Constructing brambles Mathieu Chapelle LIFO, Université d'Orléans Frédéric Mazoit LaBRI, Université de Bordeaux Ioan Todinca LIFO, Université d'Orléans Rapport no RR-2009-04 Constructing brambles Mathieu Chapelle1, Frédéric Mazoit2, and Ioan Todinca1 1 Université d'Orléans, LIFO, BP-6759, F-45067 Orléans Cedex 2, France {mathieu.chapelle,ioan.todinca}@univ-orleans.fr 2 Université de Bordeaux, LaBRI, F-33405 Talence Cedex, France
[email protected] Abstract. Given an arbitrary graph G and a number k, it is well-known by a result of Seymour and Thomas [20] that G has treewidth strictly larger than k if and only if it has a bramble of order k + 2. Brambles are used in combinatorics as certicates proving that the treewidth of a graph is large. From an algorithmic point of view there are several algorithms computing tree-decompositions of G of width at most k, if such decompositions exist and the running time is polynomial for constant k. Nevertheless, when the treewidth of the input graph is larger than k, to our knowledge there is no algorithm constructing a bramble of order k + 2. We give here such an algorithm, running in O(nk+4) time. Moreover, for classes of graphs with polynomial number of minimal separators, we dene a notion of compact brambles and show how to compute compact brambles of order k + 2 in polynomial time, not depending on k. 1 Introduction Motivation. Treewidth is one of the most extensively studied graph parameters, mainly be- cause many classical NP-hard optimisation problems become polynomial and even linear when restricted to graphs of bounded treewidth.