Chapter 6 Powerplant
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1. the Future for Automotive Two-Stroke Engines – Part 2
N0.21 THE FUTURE FOR AUTOMOTIVE TWO-STROKE ENGINES (Part 2) CURRENT DEVELOPMENTS Synthetic-based formulation likely to be the preferred option. In the previous issue of Lube, the origins and initial development of the 2T Tendency for combustion chamber deposit formation would have required a engine were described. The earlier engines, characterised by smoky exhausts low ash or ash less lubricant. and poor specific fuel economy, will be remembered by many of the older High temperatures require strong anti-oxidancy. fraternity, as they provided motive power for many commuter lightweight motorcycles, mopeds and scooters in the prewar and postwar years. Many WET SUMP vehicle manufacturers in the UK used proprietary power units manufactured Again, no valve train therefore no requirement for e.g. ZDDP anti-wear by specialist engine manufacturers such as Villiers, who dominated the agent. market, although smaller engine suppliers included companies such as British Diluent unnecessary/undesirable. Anzani. A number of other companies, including Scott, Associated Conventional base oil plus viscosity index-improver is possible (SAE 10/30?). Motorcycles, Excelsior and latterly Ariel also designed their own engines, use Polymer deposits may favour synthetic approach. of which was restricted in the main to vehicles of their own manufacture. However, with the demise of the UK motorcycle industry, 2T engine Tendency for combustion chamber deposits requires a low ash approach. developments, which have progressed steadily during subsequent years, The conclusion was that, in spite of the substantial differences between the have been largely attributable to overseas manufacturers with assistance types of the Orbital engines described above, it may well have been possible from some UK specialist consultancy organizations such as Ricardos at to meet the requirements of both types of engine with a single lubricant, Shoreham. -
Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY
Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY COPYRIGHT © 2021 by WÄRTSILÄ FINLAND OY All rights reserved. No part of this booklet may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright owner. THIS PUBLICATION IS DESIGNED TO PROVIDE AN ACCURATE AND AUTHORITATIVE INFORMATION WITH REGARD TO THE SUBJECT-MATTER COVERED AS WAS AVAILABLE AT THE TIME OF PRINTING. HOWEVER, THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS SUITED ONLY FOR SPECIALISTS IN THE AREA, AND THE DESIGN OF THE SUBJECT-PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUBLISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CAN NOT ACCEPT ANY RESPONSIBILITY OR LIABILITY FOR ANY EVENTUAL ERRORS OR OMISSIONS IN THIS BOOKLET OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEING DIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL UNDER NO CIRCUMSTANCES BE HELD LIABLE FOR ANY FINANCIAL CONSEQUENTIAL DAMAGES OR OTHER LOSS, OR ANY OTHER DAMAGE OR INJURY, SUFFERED BY ANY PARTY MAKING USE OF THIS PUBLICATION OR THE INFORMATION CONTAINED HEREIN. Wärtsilä 32 Product Guide Introduction Introduction This Product Guide provides data and system proposals for the early design phase of marine engine installations. For contracted projects specific instructions for planning the installation are always delivered. Any data and information herein is subject to revision without notice. This 1/2021 issue replaces all previous issues of the Wärtsilä 32 Project Guides. Issue Published Updates 1/2021 15.03.2021 Technical data updated. -
BOSE , CUTTACK 1. Mist Lubrication System
BOSE , CUTTACK CHAPTER-06 LUBRICATION SYSTEM IN AUTOMOBILE Functions of lubricating oil: A good lubricating oil should perform the following function. · It reduces the friction between the moving parts. · It cools the piston so it also acts as a cooling medium. · It also prevents the leakage of gas between the piston and cylinder because it makes a film of lubricant between them. · It also reduces the noise between the rubbing surfaces. The various lubrication systems used for lubricating the various parts of engine are classified as 1. Mist lubrication system 2. Wet sump lubrication system, and 3. Dry sump lubrication system. 1. Mist lubrication system: Mist lubrication system is a very simple type of lubrication. In this system, the small quantity of lubricating oil (usually 2 to 3%) is mixed with the fuel (preferably gasoline). The oil and fuel mixture is introduced through the carburetor. The gasoline vaporized and oil in the form of mist enters the cylinder via the crank base. The droplets of oil strike the crank base. The droplets of oil strike the crank base, lubricate the main and connecting rod bearings and the rest of the oil lubricates the piston, piston rings and cylinder. The system is preferred in two stroke engines where crank base lubrication is not required. In a two-stroke engine, the charge is partially compressed in a crank base, so it is not possible to have the oil in the crank base. This system is simple, low cost and maintenance free because it does not require any oil pump, filter, etc. However, it has certain serious disadvantages. -
Eaton Aeroquip E-Z Drain Sump Valve
Aeroquip® E-Z Drain® Sump Valve www.herberaircraft.com Eaton’s Aeroquip E-Z Drain Sump Valve makes aircraft oil changes easy. The hand-actuated valve, when attached to the oil drain port, permits aircraft engine oil changes from the ground without removal of the engine cowling. The spring-loaded E-Z Drain Valve is safe for all piston engine applcations because it canot be accidentally opened. Actuation of FEATURES the valve requires a combination push- • Reduces oil changing time twist motion. It also contains a dual seal arrangement which combines • No need to remove engine cowl both an O-ring and a metal-to-metal to change oil seal to prevent accidental leakage of • Easy manual operation – oil through the valve. The seal used on requires no tools the internal valve is replaceable with a • Eliminates messy oil spills standard AS O-ring. The accompanying • Built-in hose line directs old oil hose is furnished in standard 12-inch to container lengths*. • Spring-loaded sleeve prevents accidental oil drainage The FAA has issued a Parts • Dual seal feature guards against Manufacturing Approval to Eaton for O-ring failure use of the E-Z Drain Sump Valve on all of the aircraft engines listed in the • Safety wire holes provided below table. INSTALLATION 1. Simply remove the plug from 2. Take hold of the knurled nut 4. To close, twist the knurled nut. the bottom of the oil sump and and with a combination push- The spring-loaded valve will install the drain valve in the twist motion, open the valve. -
PICTURE DESCRIPTION REPLACEMENT MANUFACTURER & P/N Power Steering Bracket Assembly 97-253BK
REPLACEMENT PICTURE DESCRIPTION MANUFACTURER & P/N 97-253BK (Black - LT4 for Add-On P/ S to Dry Sump ONLY) Power Steering Bracket Assembly 97-251BK (Black Dry Sump) Manifold Assembly, Water Pump Alternator Bracket Holley 97-254 Alternator Bracket Spacer Holley 97-255 (Wet Sump) 97-262BK (Black Wet Sump) Spacer, P/S Bracket Assembly Gaskets, Water Pump GM 12657430 Water Pump Drive Assembly -Clockwise Rotation- Holley 97-245 (not included with wet sump applications) Water Pump Assembly Gasket GM 12619770 REPLACEMENT PICTURE DESCRIPTION MANUFACTURER & P/N Bando 6PK1780 (20-220, Belt (6-Rib), Accessories 20-221, 20-230 & BK versions) Bando 6PK1500 (20-224 & 20-224) Gates FleetRunner® K080820HD Belt (8-Rib), Supercharger (20-220, 20-221, 20-222 & BK ver.) Bando 8PK2130 (20-223 & BK ver.) Bando 11PK2185 (20-233 & BK ver.) Belt (11-Rib), Supercharger Bando Aramid 11PK2137A (20-230 & BK ver.) Holley 97-247 / Thermostat 190° & Housing GM 12674634 LT4 - Holley 97-243 / GM 12663624 Supercharger Tensioner Holley 97-244 / Accessory Tensioner GM 12669076 LT4 - Holley 97-242 / GM 12642706 Supercharger Smooth Idler, Lower LT4 - Holley 97-241 / GM 12665845 Supercharger Smooth Idler, Center LT4 - Holley 97-240 / GM 12678245 Supercharger Ribbed Idler, Center Holley 97-249 / Accessories Smooth Idler Gates 36101 Alternator Harness Pigtail Holley 197-400 197-303 (Black) Alternator REPLACEMENT PICTURE DESCRIPTION MANUFACTURER & P/N Adapter Manifold for A/C Compressor & Holley 199-201 / 199-201BK Hardware (Long Option) Adapter Manifold for A/C Compressor & Holley -
Technical Data Sheet
TECHNICAL DATA SHEET TDS No.: 06-01 Date Issued: 03/28/2006 2100 Mannix | San Antonio, TX 78217 t: 210.820.2450 | f: 210.820.2451 | e: [email protected] Revision: 4 (07/30/2010) AEC is recognized for Quality Management System Compliance to ISO 9001:2000. Page: 1 of 8 Cold Induction System weight and balance could cause instability of the 1.0 Subject: Airmotive Engineering (AE) Cold aircraft. Induction System 5.0 Engine Applications: Call for information 2.0 Availability: The AE Cold Induction Systems regarding other applications are sold through Engine Components Inc. (ECi®) under the TITAN® EXP™ brand. • ECi TITAN® EXP™ IOX-340S (Stroker) Series • ECi TITAN® EXP™ IOX-360 Series 3.0 Part Numbers and Description: AE111-1 (Finned sump) and AE111-2 (Unfinned sump) 6.0 Cold Induction System Schematic: The Cold Induction System components and their 4.0 General Description: An EXPERIMENTAL assembly are shown in Figures 1, 2 and 3 cold induction system for 4 cylinder opposed which are included in Section 13.0 below. engines which are based on the Lycoming 320/360 cu. in. design. The AE Cold Induction System consists of an oil sump assembly with 7.0 Safety Information: The following special “wings” on each side to minimize depth, an attention notices are used in this Technical induction housing with a forward facing Data Sheet to notify and advise the installer mounting pad for the throttle body/servo and and user of the product that certain actions or intake pipe assemblies which together procedures may be dangerous to the user or increase engine horsepower with no weight result in damage to the product. -
Multi Engine Systems
Nice Air Operation Procedure PA-34 Seneca 1 Multi engine systems PA 34-200 Seneca Engine Make : Avco Lycoming Model: Right Engine LIO-360 C1E6(turning counter clockwise from the cockpit) Left Engine IO-360 C1E6 Type: • 4 cylinders • Horizontally opposed • Normally aspirated(No turbo charge) • Air cooled (Engine oil and fuel helps cooling) • Direct drive(Propeller is attached to the crank shaft directly without any reduction gear or trans- mission) • Fuel injected Horsepower: 200 BHP Alternate air: Working as a carburetor heat. Heated air around exhaust manifold is directed through the alternate air source. RPM drops slightly when it is open. Cowl flap: Manually operated. There are three positions; open, half and closed. Propeller Make: Hartzell Model: Type: Constant speed, full feathering propeller What is a constant speed prop? The propeller which maintains the RPM selected by propeller control lever constant regardless of air- plane’s pitch attitude or throttle position within some range. The advantage of a constant speed prop. The pilot can select the most efficient blade angle for each phases of operation. By selecting low pitch/ high RPM, you can get maximum power for takeoff. By selecting high pitch/low RPM, you can fly faster at low RPM and you can save the fuel for cruise. How does it work? When the airplane rise it’s nose, it start climb. As it climb, airspeed goes down. The RPM is also going Copy Right Nice Air 2575 Robert Fowler Way, San Jose, CA 95148 Phone(408)729-3383 Nice Air Operation Procedure PA-34 Seneca 2 down due to increasing drag on the blade. -
Vacuum Pumps Add Easy Horsepower to Any Engine. Here's
The three core components of any vacuum pump system are the pump, drive pulleys, and breather tank. Aerospace Components' billet hardware is too pretty to hide under the hood. The company offers turnkey kits for both small- and big-block Fords. TECH Vacuum Pumps Add Easy Horsepower to Any Engine. BY STEPHEN KIM PHOTOS Here's a Closer Look and How they Work COURTESY OF THE MANUFACTURERS hen a bazillion PSI of cylinder pressure pushes down on the pistons, some of it’s going to leak past the rings and into the crankcase. That’s why old cars have breathers, and newer cars have W PCV systems. While a wee bit of blow-by is completely normal— even in a 100-percent healthy motor—if an engine’s crankcase isn’t ventilated, that wee bit of blow-by is enough to pop oil seals and gaskets in no time. No bueno, homie. So what’s a racer to do? Valve cover breathers are an easy fix for non-emissions engines, but zip-tying rags onto the breathers and using them as disposable “catch cans” is downright ghetto. Instead of venting crankcase fumes into the atmosphere, late-model motors circulate them back into the intake manifold by utilizing a PCV valve. While these closed-loop systems are great for tree-huggers, they also re-circulate tiny oil droplets into the induction tract, which reduces knock resistance and can lead to detonation. Still no bueno, homie. So what’s a racer to do? The ultimate solution is sucking the fumes out of the crankcase with a vacuum pump. -
LUBRICATION SYSTEM in IC ENGINES Definition of Lubrication
LUBRICATION SYSTEM IN IC ENGINES Definition of lubrication Lubrication is the action of applying a substance such as oil or grease to an engine or component so as to minimize friction and allow smooth movement. Lubrication System Lubricating system is a mechanical system of lubricating internal combustion engines in which a pump forces oil into the engine bearings. PURPOSE OF LUBRICATION ➢ To reduce the friction between moving parts ➢ To increase the efficiency ➢ To minimize the vibrations ➢ To reduce the corrosion and carbon deposits ➢ To reduce the heat of moving parts ➢ To minimize power loss due to friction ➢ To reduce the noise created by moving parts ➢ To provide cooling to the engine TYPES OF LUBRICANTS ➢SOLID LUBRICANTS ❑ e.g. graphite ,molybdenum ,mica ➢ SEMI-SOLID LUBRICANTS ❑ e.g. heavy greases ➢ LIQUID LUBRICANTS ❑ e.g. mineral oil obtained by refining petroleum. PROPERTIES OF LUBRICANTS ➢ Viscosity ❑ It is a measure of the resistance to flow of an oil ❑ It is measured in saybolt universal seconds (SUS) ❑ It is expressed in centistokes ,centipoises and redwood seconds ➢ Viscosity Index ❑ viscosity of oil decreases with increase in temperature ➢ Cloud point ❑ If an oil is cooled , it will start solidifying at some time . ❑ Temperature at which oil starts solidifying , is called cloud point PROPERTIES OF LUBRICANTS ➢Pour point ❑ It is temperature just above which the oil sample will not flow under certain prescribed conditions ❑ this property is important for operation of engines and substances at low temperature conditions ➢ Flash point and Fire point ❑ The temperature at which vapour of an oil flash when subjected to a naked flame is called flash point ❑ Fire point is the temperature at which the oil ,it once lit with flame ,will burnt steadily at least for 5 seconds ➢ Specific Gravity ❑ It varies between 0.85 to 0.96 SAE Number • Society of Automotive Engineer has recommended SAE viscosity number for lubricating oils. -
Opel 1900Cc Engines: Tuning & Vacuum Notes
Opel 1900cc Engines: Tuning & Vacuum Notes Spark Plugs Ignition Wire Set 4 Opel engines require proper fuel, compression, correct ignition timing & spark. 3 Tuning to correct specifications, will maximize your power output. 2 1 IGNITION Verify voltage is present at the “+” terminal in the ignition coil, and check for a spark at each plug (when cranking). Mis-fires can be difficult to diagnose (particularly when they occur intermittently), so always start with all new parts. Important Specifications Ignition Coil Distributor: Set at zero degrees TDC (with vacuum lines plugged), at low idle Avoid excessive advance (detonation damages pistons & rings) Check “indentation shape” on cap edge (to identify style) Point Gap: Set at .018” & verify 50 degree (+/- 2º) “dwell” measurement Spark Plug Gap: Set at .030” Recommended Firing Order: 1-3-4-2 Replace all maintenance items with new parts (clockwise) Distributor Cap & Rotor #6041 Ignition Point Set #6042 Point set & Condenser can be Condenser #6043 (or Module #6165) replaced w/electronic ignition Spark Plugs #6040, 6163, 6175 Ignition Wire Set #6071 #6165 for better driveability ! Camshaft “Ball” along outer edge of cam gear “Ball” on flywheel #4 #2 (aligns to notch through center) Timing aligns to pointer “Dowel Pin” on camshaft #1 TDC Rotor sprocket is at “6 o’clock” “Dowel” mark (and “ball mark” #3 #1 on outer edge “Notch” in plate of gear needs Rotor points to #1 TDC Mark, to align to “notch” located on outer edge of in curved metal support plate, Engine: Rear Passenger Side distributor housing when measured through center of the cam gear). -
Fuel Injection Vs. Carburetor
Fuel Injection Vs. Carburetor Advantages and disadvantages of the two fuel supply systems a1'e analyzed. Carburetor-icing bugaboo n/,ay have been overemphasized tain a proper mixture, it is necessary to vary the now Incussiongeneralcurrentlyaviation oncirclesthe subjectthere is ofconsiderablethe merits dis•of of fuel with r.p.m. and with buttertly opening. This fuel injection, The general aviation public has evi• means a linkage of the fuel injector pump with an dently seized on fuel injection as a very desirable im• engine gear, as well as a connection with the buttertly provement over the carburetor, The public, along with through the throttle. All of this gets a little compli• some members of industry, often has a tendency to• cated, requires extra mechanism and fairly high pres• wards overemphasizing the value of a departure from sure. the standard, without due knowledge or consideration The carburetor, in which fuel is mixed with ail' simply of the facts. Frequently, after the various factors be• by the suction of air tlowing through the venturi, re• come apparent, the advantages of the previous stand• quires only a minimum of fuel pressure, and is about ard bring it back into public favor. This may well be as simple and trouble-free an arrangement as could be the case in the present controversy of fuel injection devised. versus the carbu retor, The advantages of the fuel injector are: My own preference, after having carefully investi• (Continued Oil p"ge .50) gated both types of fuel metering systems, is for the carburetor, at least on aircraft up to and including those of the complexity of the Aztec, and on the types of engines that are used in these models. -
IO-520 Overhaul Manual
IO-520 CONTINENTAL® AIRCRAFT ENGINE OVERHAUL MANUAL TECHNICAL CONTENT ACCEPTED BY THE FAA Publication X30039 ©2011 CONTINENTAL MOTORS, INC. AUG 2011 Supersedure Notice This manual revision replaces the front cover and list of effective pages for Publication Part No. X30039, dated September 1977. Previous editions are obsolete upon release of this manual. Effective Changes for this Manual 0 .......... September 1977 1 ............ 31 August 2011 List of Effective Pages Document Title: IO-520 Series Engine Overhaul Manual Publication Number: X30039 Initial Publication Date: September 1977 Page Change Page Change Page Change Page Change Cover............................1 A...................................1 i thru v ..........................0 1-1 thru 1-10.................0 2-1 thru 2-10.................0 3-1 thru 3-2...................0 4-1 thru 4-30.................0 5-1 thru 5-12.................0 6-1 thru 6-30.................0 7-1 thru 7-8...................0 8-1 thru 8-20.................0 9-1 thru 9-8...................0 10-1 thru 10-2...............0 Published and printed in the U.S.A. by Continental Motors, Inc. Available exclusively from the publisher: P.O. Box 90, Mobile, AL 36601 Copyright © 2011 Continental Motors, Inc. All rights reserved. This material may not be reprinted, republished, broadcast, or otherwise altered without the publisher's written permission. This manual is provided without express, statutory, or implied warranties. The publisher will not be held liable for any damages caused by or alleged to be caused by use, misuse, abuse, or misinterpretation of the contents. Content is subject to change without notice. Other products and companies mentioned herein may be trademarks of the respective owners.