pulse wave analysis demonstrated by a number of observational and Arterial stiffness can be measured in a number of intervention studies conducted since the introduc- ways.11 Ultrasound and MRI can be used to assess tion of the mercury sphygmomanometer at the turn local distensibility and/or compliance, and a variety of the last century. However, the component of of methods exist for assessing PWV, which provides blood pressure that best predicts cardiovascular risk 2 accurate information concerning the distensibility of has been a matter of considerable recent debate. By the arterial segment under investigation.12 However, convention, diastolic pressure was initially con- such methods do not provide information about sidered to be the best predictor of risk, and a high systemic arterial compliance and in particular the systolic pressure was believed to reflect a strong left interaction between the vascular tree and the left ventricle. Despite data in the 1970s and 80s from the 3 ventricle. Pulse wave analysis, offers a non-invasive Framingham Cohort, demonstrating that systolic method for assessment, of systemic arterial stiffness, pressure was probably more important than dias- and also estimation of central arterial pressure.13 tolic values in defining risk, most physicians Intermittent left ventricular ejection creates press- remained heavily biased towards diastolic pressure ure waves that are reflected back, towards the heart for both risk assessment and treatment. However, from sites of impedance mis-match in the periph- overwhelming evidence from epidemiological ery.14 Therefore, the pressure waveform at any point observations now indicates that, at least in the over in the vascular tree is a composite of a forward-going 50s, pulse pressure is a more important determinant and reflected wave. Normally, the reflected wave of cardiovascular risk than mean arterial pressure in returns to the aorta in diastole and boosts coronary normotensive,4 hypertensive5 and post-myocardial 6 artery filling. However, as arteries stiffen, the ampli- infarction populations. Recent re-analysis of sev- tude and speed of the reflected wave both increase, eral blood pressure-lowering studies confirms these 7,8 so that a larger reflected wave returns to the aorta findings. Mean arterial pressure, which is most sooner, which changes the shape of the waveform augmenting central systolic pressure.14 Therefore, the shape of the arterial pressure wave provides use- Correspondence: Dr JR Cockcroft, Department of Cardiology, Wales Heart Research Institute, University Hospital, Heath Park, ful information concerning systemic arterial stiff- Cardiff CF4 4XN, UK. E-mail: cockcroftjrȰcf.ac.uk ness. Mahomed and others recognised this over 100 Received 10 May 2000; accepted 10 May 2000 years ago,15 and since then a variety of devices have Large arterial stiffness JR Cockcroft and IB Wilkinson 534 been employed to record and analyse the pressure large artery stiffness, it is also dependent upon dis- waveform.16,17 However, until recently, PWA was tending pressure, ie, mean arterial pressure.14 There- confined to the peripheral waveform. O’Rourke and fore, some of the beneficial effects observed with colleagues have further developed the technique of valsartan may simply be due to the passive effect of PWA, making non-invasive derivation of central lowering mean arterial pressure. In order to dis- pressure waveforms possible.18 Their technique uses tinguish between passive effects and those due to applanation tonometry to record accurately pressure direct drug actions on arterial structure and function waves from the radial artery,19 and a validated gen- it becomes important to include positive control eralised transfer factor20–24 is then used to generate agents in such studies that will reduce mean arterial the corresponding central arterial waveform. From pressure to a similar degree as the study drug. Pre- this, augmentation index (AIx) – a measure of sys- vious studies have, however, demonstrated differ- temic arterial stiffness, the timing of the reflected ences between antihypertensive agents in their wave – which provides an estimate of the aortic effect on large arterial stiffness and wave reflec- PWV,25 and central pressure can be determined non- tion.32–34 Indeed, ACE inhibitors decrease wave invasively and reproducibly.26 reflection and large artery stiffness,32,35 whereas at Due to differences in vessel compliance and wave least acutely, ␤-adrenoceptor antagonists have been reflection, the shape of the arterial waveform,27,28 shown to increase wave reflection.36 and systolic blood pressure in particular, varies Such observations have important implications throughout the arterial tree.29 Peripheral pulse for the management of patients with isolated sys- pressure is higher than brachial artery pressure in tolic hypertension (ISH), which is primarily a dis- most individuals – ie, there is amplification moving ease of increased arterial stiffness.37 Isolated systolic away from the aorta.29 However, with age, central hypertension currently affects around 50% of the pulse pressure rises and the amplification ratio over 60s, and this number is set to rise substantially falls,14 and similar changes might be expected with with increasing life expectancy over the next 20 other conditions, that induce premature vascular years. Most of the drugs currently used in patients stiffening such as hypertension, diabetes mellitus with ISH were developed to treat essential hyperten- and cigarette smoking. Therefore, simply measuring sion, a disease of increased peripheral vascular peripheral pulse pressure will not provide a reliable resistance, and thus were targeted at the resistance estimate of central haemodynamics. This is vessels. Improved treatment of ISH requires new important, because central systolic pressure, not drugs which selectively target the large arteries and brachial artery pressure, defines left ventricular improve arterial compliance both directly, by func- workload and, therefore, left ventricular mass – tional and structural modifications, and indirectly, an important and independent predictor of by reducing mean pressure. To some extent nitrates cardiovascular mortality.30 Moreover, carotid pulse may be useful in this respect, although nitrate toler- pressure correlates more closely with carotid intima- ance and ignorance of the different mechanisms media thickness than brachial pulse pressure.31 underlying essential hypertension and ISH have pre- However, whether measurement of central pulse vented a proper randomised controlled trial pressure will improve risk stratification remains to investigating the effectiveness of sustained-action be proven, although the recent inclusion of PWA, as oral nitrates. a sub study, in large randomised intervention trials The vascular endothelium produces a number of such as the ASCOT, SEARCH and FIELD studies vasoactive mediators such as nitric oxide and endo- will hopefully address this issue. thelin that regulate smooth muscle tone and, are thus likely to contribute to the functional control of Arterial stiffness and therapeutic large artery stiffness. Endothelial dysfunction, which is present in most patients with established intervention cardiovascular risk factors, may explain why con- Mahmud and Feely1 report that addition of the ditions such as diabetes and hypercholesterolaemia angiotensin receptor antagonist valsartan to stan- also associated with increased large artery stiffness, dard drug therapy, in patients with resistant hyper- at an early stage, before the development of manifest tension already receiving an angiotensin-converting atheroma.38 Therefore, drugs that improve endo- enzyme (ACE) inhibitor, results in a significant thelial function, such as ACE inhibitors, may also reduction
Recommended publications
  • Elevated High-Sensitive C-Reactive Protein, Large Arterial Stiffness and Atherosclerosis: a Relationship Between Inflammation and Hypertension?
    Journal of Human Hypertension (2005) 19, 511–513 & 2005 Nature Publishing Group All rights reserved 0950-9240/05 $30.00 www.nature.com/jhh COMMENTARY Elevated high-sensitive C-reactive protein, large arterial stiffness and atherosclerosis: a relationship between inflammation and hypertension? CJ Boos and GYH Lip Haemostasis, Thrombosis and Vascular Biology Unit, University Department of Medicine, City Hospital, Birmingham, UK Journal of Human Hypertension (2005) 19, 511–513. doi:10.1038/sj.jhh.1001858 Published online 19 May 2005 Cardiovascular disease (CVD) is currently the lead- pneumoniae, and is synthesized primarily by the ing cause of death and disability in the developed liver in response to IL-6 and IL-1b. As a risk world, and will soon overtake infectious disease as assessment tool, it has several good points — it is the pre-eminent cause of death worldwide.1 Athero- very stable, with very little difference in values sclerosis is the most important contributor to this between fresh or frozen plasma and has a long half- substantial disease burden. Whereas previously life of up to 20 h.5 It normally circulates at very low considered a bland process, our current under- levels, but acute inflammatory processes induce standing of atherosclerosis suggests that it is a marked hepatic synthesis of hsCRP, which can dynamic and progressive disease arising from a induce a 100-fold serum increase.6 combination of endothelial damage/dysfunction, Evidence has shown that, even in apparently thrombosis and inflammation.2,3 healthy subjects,
    [Show full text]
  • Download PDF File
    CLINICAL CARDIOLOGY Cardiology Journal 2020, Vol. 27, No. 6, 742–748 DOI: 10.5603/CJ.a2018.0109 Copyright © 2020 Via Medica ORIGINAL ARTICLE ISSN 1897–5593 eISSN 1898–018X Increased systemic arterial stiffness in patients with chronic thromboembolic pulmonary hypertension Monika Sznajder, Olga Dzikowska-Diduch, Katarzyna Kurnicka, Marek Roik, Dominik Wretowski, Piotr Pruszczyk, Maciej Kostrubiec Department of Internal Medicine and Cardiology with Venous Thromboembolism Center, Medical University of Warsaw, Poland Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a complication of venous thromboembolism (VTE) resulting from non-dissolving thromboemboli in the pulmonary arteries. Previous observations indicate a higher prevalence of atherosclerosis and cardiovascular risk factors in patients with VTE and CTEPH. The purpose of the present study was to evaluate the arterial stiffening assessed by pulse wave velocity (PWV), a marker of arterial stiffness, in CTEPH patients in comparison with a matched control group (CG). Methods: The study group consisted of 26 CTEPH patients (9 male and 17 female, age 69 ± 10 years) and 22 CG (10 male, 12 female, age 67 ± 8 years). In all subjects a physical examination, carotid- -femoral PWV and transthoracic echocardiography were performed. Right heart catheterization was done in all CTEPH. Results: Chronic tromboembolic pulmonary hypertension patients had significantly higher PWV than CG (10.3 ± 2.5 m/s vs. 9 ± 1.3 m/s, p < 0.05), even though systolic blood pressure was higher in CG (120 ± 11 vs. 132 ± 14 mmHg, p = 0.002). PWV correlated only with age and pulmonary vascular resistance (PVR) in CTEPH (r = 0.45, p = 0.03 and r = 0.43, p = 0.03, respectively).
    [Show full text]
  • Associations of Non-High-Density Lipoprotein Cholesterol, Triglycerides
    Hypertension Research (2019) 42:1223–1230 https://doi.org/10.1038/s41440-019-0251-5 ARTICLE Associations of non-high-density lipoprotein cholesterol, triglycerides and the total cholesterol/HDL-c ratio with arterial stiffness independent of low-density lipoprotein cholesterol in a Chinese population 1,2 3 2 1,2 Jia Wen ● Yun Huang ● Yao Lu ● Hong Yuan Received: 6 September 2018 / Revised: 10 January 2019 / Accepted: 21 February 2019 / Published online: 27 March 2019 © The Author(s) 2019. This article is published with open access Abstract Several lipid parameters are closely associated with residual cardiovascular risk. We aimed to confirm that in a range of low- density lipoprotein cholesterol (LDL-c) levels (from <70 mg/dl to ≥160 mg/dl), other lipid parameters, such as triglyceride (TG) level, non-high-density lipoprotein cholesterol (non-HDL-c) level, and the total cholesterol (TC)/HDL-c ratio, are still related to arterial stiffness, which is a recognized marker of atherosclerosis. In this cross-sectional study, we measured brachial-ankle pulse wave velocity (baPWV), as well as clinical and biochemical indices in 16,733 Chinese adult volunteers 1234567890();,: 1234567890();,: who underwent health check-ups from January 2014 to January 2015. Arterial stiffness was defined as the upper quartile of baPWV. We applied multivariable logistic regression models to examine the associations between lipid parameters and arterial stiffness. Both men and women with high baPWV were more likely to have an atherogenic lipid phenotype. Among participants with LDL-c <70 mg/dl, participants with non-HDL-c ≥100 mg/dl had a multivariable adjusted OR for arterial stiffness of 1.66 (1.11–2.50) compared to those with non-HDL-c <100 mg/dl; participants with TG ≥150 mg/dl had an OR of 2.44 (1.61–3.71) compared to those with TG <150 mg/dl; and participants with a TC/HDL-c ratio ≥4 had an OR of 1.74 (1.15–2.65) compared to those with a TC/HDL-c ratio <4.
    [Show full text]
  • Cardiovascular Health and Arterial Stiffness: the Maine-Syracuse Longitudinal Study Georgina E
    The University of Maine DigitalCommons@UMaine Maine-Syracuse Longitudinal Papers Maine-Syracuse Longitudinal Study 2014 Cardiovascular health and arterial stiffness: The Maine-Syracuse Longitudinal Study Georgina E. Crichton University of South Australia Merrill F. Elias University of Maine, [email protected] Michael A. Robbins University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/ longitudinal_papers Repository Citation Crichton, Georgina E.; Elias, Merrill F.; and Robbins, Michael A., "Cardiovascular health and arterial stiffness: The aine-SM yracuse Longitudinal Study" (2014). Maine-Syracuse Longitudinal Papers. 62. https://digitalcommons.library.umaine.edu/longitudinal_papers/62 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Maine-Syracuse Longitudinal Papers by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. HHS Public Access Author manuscript Author Manuscript Author ManuscriptJ Hum Hypertens Author Manuscript. Author Author Manuscript manuscript; available in PMC 2015 January 01. Published in final edited form as: J Hum Hypertens. 2014 July ; 28(7): 444–449. doi:10.1038/jhh.2013.131. Cardiovascular Health and Arterial Stiffness: The Maine Syracuse Longitudinal Study Georgina E Crichton, PhD1,2, Merrill F Elias, PhD, MPH3,4, and Michael A Robbins, PhD3,4 1Nutritional Physiology Research Centre, University of South Australia, Adelaide, Australia 2Centre de Recherche Public Santé, Centre d’Etudes en Santé, Grand-Duchy of Luxembourg 3Department of Psychology, University of Maine, Orono, Maine, USA 4Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA Abstract Ideal cardiovascular health is a recently defined construct by the American Heart Association (AHA) to promote cardiovascular disease reduction.
    [Show full text]
  • Influence of Age, Risk Factors, and Cardiovascular and Renal Disease on Arterial Stiffness: Clinical Applications
    AJH 2002; 15:1101–1108 Reviews Influence of Age, Risk Factors, and Cardiovascular and Renal Disease on Arterial Stiffness: Clinical Applications Athanase Benetos, Bernard Waeber, Joseph Izzo, Gary Mitchell, Lawrence Resnick, Roland Asmar, and Michel Safar Age is the main clinical determinant of large artery stiff- Although large artery stiffness increases with age inde- ness. Central arteries stiffen progressively with age, pendently of the presence of cardiovascular risk factors or whereas peripheral muscular arteries change little with other associated conditions, the extent of this increase may age. A number of clinical studies have analyzed the effects depend on several environmental or genetic factors. Hy- of age on aortic stiffness. Increase of central artery stiff- pertension may increase arterial stiffness, especially in ness with age is responsible for earlier wave reflections older subjects. Among other cardiovascular risk factors, and changes in pressure wave contours. The stiffening of diabetes type 1 and 2 accelerates arterial stiffness, whereas aorta and other central arteries is a potential risk factor for the role of dyslipidemia and tobacco smoking is unclear. increased cardiovascular morbidity and mortality. Arterial Arterial stiffness is also present in several cardiovascular stiffening with aging is accompanied by an elevation in and renal diseases. Patients with heart failure, end stage systolic blood pressure (BP) and pulse pressure (PP). renal disease, and those with atherosclerotic lesions often Although arterial stiffening with age is a common situa- develop central artery stiffness. Decreased carotid disten- tion, it has now been confirmed that older subjects with sibility, increased arterial thickness, and presence of cal- increased arterial stiffness and elevated PP have higher cifications and plaques often coexist in the same subject.
    [Show full text]
  • Relationship Between Peripheral Arterial Stiffness and Estimated Pulmonary Pressure by Echocardiography in Systemic Sclerosis
    Acta Cardiol Sin 2017;33:514-522 Original Article doi: 10.6515/ACS20170220A Pulmonary Arterial Hypertension Relationship between Peripheral Arterial Stiffness and Estimated Pulmonary Pressure by Echocardiography in Systemic Sclerosis Burabha Pussadhamma,1 Wannipa Suwannakrua,1 Panorkwan Toparkngarm,1 Chaiyasith Wongvipaporn,1 Chingching Foocharoen2 and Ratanavadee Nanagara2 Background: Pulmonary hypertension (PH) is an important lethal manifestation of systemic sclerosis (SSc). Evidence of an association between peripheral and pulmonary arterial vasculopathy in SSc has been demonstrated. We hypothesized that peripheral arterial stiffness could predict PH in SSc. Methods: We performed a cross-sectional study among patients with SSc who underwent Cardio-Ankle Vascular Index (CAVI, VaSera VS-1000; Fukuda Denshi, Tokyo, Japan) and transthoracic echocardiography (TTE) examination to evaluate peripheral arterial stiffness and PH, respectively. The correlation between CAVI score and PH hemodynamics [right ventricular systolic pressure (RVSP) and tricuspid regurgitation velocity (TRV)] was studied. Results: A total of 145 patients underwent both CAVI and TTE evaluation. The mean (standard deviation, SD) patient age was 51.5 (12.3) years; female patients constituted 72% of the subjects. Diffuse SSc occurred in 75% of the cases. The mean (SD) CAVI score was 7.6 (0.9), and the mean (SD) RVSP was 29.9 (11.2) mmHg. Correlation coefficient (r) between CAVI score and RVSP in overall, limited, and diffuse SSc were 0.107 (p = 0.200), 0.040 (p = 0.815), and 0.194 (p = 0.043), respectively. CAVI scores were borderline or abnormal (³ 8) in 30.3% of subjects. PH was classified intermediate or high probability (TRVmax ³ 2.9 m/s) in 19.3% of the subjects.
    [Show full text]
  • Peripheral Arterial Stiffness in Acute Pulmonary Embolism and Pulmonary Hypertension at Short-Term Follow-Up
    Journal of Clinical Medicine Article Peripheral Arterial Stiffness in Acute Pulmonary Embolism and Pulmonary Hypertension at Short-Term Follow-Up Silvia Papa 1 , Cristiano Miotti 1 , Giovanna Manzi 1, Gianmarco Scoccia 1 , Federico Luongo 1 , Federica Toto 1, Claudia Malerba 1, Nadia Cedrone 2, Elena Sofia Canuti 1, Annalisa Caputo 1, Giulia Manguso 1, Serena Valentini 1, Susanna Sciomer 1 , Francesco Ciciarello 1, Giulia Benedetti 1, Francesco Fedele 1, Carmine Dario Vizza 1 and Roberto Badagliacca 1,* 1 Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; [email protected] (S.P.); [email protected] (C.M.); [email protected] (G.M.); [email protected] (G.S.); [email protected] (F.L.); [email protected] (F.T.); [email protected] (C.M.); [email protected] (E.S.C.); [email protected] (A.C.); [email protected] (G.M.); [email protected] (S.V.); [email protected] (S.S.); [email protected] (F.C.); [email protected] (G.B.); [email protected] (F.F.); [email protected] (C.D.V.) 2 Internal Medicine Department, Ospedale S. Pertini, 00157 Rome, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-06-49979016 Abstract: Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe and under-recognized complication of acute pulmonary embolism (PE). Forty consecutive patients with acute PE (Group 1), Citation: Papa, S.; Miotti, C.; Manzi, predominantly female (22, 55%) with a mean age of 69 ± 15 years, were matched for demographic G.; Scoccia, G.; Luongo, F.; Toto, F.; data with 40 healthy subjects (Group 2), 40 systemic hypertension patients (Group 3) and 45 prevalent Malerba, C.; Cedrone, N.; Canuti, E.S.; idiopathic pulmonary arterial hypertension (IPAH) patients (Group 4).
    [Show full text]
  • Arterial Stiffness and Hypertension Young S
    Oh Clinical Hypertension (2018) 24:17 https://doi.org/10.1186/s40885-018-0102-8 REVIEW Open Access Arterial stiffness and hypertension Young S. Oh Abstract Measures of the functional and structural properties of blood vessels can be used to assess preclinical stage of vascular disorders. Recent experimental and population studies show that arterial stiffening precedes development of high blood pressure, and can be used to predict future cardiovascular events. Arterial stiffness was also shown to be reversible in several experimental models of various conditions. Since reversing arterial stiffness could prevent development of hypertension and other clinical conditions, understanding the biological mechanisms of arterial stiffening and investigating potential therapeutic interventions to modulate arterial stiffness are important research topics. For research and application in general clinical settings, it is an important step to develop reliable devices and a standardized arterial stiffness measurement protocol. Keywords: Hypertension, Arterial, Aortic stiffness, Cardiovascular disease, Vascular biology Introduction precedes high blood pressure. These animal models in- The walls of large arteries, especially the aorta, lose elas- cluded: (i) diet-included obesity model, (ii) elastin gene ticity over time, and this process results in increased ar- knock-out model, (iii) stroke-prone Dahl salt-sensitive terial stiffness. Arterial stiffening, at least in part, reflects rat model, (iv) klotho gene knock-out model, and (v) gradual fragmentation and loss of elastin fibers and ac- type 2 diabetes model. In clinical studies, a consistent cumulation of stiffer collagen fibers in the arterial wall temporal sequence of arterial stiffness preceding hyper- [1]. Increased arterial stiffness is closely linked to in- tension was also observed in the Framingham Heart creased risk of hypertension and other diseases, such as Cohort Study [4].
    [Show full text]
  • Aortic Stiffness Current Understanding and Future Directions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 57, No. 14, 2011 © 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2010.12.017 STATE-OF-THE-ART PAPER Aortic Stiffness Current Understanding and Future Directions João L. Cavalcante, MD,*§ João A. C. Lima, MD, MBA,† Alban Redheuil, MD, PHD,‡ Mouaz H. Al-Mallah, MD, MSC*ʈ Detroit, Michigan; Baltimore, Maryland; Paris, France; Cleveland, Ohio; and Riyadh, Saudi Arabia The aorta stiffens with aging, a process that is accelerated by arterial hypertension. Decreased arterial compli- ance is one of the earliest detectable manifestations of adverse structural and functional changes within the vessel wall. The use of different imaging techniques optimized for assessment of vascular elasticity and quantifi- cation of luminal and vessel wall parameters allows for a comprehensive and detailed view of the vascular sys- tem. In addition, several studies have also documented the prognostic importance of arterial stiffness (AS) in various populations as an independent predictor of cardiovascular morbidity and all-cause mortality. Measure- ment of AS by applanation tonometry with pulse-wave velocity has been the gold-standard method and is well- validated in large populations as a strong predictor of adverse cardiovascular outcomes. Because aortic stiffness depends on the prevailing blood pressure, effective antihypertensive treatment is expected to reduce it in propor- tion to the blood pressure reduction. Nevertheless, drugs lowering blood pressure might differ in their effects on structure and function of the arterial walls.
    [Show full text]
  • Arterial Stiffness and Incidence of Diabetes
    Diabetes Care 1 Arterial Stiffness and Incidence of Iram Faqir Muhammad,1 Yan Borne,´ 1 Gerd Ostling,¨ 1,2 Cecilia Kennback,¨ 2 Diabetes: A Population-Based Mikael Gottsater,¨ 1,2 Margaretha Persson,1,2 Cohort Study Peter M. Nilsson,1,2 and Gunnar Engstrom¨ 1 https://doi.org/10.2337/dc17-1071 OBJECTIVE Diabetes is known to be associated with increased arterial stiffness. However, the temporal association between increased carotid-femoral pulse wave velocity (c-f PWV) and diabetes is unclear. The aim of this study is to explore the relationship between arterial stiffness, as determined by c-f PWV, and incidence of diabetes. RESEARCH DESIGN AND METHODS The study population included participants from the Malmo¨ Diet and Cancer cardio- vascular cohort, using measurements from the 2007–2012 reexamination as base- line. Arterial stiffness was evaluated by measuring c-f PWV (SphygmoCor). After excluding participants with prevalent diabetes (according to measurements of fast- ing glucose, oral glucose tolerance tests, and physician’s diagnoses), the final study population consisted of 2,450 individuals (mean age = 71.9 6 5.6 years). Incidence of diabetes was followed by linkage to local and national diabetes registers. Cox pro- portional hazards regression was used to assess the incidence of diabetes in relation to the tertiles of c-f PWV, adjusted for potential confounders. RESULTS CARDIOVASCULAR AND METABOLIC RISK During a mean follow-up of 4.43 6 1.40 years, 68 (2.8%) participants developed diabetes. Crude incidence of diabetes (per 1,000 person-years) was 3.5, 5.7, and 9.5, respectively, for subjects in the first, second, and third tertiles of c-f PWV.
    [Show full text]
  • Diabetes and Risk of Arterial Stiffness: a Mendelian Randomization Analysis
    Diabetes Volume 65, June 2016 1731 Min Xu,1,2,3 Ya Huang,1,2,3 Lan Xie,4 Kui Peng,1,2,3 Lin Ding,1,2,3 Lin Lin,1,2,3 Po Wang,1,2,3 Mingli Hao,1,2,3 Yuhong Chen,1,2,3 Yimin Sun,4,5 Lu Qi,6 Weiqing Wang,1,2,3 Guang Ning,1,2,3 and Yufang Bi1,2,3 Diabetes and Risk of Arterial Stiffness: A Mendelian Randomization Analysis Diabetes 2016;65:1731–1740 | DOI: 10.2337/db15-1533 We aimed to explore the causal association between arterial elasticity (3). In T2D patients, increased arterial type 2 diabetes (T2D) and increased arterial stiffness. stiffness is a strong risk factor for cardiovascular outcomes GENETICS/GENOMES/PROTEOMICS/METABOLOMICS We performed a Mendelian randomization (MR) analy- and early mortality (4). Growing epidemiology evidence has sisin11,385participantsfromawell-defined commu- shown that T2D is associated with increased arterial stiff- nity study in Shanghai during 2011–2013. We genotyped ness (5–8). However, randomized controlled trials (RCTs) 34 T2D-associated common variants identified in East assessing the effect of glucose lowering on cardiovascular Asians and created a genetic risk score (GRS). We outcomes have yielded mixed results (9–12). Because con- assessed arterial stiffness noninvasively with the mea- ventional epidemiological studies are subject to a variety of surement of brachial-ankle pulse wave velocity (baPWV). bias, such as confounding or reverse causation, systematical We used the instrumental variable (IV) estimator to qual- investigations of causal relation between T2D and arterial ify the causal relationship between T2D and increased stiffening are needed.
    [Show full text]
  • Increased Systemic Arterial Stiffness in Patients with Chronic
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE INTERVENTIONAL CARDIOLOGY provided by Via Medica Journals Cardiology Journal XXXX, Vol. XX, No. X, X–X DOI: 10.5603/CJ.a2018.0109 Copyright © 2019 Via Medica ORIGINAL ARTICLE ISSN 1897–5593 Increased systemic arterial stiffness in patients with chronic thromboembolic pulmonary hypertension Monika Sznajder, Olga Dzikowska-Diduch, Katarzyna Kurnicka, Marek Roik, Dominik Wretowski, Piotr Pruszczyk, Maciej Kostrubiec Department of Internal Medicine and Cardiology with Venous Thromboembolism Center, Medical University of Warsaw, Poland Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a complication of venous thromboembolism (VTE) resulting from non-dissolving thromboemboli in the pulmonary arteries. Previous observations indicate a higher prevalence of atherosclerosis and cardiovascular risk factors in patients with VTE and CTEPH. The purpose of the present study was to evaluate the arterial stiffening assessed by pulse wave velocity (PWV), a marker of arterial stiffness, in CTEPH patients in comparison with a matched control group (CG). Methods: The study group consisted of 26 CTEPH patients (9 male and 17 female, age 69 ± 10 years) and 22 CG (10 male, 12 female, age 67 ± 8 years). In all subjects a physical examination, carotid- femoral PWV and transthoracic echocardiography were performed. Right heart catheterization was done in all CTEPH. Results: Chronic tromboembolic pulmonary hypertension patients had significantly higher PWV than CG (10.3 ± 2.5 m/s vs. 9 ± 1.3 m/s, p < 0.05), even though systolic blood pressure was higher in CG (120 ± 11 vs. 132 ± 14 mmHg, p = 0.002). PWV correlated only with age and pulmonary vascular resistance (PVR) in CTEPH (r = 0.45, p = 0.03 and r = 0.43, p = 0.03, respectively).
    [Show full text]