Reloading Brass Shotshells Pt 2.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Reloading Brass Shotshells Pt 2.Pdf R.H. VanDenburg, Jr. Continued from Handloader No. 266 ext is the loading proce- ELOADING dure. One of the things un- R covered in all this is that Nbrass shells can generate higher velocities than paper or plas- tic, all other things being equal. So 1 if you plan to create a 3-dram, 1 ⁄8- ounce, 12-gauge load of 1,200 fps, for example, Brass you might not need any- where near the called for amount of powder. 38 www.handloadermagazine.com Handloader 267 PART II: Technical Tips Shotshells A lot of things factor into such events, such as bar- rel length and diameter, chamber length, atmos- pheric conditions, powder brand and grade, wad column and so forth. Waterfowlers might rejoice, but if you are competing in a timed event where re- covery between shots is important, this is a good thing to know. Typically, this occurs in the CBC shell only with black powder. With smokeless pow- der, performance is degraded. In the RMC shell, higher velocity occurs with both types of powder. The actual loading of brass shotshells differs from that which we are accustomed to with either metal- lic cartridges or modern shotshells. We have the luxury of loading one shell at a time as we typically load shotshells on a single-stage press or batch pro- cessing, i.e., completing one step on all the shells to be loaded before beginning the next step, as we usually load metallic cartridges. Either way the first aid we should obtain is a loading block. It is indis- pensable. We’ve already reviewed the complexities of the priming and depriming process. Charging with smokeless powder can be done by weighing each charge or setting up the powder measure or dispenser to drop the required charge. We also can use a regular shotshell reloader for this purpose if we wish. Black powder can be weighed, dispensed by a measure specifically designed for black pow- der or even dipped with a suitable dipper of the correct size and proper technique. Plastic wads (in the RMC shells) can be seated with a standard shotshell loader or by hand with a dowel. Wad pressure is not an issue, as it will be re- leased when we relax the seating effort, but wads must be fully seated on the powder. Brass shotshells are most at home in double Card wads, in either shell, must be securely seated barrel guns, such as this W & C Scott. with up to 100 pounds of pressure. This can be done on a shotshell loader or by hand with a dowel August-September 2010 www.handloadermagazine.com 39 Reloading Right the two brass shells available are the Brass Shotshells RMC shell (left) and the CBC. of the appropriate size. If a dowel is used, a cap of some sort on the dowel will be helpful. A bath- room scale will help in consis- tently seating wads to the same pressure. The old Lee Loader hand tool for shotshells is an ex- cellent tool for loading brass shotshells. It can decap the RMC shells, assist in seating primers in both shells and has its own seating ram. They haven’t been Left, the RMC shell can be made in years but are frequently loaded with mod- found at gun shows. Card wads ern components, are seated one at a time: the over- such as the BPI powder wad or wads, each filler Obturator (left wad and finally, the over-shot center) or one- wad or wads. piece plastic Shot is weighed or dipped or wads. Paper dispensed from a shotshell re- over-shot wads loader. Any protective shot are still required. sleeve is inserted into the shell around the edge of the wad and over-shot wads can be 11 or 10 on top of the last filler wad and seating it on top of the shot with gauge. The 11-gauge wads must before dropping the shot. moderate force. The second is be epoxied; the 10-gauge wads Over-shot wads allow for some similarly seated on the first. In should be. The latter do not make flexibility. My preference is to RMC shells, wads must be of the quite so neat an appearance. use two, .025-inch wads. The first proper size. With the CBC shell, When using two-part epoxy that is epoxied by running a bead in the 12 gauge, for example, the dries in five minutes, only five or six shells can be completed be- fore the epoxy sets up. This is as- suming that all the loading except for the over-shot wad is completed on all the shells and the wads are all laid out. With 30- minute epoxy, a full box of 25 shells could be completed assum- ing the same conditions, but it’s best to work in small batches at first. Other adhesives will require similar techniques and planning. The over-shot wad also is useful for identification. Especially if several different component mixes are being tried, a simple lettering system can prevent un- wanted mix-ups. In the loads that follow, the typ- ical built-up, card wad column 1 consists of a ⁄8-inch over-powder 1 wad, a ⁄2-inch filler wad and two .025-inch over-shot wads. When 40 www.handloadermagazine.com Handloader 267 Left, mid-twentieth century Remington components included brass shotshells with large pistol primers for all gauges. The .410 bore used small pistol primers. Right, the primer pocket in the CBC shell (left) protrudes into the shell interior. The RMC shell (right) has a solid head. using black powder, pressure is no laboratory-tested pressure sufficiently low to allow for con- data available, as all modern labs siderable experimentation. Two are set up for paper or plastic tic wad and dropping it in a brass over-powder wads, or a thin card shells. That said, there are sev- shell with a built-up card wad wad under and over the filler eral smokeless powder loads in- column will produce conflicting wad or even two filler wads are cluded herein. results. The brass shell will result all options. Some shooters put a Generally speaking, assuming in higher pressure and velocity; Tyvek® disk under the shot to the same shot weight, selecting a the card wad system will result in prevent any pellets from being powder charge published for a less. The net result may be a imbedded in the filler wad upon plastic shell and one-piece plas- wash, but not necessarily. In the firing. The filler wads employed here are fiber. Felt wads are con- sidered best but are very hard to find. Cork wads are also avail- able and perhaps should be sandwiched between two card SHOOTINGSHOOTING CHRONYCHRONY wads of moderate thickness. The TheThe GreatestGreatest BangBang forfor YourYour Buck!Buck! choice is yours and should be •• For For PrecisePrecise AmmoAmmo dictated by need – either to im- Velocity Measurement prove patterns or shot-to-shot Velocity Measurement consistency. Because we are not •• For For Rifles,Rifles, Handguns,Handguns, crimping the shell, wad column Archery,Archery, Shotguns,Shotguns, height is generally not important. AirgunsAirguns && PaintballsPaintballs •• Choose Choose fromfrom 1010 ModelsModels If it In the process of developing If it •• MSPR: MSPR: $89.95$89.95 toto $205.95$205.95 this piece, I asked Steve Coach of doesn’t RCBS’s engineering department unfold ... •• We We Accept Accept Trade-insTrade-ins it’s not a what the company’s response it’s not a Chrony! was to those who asked about shooting smokeless powder in these (CBC) shells. He responded that no one had ever asked the question. This says that most of us interested in loading brass shotshells view them as a black- powder component only, although this is not historically correct. Have a Indeed, there is nothing inher - look at our ent in the design of either shell that would preclude the use of Shooting Chrony SHOOTING CHRONY, INC. smokeless powder, assuming the Ballistics Program 1-800-385-3161 gun the shells were to be fired in on our Web Page: 3840 E. Robinson Rd. PMB #298 on our Web Page: Amherst, NY 14228 was proofed for smokeless pow- www.shootingchrony.com e-mail: [email protected] der. The only problem is there is August-September 2010 www.handloadermagazine.com 41 Reloading Brass Shotshells A typical black-powder load includes (from left): a primed shell, powder, CBC shells, the smokeless pow- over-powder wad, filler wad, shot and der charges produce considerably two over-shot wads epoxied in place. reduced performance because, in effect, we’re dumping a 12-gauge powder charge in an 11-gauge Over-shot wads allow for some flexibility. shell. The increased volume as the wad column moves forward keeps pressure and velocity low. Black powder, on the other hand, companied by higher pressures, cept for the over-shot wads. Here with its greater volume of gases reloaders must be prepared to pressure certainly would be simply overcomes the shell vol- make adjustments in the powder higher than experienced with a ume, and velocities tend to be charge based on velocities ob- plastic shell, and powder charges higher. In the RMC shell, being of tained, making allowances for would have to be cut accordingly. barrel length, etc. the same interior volume as If we are shooting brass shells in paper and straight-walled plastic If we are using the RMC shell, guns with chambers longer than 1 5 hulls, both smokeless and black of course, we could even use one- the shells – 2 ⁄2- or 2 ⁄8-inch shells powder produce higher veloci- piece plastic wads, duplicating in 3-inch chambers, for example – ties.
Recommended publications
  • Numerical Simulations of Impacts of a Spherical Shell Projectile on Small Asteroids
    46th Lunar and Planetary Science Conference (2015) 1868.pdf NUMERICAL SIMULATIONS OF IMPACTS OF A SPHERICAL SHELL PROJECTILE ON SMALL ASTEROIDS. K. Kurosawa1, H. Senshu1, K. Wada1, and TDSS team, Planetary Exploration Research Center, Chiba Institute of Technology, ([email protected]) Introduction: Recently, impactors have been strength of the target Y is given by Y = max(Ycoh + µP, widely used in a number of planetary exploration Ylimit), where Ycoh, µ, P, and Ylimit are the cohesion in missions [e.g., 1-4] to excavate the fresh material from the target, the coefficient of internal friction, the underground of asteroids, which are expected not to pressure in the target, and the Hugoniot elastic limit of suffer space weathering and thermal alteration due to the target. We employed the ε−α compaction model solar incidence. [11] to investigate the effects of the target porosity on The prediction of impact outcomes is necessary to the excavation processes. No gravity was included into derive scientific results as much as possible. There are the calculation. Lagrangian tracer particles were two problems, however, to predict impact outcomes on inserted into the grids to investigate the impact-driven small asteroids. First, the mechanical properties of flow field. For reference, we also conducted a few asteroids, such as the bulk porosity and the yield simulations using a dense copper spherical impactor strength, are largely unknown prior to arriving near with the same mass under the same conditions. target asteroids. Asteroids have a variation of the Results: Examples of snapshots of the simulation porosity from 0% to 80 % [5].
    [Show full text]
  • The Torpedo Incident
    The Torpedo Incident The Torpedo Incident The Argus The Trip Of The Cerberus Contemporary Reports Index A Torpedo Calamity Mr Murray's Narrative Particulars of the Deceased Statement of the survivor, James Jasper Narrative of Eye Witness Captain Mandeville's Report The Inquest The Inquest The Late Gunner Groves The Geelong Advertiser Explosion at Queenscliff The Cerberus Disaster Mr Murray's Statement James Jasper's Statement Inquest on the Bodies The Funeral The Inquest The Williamstown Advertiser The Cerberus Calamity The Inquest The Funeral Inquest Report Summary Introduction Division 1 THE ARGUS Page 8, 5 March 1881 http://home.vicnet.net.au/~cerberus/torpedoincident.html (1 of 24)29/03/2005 9:28:10 PM The Torpedo Incident THE TRIP OF THE CERBERUS [BY ELECTRIC TELEGRAPH] (FROM OUR OWN CORRESPONDENT.) H.M.C.S.S. Cerberus, under the command of Captain Manderville, left her anchorage in the bay this morning, and after some practice off the Red Bluff, steamed away for the Heads. During the journey two targets were thrown out, the first being a triangle fixed up for the occasion at about 900 yards distance. The first round carried it away, and upon taking it on board it was found that it had been struck at the centre of the cross beam, and shattered to pieces. A small barrel was then put overboard with a red round to starboard. On account of the ebb tide the target drifted close to the steamer, and a tack had to be made so as to leave the target about 1,000 yards distant.
    [Show full text]
  • Japanese Ordnance Markings
    IAPANLS )RDNAN( MARKING KEY CHARACTERS for Essential Japanese Ordnance Materiel TABLE CHARACTER ORDNANCE TABLE CHARACTER ORDNANCE Tanks 1* Trucks MG Cars 11 Rifle Vehicles Pistol Carbine Sha J _ _ Bullet Grenade 2 Shell (w. #12) 12 Artillery Shell Bomb (w. #18) (W. #2) Rocket Dan Ryi Cannon !i~iI~Mark Number and 13~ Data on Bombs Howitzer Mortar H5 Go' 1 Metric Terms Explosives 14 Ammunition (Weight & Dimension) Yaku Sanchi Miri 5 Type 15 Aircraft Shiki . Ki Year 6 16 Metals Month Nen Getsu Tetsu Gasoline Fuze 7 ~Fuel Oils 17 Cap Lubricating Oils Train Yu Kan Primer Shell Case Airplane Bomb 8 Bangalore Torpedo 18 (w. #2) Grenade Launcher Complete Round To' Baku 9 (o) Unit or 9 (Organization 19 Factory He) Gun Sho Mines 10 Torpedo (Aerial) 20 n Arsenal Rai Sho RESTRICTED Translation of JAPANESE ORDNANCE MARKINGS AUGUST, 1945 A. S. F. OFFICE OF THE CHIEF OF ORDNANCE WASHINGTON, D. C. RESTRICTED RESTRICTED Table of Contents PAGE SECTION ONE-Introduction General Discussion of Japanese Characters........................................... 1 Unusual Methods of Japanese Markings....................................................... 5 SECTION TWO-Instructions for Translating Japanese Markings Different Japanese Calendar Systems......................................................... 8 Japanese Characters for Type and Modification............................................ 9 Explanation of the Key Characters and Their Use....................................... 10 Key Characters for Essential Japanese Ordnance Materiel.......................... 11 Method of Using the Key Character Tables in Translation............................ 12 Tables of Basic Key Characters for Japanese Ordnance................................ 17 SECTION THREE-Practical Reading and Translation of Japanese Characters Japanese Markings Copied from a Tag Within an Ammunition Box.......... 72 Japanese Markings on an Airplane Bomb.................................................... 73 Japanese Markings on a Heavy Gun...................................................
    [Show full text]
  • Artillery Through the Ages, by Albert Manucy 1
    Artillery Through the Ages, by Albert Manucy 1 Artillery Through the Ages, by Albert Manucy The Project Gutenberg EBook of Artillery Through the Ages, by Albert Manucy This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: Artillery Through the Ages A Short Illustrated History of Cannon, Emphasizing Types Used in America Author: Albert Manucy Release Date: January 30, 2007 [EBook #20483] Language: English Artillery Through the Ages, by Albert Manucy 2 Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK ARTILLERY THROUGH THE AGES *** Produced by Juliet Sutherland, Christine P. Travers and the Online Distributed Proofreading Team at http://www.pgdp.net ARTILLERY THROUGH THE AGES A Short Illustrated History of Cannon, Emphasizing Types Used in America UNITED STATES DEPARTMENT OF THE INTERIOR Fred A. Seaton, Secretary NATIONAL PARK SERVICE Conrad L. Wirth, Director For sale by the Superintendent of Documents U. S. Government Printing Office Washington 25, D. C. -- Price 35 cents (Cover) FRENCH 12-POUNDER FIELD GUN (1700-1750) ARTILLERY THROUGH THE AGES A Short Illustrated History of Cannon, Emphasizing Types Used in America Artillery Through the Ages, by Albert Manucy 3 by ALBERT MANUCY Historian Southeastern National Monuments Drawings by Author Technical Review by Harold L. Peterson National Park Service Interpretive Series History No. 3 UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1949 (Reprint 1956) Many of the types of cannon described in this booklet may be seen in areas of the National Park System throughout the country.
    [Show full text]
  • Winchester Reloading Manuals
    15th Edition Reloader’s Manual What’s it take to manufacture the world’s finest ammunition? The world’s finest components. Winchester understands the demands of shooters and hunters want- ing to develop the “perfect load.” You can rest assured that every Winchester ammu- nition component is made to meet and exceed the most demanding requirements and performance standards in the world– yours. Winchester is the only manufacturer which backs up its data with over 125 years of experience in manufacturing rifle, handgun and shotshell ammunition.The data in this booklet are the culmination of very extensive testing which insures the reloader the best possible results. This 15th edition contains more than 150 new recipes, including AA Plus® Ball Powder® propellant, WAA12L wad, 9x23 Winchester and 454 Casull. This information is presented to furnish the reloader with current data for reloading shotshell and centerfire rifle and handgun ammunition. It is not a textbook on how to reload, but rather a useful reference list of recommended loads using Winchester® components. TABLE OF CONTENTS Warnings Read Before using Data. 2 Components Section. 6 Shotshell Reloading. 12 Shotshell Data. 17 Powder Bushing Information. 25 Metallic Cartridge Reloading. 33 Rifle Data. 35 Handgun Data. 42 Ballistic Terms and Definitions. 51 TRADEMARK NOTICE AA Plus, AA, Action Pistol, Fail Safe, Lubalox, Lubaloy, Silvertip, Super-Field, Super-Lite, Super-Match, Super-Target, Super-X, Xpert and Winchester are registered trademarks of Olin Corporation. Magnum Rifle, and Upland, are trademarks of Olin Corporation. Ball Powder is a registered trademark of Primex Technologies, Inc. © 1997 Winchester Group, Olin Corporation, East Alton, IL 62024 1 WARNINGS Read before using data The shotshell and metallic cartridge data in this booklet supersede all previous data published for Ball Powder® smokeless propellants.
    [Show full text]
  • The Artillery News
    THE ARTILLERY NEWS. JUNE – AUGUST 2007 Official Correspondence. R.A.A Assoc. of Tas. Inc. Hon. Secretary, Norman B. Andrews OAM., SBStJ. Tara Room, 24 Robin St; Newstead. Tas. 7250. E-Mail: [email protected] R.A.A. Association of Tasmania Inc. Homepage: http://www.tasartillery.o-f.com/ R.A.A.A.T. NORTHERN HISTORICAL- SOCIAL WING. APRIL 2007 The second informal get-together for 2007 of the R.A.A.A.T. Historical- Social Wing group was held at the QVM&AG at 2.00 p.m. on Thursday 12th April, 2007 and was attended by:- Norman Andrews (Hon. Sec.), Gunter Breier, Terry Higgins, Graeme Petterwood, Lloyd Saunders, Marc Smith, Frank Stokes, Charles Tee and Rick Wood.. We did receive apologies from several members - and we were aware of others who are still on the sick list – so ‘Get Wells’ are extended We also extend our sincere sympathy to our member Bob Brown who recently lost his dear wife through illness. Hang in there Bob…! Norm read several notes he had received from other Associations regarding their activities and also advised us of an invitation from Reg Watson regarding the Annual Boer War Commemorative Day which is to be held on Sunday 10 June 2007 commencing 12.00 noon at the Boer War Memorial in Launceston’s City Park. There will be an opportunity to present flowers, posy or wreath in memory of those Tasmanians who fought in and perhaps died in the South African War (1899-1902) Further inquiries phone Reg Watson 0409 975 587. 1 Launceston contact also will be Mr.
    [Show full text]
  • Lifecycle Assessment of a PFHE Shell Grenade
    FOI-R--1373--SE November 2004 ISSN 1650-1942 Scientific report Joakim Hägvall, Elisabeth Hochschorner, Göran Finnveden, Michael Overcash, Evan Griffing Life Cycle Assessment of a PFHE Shell Grenade Defence Analysis SE-172 90 Stockholm SWEDISH DEFENCE RESEARCH AGENCY FOI-R--1373--SE Defence Analysis November 2004 SE-172 90 Stockholm ISSN 1650-1942 Scientific report Joakim Hägvall, Elisabeth Hochschorner, Göran Finnveden, Michael Overcash, Evan Griffing Life Cycle Analysis on a PFHE Shell Grenade Issuing organization Report number, ISRN Report type FOI – Swedish Defence Research Agency FOI-R--1373--SE Scientific report Defence Analysis Research area code SE-172 90 Stockholm 3. NBC Defence and other hazardous substances Month year Project no. November 2004 E1420 Sub area code 35 Environmental Studies Sub area code 2 Author/s (editor/s) Project manager Joakim Hägvall Göran Finnveden Elisabeth Hochschorner Approved by Göran Finnveden Karin Mossberg Sonnek Michael Overcash Sponsoring agency Evan Griffing Swedish Armed Forces Scientifically and technically responsible Report title Life Cycle Analysis on a PFHE Shell Grenade Abstract (not more than 200 words) The environmental constraint on all activities in society increases. Today there is a growing understanding of the need to minimize the environmental impacts and the military defence can not be an exception. So far, most of the work in this field has been focused on the direct environmental impact from the energetic materials in the munition. There has been a very small amount of work on the life cycle aspects concerning military materiel. This report describes a two year project, funded by the Swedish Armed Forces, with the purpose of performing life cycle assessments of munitions.
    [Show full text]
  • How Does a Cannon Work?
    National Park Service Fort Moultrie U.S. Department of the Interior Fort Sumter National Monument How Does A Cannon Work? Tube Top View Tube Chassis Muzzle Trunnions Vent Cascabel Breech Carriage Introduction People have been fascinated with guns since the invention of artillery in the Middle Ages. This basic guide explains how 19th century seacoast cannon operated, and the types of projectiles they fired. These guns are muzzle loaders; everything entered and left through the muzzle. The gun has three basic components: the tube, the carriage, and the chassis. The tube rests on the carriage, which supports it for firing and controls recoil (energy released when the gun fires). Most tubes are made of cast iron. The tube and carriage rests on a chassis, which permits the movement of the cannon left, right, forward or back to aim, load and fire. All together, this weapon is called a piece. Smoothbore Smoothbore guns typically fired spherical Spherical case shot are similar projectiles; the classic round cannonball. to shells, but also contain Ammunition consists of five kinds: solid shot, shell, shrapnel (musket balls). These spherical case shot, canister, and grape shot. are antipersonnel rounds, timed to explode in front of Solid shot are used for the target while airborn. puncturing walls, buildings and ships. When heated they Canister and grape shot turns a cannon into a become hot shot, used for shotgun, killing men and destroying objects alike. starting fires. Canister Shells are hollow, with a charge of gunpowder inside. The powder is ignited by a timed fuse, which lights when the gun is fired.
    [Show full text]
  • Marine Torpedo. No 47, 776
    W00D & LAY. Marine Torpedo. No 47, 776. Patented May 16, 1865. UNITED STATES PATENT OFFICE, WM. W. W. WOOD, AND JOHN L. LAY, OF THE UNITED STATES NAVY, ASSIGNORS TO DONALD MCKAY, OF EAST BOSTON, MASS. M PROVE MENT IN SUBMARINE Explosiv E S - ELLS. Specification forming part of Letters Patent No. 4A ?, ? ? G, dated May 16, 1865; antedated February 25, 1865. To all uvho7nn, ibi may concern, : || our invention, we will now proceed to describe Be it known that We, WILLIAMI W. W. || its construction, operation, and effect. WOOD, Chief Engineer, and JOHN L. LAY, On reference to the accompanying drawings, First-Assistant Engineer, both of the United || which forma part of this specification, Figure States Navy, have invented certain Improve- || 1 is a vertical section of our improved subma ments in Submarine Shells or Torpedoes; and | Irine shell or torpedo; Fig. 2, a sectional plan we do hereby declare the following to be a full, i on the line 1, 2, Fig. 1, and Figs. 3, 4, and 5 clear, and exact description of the same, refer- || views illustrative of experiments made with ence being had to the accompanying drawings, | our improved shells. and to the letters of reference marked thereon. In the present instance, the casing A of the Our invention relates to certain improve- || shell is constructed of sheet-iron in the form ments in shells or torpedoes to be submerged || of a hollow cylinder, A, closed at the lower or partly submerged, and to be used for the || end and furnished at the upper end with a de sinking of vessels, the removal of obstructions || tachable cover, B, the lower closed end being from rivers or harbors, and the destruction of || cone - shaped, if desired, and being made folrtifications.
    [Show full text]
  • Identification of Artillery Projectiles
    IDENTIFICATION OF ARTILLERY. PROJECTILES (WITH ADDENDA) SECOND EDITION RESTRICTED Published by VI Corps June 1944. Republished with Addenda as Second Edition by Seventh^Army Auq 1944 INDEX Preface .......................................................... 2 Sample Shelling Report Form ..........................3 Sec. I - GERMAN................................................ 5 Abbreviations and Nomenclature . 6 Chart: Details of Rotating Bands . 46 Sec. II - ITALIAN.......................................... 51 Chart: Details of Rotating Bands . 57 Sec. I l l - B R IT IS H .......................................6l Chart: Details of Rotating Bands . 65 Sec. IV - AMERICAN.......................................67 Chart: Details of Rotating Bands . 73 Sec. V - MISCELLANEOUS................................75 ADDENDA ............................................................ 79 Inch and Centimeter scale inside back cover. PRgACt. Information included in this booklet haa been compiled from a ll available Intelligence sources, including many original drawings sub­ mitted by Arty S-2a. No e ffo rt haa been made to indicate the sources o f this information. The measurements on the drawings and in the charts are believed to be reasonably accurate; however, minor varia­ tions may exist. Binfcmy a rtille ry a ctivity in HALT reached new heights on the ANZ10 Beachhead. Not only have the forward units been shelled continuously, but rear areas including Army, Corps, Air Corps, and Naval installations have been shelled interm ittently with heavy caliber guns. Due to the semi-circular front o f approx 30 miles we have encountered shelling from every direction, and from weapons ranging from the lig h t 75-mm Hecoilless gun to 28-cm super-heavy railway gun. Also, the enemy has used many d iffe re n t types of arty captured from the Russians, Italian s and French.
    [Show full text]
  • Early 18Th Century Hand Grenades on the North American Atlantic Coast an Experimental Archaeology Study By
    Early 18th Century Hand Grenades on the North American Atlantic Coast An Experimental Archaeology Study by Stephen Lacey April, 2019 Director of Thesis: Donald H. Parkerson, Ph.D. Major Department: History, Program of Maritime Studies ABSTRACT In the first half of the eighteenth century, standardization of weapons appears in cannon, shot, and small arms. No comparative study has been conducted to determine if grenades follow this pattern. In this study, three collections of cast iron grenades dating from 1700–1750 were compared to determine if any statistical significance exists. If so, this will form the basis to create a taxonomy to assist in dating sites. Furthermore, grenade blasts from this era are reported in the historical record but recorders barely understood ballistics. An experimental phase has been designed into the project to fully record a blast via controlled detonation. The concussive force and decibel levels were recorded to help assess potential damage. Upon completion, medical evaluations can be made to determine the full lethality of cast iron grenades. This allows an evaluation of historical records for unexplained deaths, altered behaviors post battle, and critical evaluation of historical documents on grenade lethality. Early 18th Century Hand Grenades on the North American Atlantic Coast An Experimental Archaeology Study A Thesis Presented to the Faculty of the Department of History East Carolina University In Partial Fulfillment of the Requirements for the Degree Master’s of Arts By Stephen Lacey April, 2019 ©Stephen Lacey, 2019 Early 18th Century Hand Grenades on the North American Atlantic Coast An Experimental Archaeology Study By Stephen Lacey APPROVED BY: DIRECTOR OF THESIS: ___________________________________________ Donald H.
    [Show full text]
  • How Does a Cannon Work?
    How Does A Cannon Work? Tube Chassis Cascabel Muzzle Vent Trunnions Breech Carriage The tube rested on the carriage, supporting it for firing and controlling recoil (energy re- People have been fascinated These guns are muzzle-loaders. leased when the gun fired). The with guns since the invention of Everything entered and left them tube and carriage rested on a artillery during the Middle Ages. through the muzzle. Most were chassis. A chassis permitted the This basic guide explains how a made of cast iron. They consist movement of the cannon left or 19th Century seacoast cannon of three basic components: the right, forward or back to aim, operated, and the types of tube, the carriage, and the load, and fire. All together, this projectiles that were used. chassis. weapon was called a “piece.” Smoothbore Cannon Smoothbore guns typically fired shot,” used for setting fires. similar to shells, but also con spherical projectiles; the classic tained shrapnel (small iron or round cannonball. Ammunition Shells were hollow with a charge lead balls). These were anti consisted of five kinds: solid shot, of gunpowder inside. The personnel rounds, timed to shell, case shot, canister, and powder was ignited by a timed explode in front of the target. grape shot. fuse which lit when the gun fired. Shells were used to set fires and Canister and grape shot turned a Solid shot were used for punctur as signal shots. cannon into a shotgun, killing ing walls and decks of ships. men and destroying objects. When heated, they became “hot A third type, case shot, were Shot Shell Case Shot Canister Stand of Grape Rifled Cannon Rifled cannon fired cylindrical, accuracy and range.
    [Show full text]