Recognition and Distribution of Two North Atlantic Gadiculus Species, G

Total Page:16

File Type:pdf, Size:1020Kb

Recognition and Distribution of Two North Atlantic Gadiculus Species, G fishes Article Recognition and Distribution of Two North Atlantic Gadiculus Species, G. argenteus and G. thori (Gadidae), Based on Otolith Morphology, Larval Pigmentation, Molecular Evidence, Morphometrics and Meristics Pieter A. M. Gaemers 1,* and Jan Y. Poulsen 2 ID 1 Joost van den Vondelstraat 30, Winterswijk 7103 XW, The Netherlands 2 Department of Fish and Shellfish, Pinngortitaleriffik (Greenland Institute of Natural Resources), Kivioq 2, Post Box 570, Nuuk 3900, Greenland; [email protected] * Correspondence: [email protected]; Tel.: +31-543-750-383 Academic Editor: Maria Angeles Esteban Received: 28 July 2017; Accepted: 3 August 2017; Published: 29 August 2017 Abstract: The silvery pout genus Gadiculus consists of small aberrant codfishes with several extinct and currently only one recognized extant species. The oldest representatives of a Gadiculus lineage known from otoliths are Early Miocene in age. Fossil evidence has showed Gadiculus to originate from older genera diverging early from other true cods of the family Gadidae. As adult specimens of different species have been found to be highly similar and difficult to distinguish based on meristic and morphometric data, the number of species in this gadid genus has been controversial since different larval morphotypes were first discovered some 100 years ago. For almost 70 years, Gadiculus thori and Gadiculus argenteus have been considered subspecies only, with a distribution in the Northeast Atlantic Ocean including the Mediterranean. In this study, we resolve the long-standing issue of extant Gadiculus not being monotypic. New results in the form of distinct adult otoliths and molecular data unambiguously show two species of Gadiculus present—in agreement with larval morphotypes. Morphometric, meristic and molecular characters, as well as larval pigmentation are discussed in addition to present and past geographic distributions of the two taxa from distributions of fossil otoliths. At present, the cold-water species Gadiculus thori (northern silvery pout) is distributed in cold-temperate and subarctic latitudes in the Northeast Atlantic, including a new range extension off Southeast Greenland. Gadiculus argenteus (southern silvery pout) occurs in warmer waters and is distributed in the warm-temperate East Atlantic and Mediterranean. Fossil otoliths show that both species often co-existed in the Mediterranean from the Late Pliocene to the Middle Pleistocene. Keywords: taxonomic revision; otolith; Cox1 barcode; larval melanophore pattern; morphometrics; meristics; (palaeo)geographic distribution; Gadidae classification 1. Introduction Silvery pouts of the genus Gadiculus are the smallest extant cods in the family Gadidae. Only one species, Gadiculus argenteus (Guichenot 1850), is currently recognized with a second species described Gadiculus thori (Schmidt 1913) currently considered a synonym [1]. Most gadid species are economically important, although silvery pouts have limited commercial value due to their small size and predominantly artisanal use in some Mediterranean countries. This becomes evident considering the relatively limited number of studies present on these fishes compared to other, larger gadids. However, Gadiculus have high regional abundances and have been identified as important forage Fishes 2017, 2, 15; doi:10.3390/fishes2030015 www.mdpi.com/journal/fishes Fishes 2017, 2, 15 2 of 24 prey in trophic ecosystem dynamics [2]. Juveniles and adults of Gadiculus feed almost exclusively on various groups of pelagic crustaceans, but also eat small fish [3–6]. Gadiculus fishes are meso- to bathypelagic and show gregariousness, forming large schools in the deeper parts of the shelf and above the continental slope—usually at depths between 100 and 1000 m. However, some differences have been reported concerning depth distributions between northern Fishes 2017, 2, 15 2 of 25 and southern populations, with the former mainly between 125 and 400 m [6] and the latter mainly betweenprey 200 in and trophic 400–500 ecosystem m [ 7dynamics]. Their occurrence[2]. Juveniles and in the adults colder, of Gadiculus deeper feed waters almost in exclusively the more on southern Atlanticvarious waters groups and in of the pelagic Mediterranean crustaceans, but is likely also eat an small overlooked fish [3–6]. factor concerning depth distributions. The youngerGadiculus stages offishesGadiculus are meso-fishes to bathypelagic are known and to inhabit show gregariousness, relatively shallow forming depths. large schoolsGadiculus in fishes the deeper parts of the shelf and above the continental slope—usually at depths between 100 and have currently1000 m. However, been observed some differences in the northeastern have been reported Atlantic concerning from off depth the North distributions Capeof between Norway and the westernnorthern part and of southern the Barents populations, Sea [8 with] southwards the former mainly to Morocco, between including 125 and 400 the m [6] western and the latter and central Mediterraneanmainly between [9]. Observations 200 and 400–500 are m also [7]. presentTheir occurrence from the in Adriaticthe colder, Sea deeper [10 ],waters the entire in the Aegeanmore Sea, Thraciansouthern Sea [11 Atlantic], off the waters Turkish and in coast the Mediterranean [12], off the Syrianis likely coastan overlooked [13], and factor off theconcerning coast ofdepth Israel [14]. However,distributions. no records The from younger the tropicalstages of orGadiculus north-western fishes are known Atlantic to inhabit have ever relatively been shallow reported. depths. Gadiculus fishes have currently been observed in the northeastern Atlantic from off the North Cape Guichenot [15] (1850) described Gadiculus argenteus from the Mediterranean coast of Algiers of Norway and the western part of the Barents Sea [8] southwards to Morocco, including the western erectingand the central new Mediterranean genus Gadiculus [9]. .Observations The establishment are also present of the from genus the Adriatic was justified Sea [10], duethe entire to its large eye/bodyAegean ratio Sea, compared Thracian Sea to other[11], off gadids, the Turkish i.e., coast the eye[12], diameteroff the Syrian is coast longer [13], than and theoff the snout, coast althoughof less thanIsrael 40% [14]. head However, length. no records In addition, from theGadiculus tropical or north-westernshows a unique Atlantic oblique have ever mouth been reported. that is angled steeply upwards.Guichenot Other [15] distinguishing (1850) described characteristics Gadiculus argenteus of Gadiculus from the Mediterraneanare the large deciduouscoast of Algiers scales and the sensoryerecting canals the new with genus seven Gadiculus large. open The establishment pits (mucous of cavities)the genus on was the justified dorsal due margin to its oflarge the head eye/body ratio compared to other gadids, i.e., the eye diameter is longer than the snout, although less (Svetovidov) [16]. Subsequently, Schmidt [17] described Gadiculus thori from the North Atlantic Ocean than 40% head length. In addition, Gadiculus shows a unique oblique mouth that is angled steeply based onupwards. the following Other distinguishing characteristics: characteristics of Gadiculus are the large deciduous scales and the sensory canals with seven large open pits (mucous cavities) on the dorsal margin of the head • Different(Svetovidov) melanophore [16]. Subsequently, patterns inSchmidt post-larvae [17] described of the twoGadiculus species. thori The from post-larvae the North ofAtlanticG. argenteus showOcean three based transverse on the following pigmented characteristics: bars, whereas G. thori only exhibit one (Figure1). • At the sameDifferent stage melanophore of development, patterns in the post-larvae post-larvae of the of twoG. species. thori are, The in post-larvae general, largerof G. argenteus than those of G. argenteusshow three(Figure transverse1). pigmented bars, whereas G. thori only exhibit one (Figure 1). • Atthe At same the same stage stage of of development, development, the the post-larvae post-larvae of G. thori of G. are, thori in general,are slenderlarger than compared those of with G. argenteusG. argenteus, which (Figure are stouter 1). and shorter (Figure1). At the same stage of development, the post-larvae of G. thori are slender compared with G. • Differentargenteus number, which of vertebrae are stouter in and the shorter two species. (Figure Schmidt1). found that G. thori has 41–43 (usually 42), whereas DifferentG. argenteus numberhas of vertebrae 39–41 (usually in the two 40). species. Schmidt found that G. thori has 41–43 (usually • Geographic42), whereas distribution. G. argenteus The has number 39–41 (usually of G. thori40). specimens declines drastically from Ireland in the NorthGeographic to the Frenchdistribution. Atlantic The number coast. of Conversely, G. thori specimensG. argenteus declines occursdrastically in from increasing Ireland numbersin the North to the French Atlantic coast. Conversely, G. argenteus occurs in increasing numbers going south from the mouth of the river Gironde along the Atlantic east coast. going south from the mouth of the river Gironde along the Atlantic east coast. Figure 1. Illustrations of Gadiculus post-larvae at the same stage of development by Schmidt [17]. Figure 1. Illustrations of Gadiculus post-larvae at the same stage of development by Schmidt [17]. (A). (A). Gadiculus argenteus;(B). Gadiculus thori. The post-larvae were originally used to distinguish two Gadiculus argenteus; (B). Gadiculus
Recommended publications
  • Chondrostoma Nasus) Ecological Risk Screening Summary
    Common Nase (Chondrostoma nasus) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2020 Revised, April 2020 Web Version, 2/8/2021 Organism Type: Fish Overall Risk Assessment Category: High Photo: André Karwath. Licensed under CC BY-SA 2.5. Available: https://commons.wikimedia.org/wiki/File:Chondrostoma_nasus_(aka).jpg#file. (April 2020). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2021): “Europe: Basins of Black (Danube, Dniestr, South Bug and Dniepr drainages), southern Baltic (Nieman, Odra, Vistula) and southern North Seas (westward to Meuse). […] Asia: Turkey.” Status in the United States No information on occurrence, status, sale or trade in the United States was found. Chondrostoma nasus falls within Group I of New Mexico’s Department of Game and Fish Director’s Species Importation List (New Mexico Department of Game and Fish 2010). Group I species “are designated semi-domesticated animals and do not require an importation permit.” With the added restriction of “Not to be used as bait fish.” 1 Means of Introductions in the United States No introductions have been reported in the United States. Remarks Although the accepted and most used common name for Chondrostoma nasus is “Common Nase”, it appears that the simple name “Nase” is sometimes used to refer to C. nasus (Zbinden and Maier 1996; Jirsa et al. 2010). The name “Sneep” also occasionally appears in the literature (Irz et al. 2006). 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From Fricke et al. (2020):
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Histological Aspects of the Early Development of the Digestive System of Burbot Lota Lota L
    ISSN 0015-5497, e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 64 (2016), No 1 Ó Institute of Systematics and Evolution of Animals, PAS, Kraków, 2015 doi:10.3409/fb64_1.11 Histological Aspects of the Early Development of the Digestive System of Burbot Lota lota L. (Lotidae, Gadiformes)* Gra¿yna FURGA£A-SELEZNIOW, Ma³gorzata JANKUN, Roman KUJAWA, Joanna NOWOSAD, Maria BI£AS, Dariusz KUCHARCZYK, and Andrzej SKRZYPCZAK Accepted December 04, 2015 Published January 29, 2016 FURGA£A-SELEZNIOW G., JANKUN M., KUJAWA R., NOWOSAD J., BI£AS M., KUCHARCZYK D., SKRZYPCZAK A. 2016. Histological aspects of the early development of the digestive system of burbot Lota lota L. (Lotidae, Gadiformes). Folia Biologica (Kraków) 64: 11-21. The ontogeny of the digestive tract was studied histologically in burbot, Lota lota L., from hatching to 42 days post-hatch (dph). At hatching, the digestive tract consisted of a straight tube with discernible digestive accessory glands (the liver and the pancreas) dorsally attached to the yolk sac. Most of the yolk sac reserves were consumed during the first 12 days and were completely depleted by 17 dph. The first PAS-positive goblet cells appeared at 6 dph, dispersed within the epithelium of the oesophagus and increasing substantially in number and distribution as development progressed. At 12 dph, the first vacuoles (neutral lipids) appeared in the intestine, indicating the functional absorption of nutrients from food. Differentiation of gastric glands was first noticed at 17 dph and was extensive by 27 dph. L. lota larvae have a morphologically complete digestive tract by 32 dph.
    [Show full text]
  • The First Evidence of Intrinsic Epidermal Bioluminescence Within Ray-Finned Fishes in the Linebelly Swallower Pseudoscopelus Sagamianus (Chiasmodontidae)
    Received: 10 July 2019 Accepted: 22 October 2019 DOI: 10.1111/jfb.14179 BRIEF COMMUNICATION FISH The first evidence of intrinsic epidermal bioluminescence within ray-finned fishes in the linebelly swallower Pseudoscopelus sagamianus (Chiasmodontidae) Michael J. Ghedotti1,2 | W. Leo Smith3 | Matthew P. Davis4 1Department of Biology, Regis University, Denver, Colorado, USA Abstract 2Bell Museum of Natural History, University of External and histological examination of the photophores of the linebelly swallower Minnesota, St. Paul, Minnesota, USA Pseudoscopelus sagamianus reveal three epidermal layers of cells that form the light- 3Department of Ecology and Evolutionary Biology and Biodiversity Institute, University producing and light-transmitting components of the photophores. Photophores of Kansas, Lawrence, Kansas, USA among the examined photophore tracts are not significantly different in structure but 4 Department of Biological Sciences, St. Cloud the presence of mucous cells in the superficial layers of the photophore suggest con- State University, St. Cloud, Minnesota, USA tinued function of the epidermal photophore in contributing to the mucous coat. This Correspondence is the first evidence of intrinsic bioluminescence in primarily epidermal photophores Michael J. Ghedotti, Department of Biology, Regis University, 3333 Regis Boulevard, reported in ray-finned fishes. Denver, CO, 80221-1099, USA. Email: [email protected] KEYWORDS Funding information bioluminescence, deep-sea, histology, integument, photophores, Pseudoscopelus sagamianus, The work primarily was supported by funding Scombriformes from a Regis URSC Grant to M.J.G., a University of Kansas GRF allocation (#2105077) to W.L.S. and National Science Foundation grants (DEB 1258141 and DEB 1543654) to M.P.D. and W.L.S. provided monetary support.
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Gadiformes Selected Meristic Characters in Species Belonging to the Order Gadiformes Whose Adults Or Larvae Have Been Collected in the Study Area
    548 Gadiformes Selected meristic characters in species belonging to the order Gadiformes whose adults or larvae have been collected in the study area. Total vertebrae, second dorsal and anal fin rays are numerous in the Bathygadidae and Macrouridae, but are seldom reported. Classification sequence and sources of meristic data: Eschmeyer, 1990; Fahay and Markle, 1984; Fahay, 1989; Cohen et al., 1990; Iwamoto, 2002; Iwamoto and Cohen, 2002a; 2002b; Merrett, 2003. PrC = principal caudal rays; ~ = approximately Family Precaudal Total Dorsal Anal Pectoral Pelvic Species Vertebrae Vertebrae Fin Rays Fin Rays Fin Rays Fin Rays Bregmacerotidae Bregmaceros atlanticus 14 53–55 47–56 49–58 16–21 5–7 Bregmaceros cantori 14 45–49 45–49 45–49 16–23 (family) 5–7 Bregmaceros sp. 14–15 52–59 52–59 58–69 16–23 (family) 5–7 Bregmaceros houdei 13–14 47–50 47–50 41–46 16–23 (family) 5–7 Family Precaudal Total First + Second Anal Pectoral Pelvic Species Vertebrae Vertebrae Dorsal Fin Rays Fin Rays Fin Rays Fin Rays Bathygadidae Bathygadus favosus 12–14 ~70 9–11+125 110 15–18 9(10) Gadomus dispar 12–13 80+ 12–13 – 18–20 8 Gadomus longifilis 11–13 – 9–11 – 14–16 8–9 Macrouridae Caelorinchus caribbeus 11–12 – 11–12+>110 >110 17–20 7 Caelorinchus coelorhynchus 11–12 – 10–11 – (17)18–20(21) 7 Caelorinchus occa 12–13 – 9–11 – 17–20 7 Coryphaenoides alateralis – 13 – 21–23 8 Coryphaenoides armatus 13–15 – 10–12+~125 ~135 19–21 10–11 Coryphaenoides brevibarbis 12–13 – 9 – 19–20 8–9 Coryphaenoides carapinus 12–15 – 10–11+100 117 17–20 9–11 Coryphaenoides guentheri
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • DEEPFISHMAN Document 5 : Review of Parasites, Pathogens
    DEEPFISHMAN Management And Monitoring Of Deep-sea Fisheries And Stocks Project number: 227390 Small or medium scale focused research action Topic: FP7-KBBE-2008-1-4-02 (Deepsea fisheries management) DEEPFISHMAN Document 5 Title: Review of parasites, pathogens and contaminants of deep sea fish with a focus on their role in population health and structure Due date: none Actual submission date: 10 June 2010 Start date of the project: April 1st, 2009 Duration : 36 months Organization Name of lead coordinator: Ifremer Dissemination Level: PU (Public) Date: 10 June 2010 Review of parasites, pathogens and contaminants of deep sea fish with a focus on their role in population health and structure. Matt Longshaw & Stephen Feist Cefas Weymouth Laboratory Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB 1. Introduction This review provides a summary of the parasites, pathogens and contaminant related impacts on deep sea fish normally found at depths greater than about 200m There is a clear focus on worldwide commercial species but has an emphasis on records and reports from the north east Atlantic. In particular, the focus of species following discussion were as follows: deep-water squalid sharks (e.g. Centrophorus squamosus and Centroscymnus coelolepis), black scabbardfish (Aphanopus carbo) (except in ICES area IX – fielded by Portuguese), roundnose grenadier (Coryphaenoides rupestris), orange roughy (Hoplostethus atlanticus), blue ling (Molva dypterygia), torsk (Brosme brosme), greater silver smelt (Argentina silus), Greenland halibut (Reinhardtius hippoglossoides), deep-sea redfish (Sebastes mentella), alfonsino (Beryx spp.), red blackspot seabream (Pagellus bogaraveo). However, it should be noted that in some cases no disease or contaminant data exists for these species.
    [Show full text]
  • The Complete Mitochondrial Genome of the Whiting, Merlangius
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Digital.CSIC The complete mitochondrial genome of the whiting, Merlangius merlangus and the haddock, Melanogrammus aeglefinus: A detailed genomic comparison among closely related species of the Gadidae family Severine Roques a , Clive J. Fox b , Maria I. Villasana a , Ciro Rico a,⁎ a Estación Biológica de Doñana, CSIC, Pabellón del Perú, 41013 Sevilla, Spain b The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, Suffolk, NR33 OHT, England, United Kingdom Abstract We determined the first complete mitochondrial DNA (mtDNA) sequences for the whiting (Merlangius merlangus, family Gadidae, order Gadiformes) and the haddock (Melanogrammus aeglefinus, family Gadidae, order Gadiformes). The entire mitogenomes were amplified and sequenced by primer walking using newly designed specific internal primers. Lengths were 16,569 and 16,585 bases for whiting and haddock respectively, lengths which lie within the range of previously reported gadiform sequences from Atlantic cod (Gadus morhua, 16,696 bases) and walleye pollock (Theragra chalcogramma, 16,570 bases). Gene arrangement in both species conformed to the order seen in most vertebrate mitochondrial genomes. We identified a long intergenic spacer located between the tRNAThr and tRNAPro genes (of 100 and 70 bp long for whiting and haddock, respectively), as previously described for other species of the order Gadiformes. Using nucleotide and amino acid divergence data of four complete gadoid mitogenomes (M. merlangius, M. aeglefinus, G. morhua and T. chalcogramma), we examined in detail the relative mtDNA mutation patterns across genes and among Gadidae species and tested for the performance of each protein-coding, transfer RNA and ribosomal RNA gene in depicting the expected phylogeny among the four species, as compared with the whole genome dataset.
    [Show full text]
  • Length-Weight Relationships of Marine Fish Collected from Around the British Isles
    Science Series Technical Report no. 150 Length-weight relationships of marine fish collected from around the British Isles J. F. Silva, J. R. Ellis and R. A. Ayers Science Series Technical Report no. 150 Length-weight relationships of marine fish collected from around the British Isles J. F. Silva, J. R. Ellis and R. A. Ayers This report should be cited as: Silva J. F., Ellis J. R. and Ayers R. A. 2013. Length-weight relationships of marine fish collected from around the British Isles. Sci. Ser. Tech. Rep., Cefas Lowestoft, 150: 109 pp. Additional copies can be obtained from Cefas by e-mailing a request to [email protected] or downloading from the Cefas website www.cefas.defra.gov.uk. © Crown copyright, 2013 This publication (excluding the logos) may be re-used free of charge in any format or medium for research for non-commercial purposes, private study or for internal circulation within an organisation. This is subject to it being re-used accurately and not used in a misleading context. The material must be acknowledged as Crown copyright and the title of the publication specified. This publication is also available at www.cefas.defra.gov.uk For any other use of this material please apply for a Click-Use Licence for core material at www.hmso.gov.uk/copyright/licences/ core/core_licence.htm, or by writing to: HMSO’s Licensing Division St Clements House 2-16 Colegate Norwich NR3 1BQ Fax: 01603 723000 E-mail: [email protected] 3 Contents Contents 1. Introduction 5 2.
    [Show full text]
  • Fish Species Recorded During Deepwater Trawl Surveys on the Continental Shelf and the Porcupine Bank, 2006-2008
    Fish species recorded during deepwater trawl surveys on the continental shelf and the Porcupine Bank, 2006-2008 GRAHAM JOHNSTON, BRENDAN O’HEA AND LEONIE DRANSFELD Marine Institute, Rinville, Oranmore, Galway The Marine Institute and the National University of Ireland, Galway conducted a deepwater survey each September from 2006-2008 from the RV Celtic Explorer using BT184 deepwater nets with type-D ground gear (ICES 2006). Fish, benthic and hydrographic data were collected. Two-hour fishing trawls (time on bottom) took place in three locations on the continental slope to the north and west of Ireland, and on the Porcupine Bank. The survey objectives were to collect biological data on the main deepwater fish species and invertebrates. Fishing hauls were carried out at five depths, 500 m, 750 m, 1000 m, 1500 m, and 1800 m, in each of three areas (Fig. 1) chosen to repeat observations made during exploratory deepwater surveys by Ireland and Scotland in the 1990s (Connolly and Kelly 1994). The number of hauls at each depth varied from year to year, as a result of technical limitations in 2006 and variations in bottom type. The numbers of fish recorded should not be used to interpret changes in abundance between years. The number of successful hauls in each area is provided in Table 1. In Table 2 we present a record of each of the fish species identified during these surveys, and the total number of these caught each year. Specimens were identified using UNESCO guides (Whitehead et al. 1984-1986), to species level where possible. Where individuals were damaged, they were identified only to genus or family.
    [Show full text]
  • Notacanthidae
    FAMILY Notacanthidae Rafinesque, 1810 - spiny eels [=Notacantini, Campylodontoidae, Lipogenyidae, Polyacanthonotinae, Lipogenyidae] Notes: Notacantini Rafinesque, 1810b:34 [ref. 3595] (ordine) ? Notacanthus [Notacantus inferred from the stem; latinized to Notacanthia by Rafinesque 1815:89 [ref. 3584] (subfamily); latinized to Notacanthi by Günther 1861c:544 [ref. 1964]; considered valid with this authorship by Gill 1893b:133 [ref. 26255], by Nolf 1985:41 [ref. 32698], by Patterson 1993:625 [ref. 32940] and by Sheiko 2013:28 [ref. 32944] Article 11.7.2] Campylodontoidae Gill, 1861a:34 [ref. 1766] (family) Kampylodon or Campilodon [as Campylodon, name must be corrected Article 32.5.3; ever corrected?] Lipogenyidae Gill, 1893b:133 [ref. 26255] (family) Lipogenys Goode & Bean 1895 [genus inferred from the stem, Article 11.7.1.1; no valid type genus, not available, Article 11.7.1.1] Polyacanthonotinae Goode & Bean, 1895b:457 [ref. 1847] (subfamily) Polyacanthonotus [priority given to Polyacanthonotinae over Lipogenyidae by Greenwood 1977:100] Lipogenyidae Gill, in Goode & Bean, 1895b:457, 469 [ref. 1847] (family) Lipogenys [family name sometimes seen as Lipogenidae] GENUS Lipogenys Goode & Bean, 1895 - tapirfishes [=Lipogenys Goode [G. B.] & Bean [T. H.], 1895:469] Notes: [ref. 1847]. Fem. Lipogenys gillii Goode & Bean, 1895. Type by monotypy. Also appeared as new in Goode & Bean 1896:173 [ref. 1848]. Misspelled Lypogenys in Zoological Record for 1894. •Valid as Lipogenys Goode & Bean, 1895 -- (McDowell 1973:223 [ref. 24539], Sheiko 1988 [ref. 13519], Paxton et al. 1989:149 [ref. 12442], Nakabo et al. 1991 [ref. 20071], Smith 1999:1629 [ref. 24661], Smith 2003:690 [ref. 26989], Paxton et al. 2006:232 [ref. 28995], Mundy at al.
    [Show full text]