What's This Ridge on Iapetus? 21 July 2015, by Fraser Cain
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1912.09192V2 [Astro-Ph.EP] 24 Feb 2020
Draft version February 25, 2020 Typeset using LATEX preprint style in AASTeX62 Photometric analyses of Saturn's small moons: Aegaeon, Methone and Pallene are dark; Helene and Calypso are bright. M. M. Hedman,1 P. Helfenstein,2 R. O. Chancia,1, 3 P. Thomas,2 E. Roussos,4 C. Paranicas,5 and A. J. Verbiscer6 1Department of Physics, University of Idaho, Moscow, ID 83844 2Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca NY 14853 3Center for Imaging Science, Rochester Institute of Technology, Rochester NY 14623 4Max Planck Institute for Solar System Research, G¨ottingen,Germany 37077 5APL, John Hopkins University, Laurel MD 20723 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904 ABSTRACT We examine the surface brightnesses of Saturn's smaller satellites using a photometric model that explicitly accounts for their elongated shapes and thus facilitates compar- isons among different moons. Analyses of Cassini imaging data with this model reveals that the moons Aegaeon, Methone and Pallene are darker than one would expect given trends previously observed among the nearby mid-sized satellites. On the other hand, the trojan moons Calypso and Helene have substantially brighter surfaces than their co-orbital companions Tethys and Dione. These observations are inconsistent with the moons' surface brightnesses being entirely controlled by the local flux of E-ring par- ticles, and therefore strongly imply that other phenomena are affecting their surface properties. The darkness of Aegaeon, Methone and Pallene is correlated with the fluxes of high-energy protons, implying that high-energy radiation is responsible for darkening these small moons. Meanwhile, Prometheus and Pandora appear to be brightened by their interactions with nearby dusty F ring, implying that enhanced dust fluxes are most likely responsible for Calypso's and Helene's excess brightness. -
Cassini Update
Cassini Update Dr. Linda Spilker Cassini Project Scientist Outer Planets Assessment Group 22 February 2017 Sols%ce Mission Inclina%on Profile equator Saturn wrt Inclination 22 February 2017 LJS-3 Year 3 Key Flybys Since Aug. 2016 OPAG T124 – Titan flyby (1584 km) • November 13, 2016 • LAST Radio Science flyby • One of only two (cf. T106) ideal bistatic observations capturing Titan’s Northern Seas • First and only bistatic observation of Punga Mare • Western Kraken Mare not explored by RSS before T125 – Titan flyby (3158 km) • November 29, 2016 • LAST Optical Remote Sensing targeted flyby • VIMS high-resolution map of the North Pole looking for variations at and around the seas and lakes. • CIRS last opportunity for vertical profile determination of gases (e.g. water, aerosols) • UVIS limb viewing opportunity at the highest spatial resolution available outside of occultations 22 February 2017 4 Interior of Hexagon Turning “Less Blue” • Bluish to golden haze results from increased production of photochemical hazes as north pole approaches summer solstice. • Hexagon acts as a barrier that prevents haze particles outside hexagon from migrating inward. • 5 Refracting Atmosphere Saturn's• 22unlit February rings appear 2017 to bend as they pass behind the planet’s darkened limb due• 6 to refraction by Saturn's upper atmosphere. (Resolution 5 km/pixel) Dione Harbors A Subsurface Ocean Researchers at the Royal Observatory of Belgium reanalyzed Cassini RSS gravity data• 7 of Dione and predict a crust 100 km thick with a global ocean 10’s of km deep. Titan’s Summer Clouds Pose a Mystery Why would clouds on Titan be visible in VIMS images, but not in ISS images? ISS ISS VIMS High, thin cirrus clouds that are optically thicker than Titan’s atmospheric haze at longer VIMS wavelengths,• 22 February but optically 2017 thinner than the haze at shorter ISS wavelengths, could be• 8 detected by VIMS while simultaneously lost in the haze to ISS. -
A Deeper Look at the Colors of the Saturnian Irregular Satellites Arxiv
A deeper look at the colors of the Saturnian irregular satellites Tommy Grav Harvard-Smithsonian Center for Astrophysics, MS51, 60 Garden St., Cambridge, MA02138 and Instiute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu, HI86822 [email protected] James Bauer Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Dr., MS183-501, Pasadena, CA91109 [email protected] September 13, 2018 arXiv:astro-ph/0611590v2 8 Mar 2007 Manuscript: 36 pages, with 11 figures and 5 tables. 1 Proposed running head: Colors of Saturnian irregular satellites Corresponding author: Tommy Grav MS51, 60 Garden St. Cambridge, MA02138 USA Phone: (617) 384-7689 Fax: (617) 495-7093 Email: [email protected] 2 Abstract We have performed broadband color photometry of the twelve brightest irregular satellites of Saturn with the goal of understanding their surface composition, as well as their physical relationship. We find that the satellites have a wide variety of different surface colors, from the negative spectral slopes of the two retrograde satellites S IX Phoebe (S0 = −2:5 ± 0:4) and S XXV Mundilfari (S0 = −5:0 ± 1:9) to the fairly red slope of S XXII Ijiraq (S0 = 19:5 ± 0:9). We further find that there exist a correlation between dynamical families and spectral slope, with the prograde clusters, the Gallic and Inuit, showing tight clustering in colors among most of their members. The retrograde objects are dynamically and physically more dispersed, but some internal structure is apparent. Keywords: Irregular satellites; Photometry, Satellites, Surfaces; Saturn, Satellites. 3 1 Introduction The satellites of Saturn can be divided into two distinct groups, the regular and irregular, based on their orbital characteristics. -
Click Above for a Preview, Or Download
JACK KIRBY COLLECTOR FORTY-TWO $9 95 IN THE US Guardian, Newsboy Legion TM & ©2005 DC Comics. Contents THE NEW OPENING SHOT . .2 (take a trip down Lois Lane) UNDER THE COVERS . .4 (we cover our covers’ creation) JACK F.A.Q. s . .6 (Mark Evanier spills the beans on ISSUE #42, SPRING 2005 Jack’s favorite food and more) Collector INNERVIEW . .12 Jack created a pair of custom pencil drawings of the Guardian and Newsboy Legion for the endpapers (Kirby teaches us to speak the language of the ’70s) of his personal bound volume of Star-Spangled Comics #7-15. We combined the two pieces to create this drawing for our MISSING LINKS . .19 front cover, which Kevin Nowlan inked. Delete the (where’d the Guardian go?) Newsboys’ heads (taken from the second drawing) to RETROSPECTIVE . .20 see what Jack’s original drawing looked like. (with friends like Jimmy Olsen...) Characters TM & ©2005 DC Comics. QUIPS ’N’ Q&A’S . .22 (Radioactive Man goes Bongo in the Fourth World) INCIDENTAL ICONOGRAPHY . .25 (creating the Silver Surfer & Galactus? All in a day’s work) ANALYSIS . .26 (linking Jimmy Olsen, Spirit World, and Neal Adams) VIEW FROM THE WHIZ WAGON . .31 (visit the FF movie set, where Kirby abounds; but will he get credited?) KIRBY AS A GENRE . .34 (Adam McGovern goes Italian) HEADLINERS . .36 (the ultimate look at the Newsboy Legion’s appearances) KIRBY OBSCURA . .48 (’50s and ’60s Kirby uncovered) GALLERY 1 . .50 (we tell tales of the DNA Project in pencil form) PUBLIC DOMAIN THEATRE . .60 (a new regular feature, present - ing complete Kirby stories that won’t get us sued) KIRBY AS A GENRE: EXTRA! . -
Titan and the Moons of Saturn Telesto Titan
The Icy Moons and the Extended Habitable Zone Europa Interior Models Other Types of Habitable Zones Water requires heat and pressure to remain stable as a liquid Extended Habitable Zones • You do not need sunlight. • You do need liquid water • You do need an energy source. Saturn and its Satellites • Saturn is nearly twice as far from the Sun as Jupiter • Saturn gets ~30% of Jupiter’s sunlight: It is commensurately colder Prometheus • Saturn has 82 known satellites (plus the rings) • 7 major • 27 regular • 4 Trojan • 55 irregular • Others in rings Titan • Titan is nearly as large as Ganymede Titan and the Moons of Saturn Telesto Titan Prometheus Dione Titan Janus Pandora Enceladus Mimas Rhea Pan • . • . Titan The second-largest moon in the Solar System The only moon with a substantial atmosphere 90% N2 + CH4, Ar, C2H6, C3H8, C2H2, HCN, CO2 Equilibrium Temperatures 2 1/4 Recall that TEQ ~ (L*/d ) Planet Distance (au) TEQ (K) Mercury 0.38 400 Venus 0.72 291 Earth 1.00 247 Mars 1.52 200 Jupiter 5.20 108 Saturn 9.53 80 Uranus 19.2 56 Neptune 30.1 45 The Atmosphere of Titan Pressure: 1.5 bars Temperature: 95 K Condensation sequence: • Jovian Moons: H2O ice • Saturnian Moons: NH3, CH4 2NH3 + sunlight è N2 + 3H2 CH4 + sunlight è CH, CH2 Implications of Methane Free CH4 requires replenishment • Liquid methane on the surface? Hazy atmosphere/clouds may suggest methane/ ethane precipitation. The freezing points of CH4 and C2H6 are 91 and 92K, respectively. (Titan has a mean temperature of 95K) (Liquid natural gas anyone?) This atmosphere may resemble the primordial terrestrial atmosphere. -
The Topography of Iapetus' Leading Side
Icarus 193 (2008) 359–371 www.elsevier.com/locate/icarus The topography of Iapetus’ leading side Bernd Giese a,∗, Tilmann Denk b, Gerhard Neukum b, Thomas Roatsch a, Paul Helfenstein c, Peter C. Thomas c, Elizabeth P. Turtle d, Alfred McEwen e, Carolyn C. Porco f a DLR, Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany b Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany c Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA d Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA e Lunar and Planetary Laboratory, University of Arizona, 1541 E. University Blvd., Tucson, AZ 85721, USA f Cassini Imaging Central Laboratory for Operations, Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA Received 12 December 2006; revised 15 May 2007 Available online 18 July 2007 Abstract We have used Cassini stereo images to study the topography of Iapetus’ leading side. A terrain model derived at resolutions of 4–8 km reveals that Iapetus has substantial topography with heights in the range of −10 km to +13 km, much more than observed on the other middle-sized satellites of Saturn so far. Most of the topography is older than 4 Ga [Neukum, G., Wagner, R., Denk, T., Porco, C.C., 2005. Lunar Planet. Sci. XXXVI. Abstract 2034] which implies that Iapetus must have had a thick lithosphere early in its history to support this topography. Models of lithospheric deflection by topographic loads provide an estimate of the required elastic thickness in the range of 50–100 km. -
Observing the Universe
ObservingObserving thethe UniverseUniverse :: aa TravelTravel ThroughThrough SpaceSpace andand TimeTime Enrico Flamini Agenzia Spaziale Italiana Tokyo 2009 When you rise your head to the night sky, what your eyes are observing may be astonishing. However it is only a small portion of the electromagnetic spectrum of the Universe: the visible . But any electromagnetic signal, indipendently from its frequency, travels at the speed of light. When we observe a star or a galaxy we see the photons produced at the moment of their production, their travel could have been incredibly long: it may be lasted millions or billions of years. Looking at the sky at frequencies much higher then visible, like in the X-ray or gamma-ray energy range, we can observe the so called “violent sky” where extremely energetic fenoena occurs.like Pulsar, quasars, AGN, Supernova CosmicCosmic RaysRays:: messengersmessengers fromfrom thethe extremeextreme universeuniverse We cannot see the deep universe at E > few TeV, since photons are attenuated through →e± on the CMB + IR backgrounds. But using cosmic rays we should be able to ‘see’ up to ~ 6 x 1010 GeV before they get attenuated by other interaction. Sources Sources → Primordial origin Primordial 7 Redshift z = 0 (t = 13.7 Gyr = now ! ) Going to a frequency lower then the visible light, and cooling down the instrument nearby absolute zero, it’s possible to observe signals produced millions or billions of years ago: we may travel near the instant of the formation of our universe: 13.7 By. Redshift z = 1.4 (t = 4.7 Gyr) Credits A. Cimatti Univ. Bologna Redshift z = 5.7 (t = 1 Gyr) Credits A. -
The Temperature and Width of an Active Fissure on Enceladus
Icarus 226 (2013) 1128–1137 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover ⇑ Jay D. Goguen a, , Bonnie J. Buratti a, Robert H. Brown b, Roger N. Clark c, Phillip D. Nicholson d, Matthew M. Hedman d, Robert R. Howell a,e,1, Christophe Sotin a, Dale P. Cruikshank f, Kevin H. Baines a, Kenneth J. Lawrence a, John R. Spencer g, David G. Blackburn h a Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, United States b University of Arizona, Lunar and Planetary Laboratory, Tucson, AZ 85721, United States c US Geological Survey, Denver, CO 80225, United States d Astronomy Dept., Cornell University, Ithaca, NY 14853, United States e University of Wyoming, Dept. of Geology and Geophysics, Laramie, WY 82071, United States f NASA Ames Research Center, Moffett Field, CA 94035, United States g Southwest Research Institute, Boulder, CO 80302, United States h The Planetary Institute for Space Research and Technologies, Lowell, AR 72745, United States article info abstract Article history: The width and temperature of the active fissures on Saturn’s satellite Enceladus provide key observable Received 30 March 2013 constraints on physical models of these geyser-like eruptions. We analyze a sequence of high spatial res- Revised 5 July 2013 olution near-infrared spectra acquired with VIMS at 0.025 s intervals during a 74 km altitude flyover of Accepted 8 July 2013 the South Pole of Enceladus by the Cassini spacecraft on 14 April 2012 UTC. -
The First Six Months of Iapetus Observations by the Cassini Iss Camera
Lunar and Planetary Science XXXVI (2005) 2262.pdf THE FIRST SIX MONTHS OF IAPETUS OBSERVATIONS BY THE CASSINI ISS CAMERA. T. Denk1, G. Neukum1, P. Helfenstein2, P.C. Thomas2, E.P. Turtle3, A.S. McEwen3, T. Roatsch4, J. Veverka2, T.V. Johnson5, J.E. Perry3, W.M. Owen5, R.J. Wagner4, C.C. Porco6, and the Cassini ISS Team. 1Freie Universität Berlin, Malteserstr. 74-100 Haus D, 12249 Berlin, Germany ([email protected]), 2Cornell University, Ithaca NY, 3University of Arizona, Tucson AZ, 4DLR (German Aerospace Center) Berlin, 5JPL, Pasadena CA, 6Space Science Institute, Boulder CO. Abstract/ Introduction. Since Saturn arrival in June equator in the dark terrain, others appeared to be correlated 2004, Iapetus has been studied intensively by the Cassini to the huge basin. ISS camera [1] at various ranges. The first of two relatively Cassini July 2004 data (post-conjunction). Cassini close flybys in the primary mission occured on Dec 31, observed high southern latitudes and the south pole for the 2004 at an altitude of ~123,400 km over the northern lead- first time; best image resolution was 15 km/pxl. These data ing hemisphere, resulting in images with a minimum pixel revealed a second large impact structure (at ~15°S/120°W, scale of 740 m. Detailed results of this flyby are given in diameter is ~390 km), also with a polygonal shape, which [2], while this abstract covers the observations obtained is more difficult to discern [3, 9]. Dark crater rims facing earlier. Among the most important discoveries are: (a) Four towards Iapetus' apex of motion were clearly identified [3]. -
Accretion of Saturn's Mid-Sized Moons During the Viscous
Accretion of Saturn’s mid-sized moons during the viscous spreading of young massive rings: solving the paradox of silicate-poor rings versus silicate-rich moons. Sébastien CHARNOZ *,1 Aurélien CRIDA 2 Julie C. CASTILLO-ROGEZ 3 Valery LAINEY 4 Luke DONES 5 Özgür KARATEKIN 6 Gabriel TOBIE 7 Stephane MATHIS 1 Christophe LE PONCIN-LAFITTE 8 Julien SALMON 5,1 (1) Laboratoire AIM, UMR 7158, Université Paris Diderot /CEA IRFU /CNRS, Centre de l’Orme les Merisiers, 91191, Gif sur Yvette Cedex France (2) Université de Nice Sophia-antipolis / C.N.R.S. / Observatoire de la Côte d'Azur Laboratoire Cassiopée UMR6202, BP4229, 06304 NICE cedex 4, France (3) Jet Propulsion Laboratory, California Institute of Technology, M/S 79-24, 4800 Oak Drive Pasadena, CA 91109 USA (4) IMCCE, Observatoire de Paris, UMR 8028 CNRS / UPMC, 77 Av. Denfert-Rochereau, 75014, Paris, France (5) Department of Space Studies, Southwest Research Institute, Boulder, Colorado 80302, USA (6) Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Uccle, Bruxelles, Belgium (7) Université de Nantes, UFR des Sciences et des Techniques, Laboratoire de Planétologie et Géodynamique, 2 rue de la Houssinière, B.P. 92208, 44322 Nantes Cedex 3, France (8) SyRTE, Observatoire de Paris, UMR 8630 du CNRS, 77 Av. Denfert-Rochereau, 75014, Paris, France (*) To whom correspondence should be addressed ([email protected]) 1 ABSTRACT The origin of Saturn’s inner mid-sized moons (Mimas, Enceladus, Tethys, Dione and Rhea) and Saturn’s rings is debated. Charnoz et al. (2010) introduced the idea that the smallest inner moons could form from the spreading of the rings’ edge while Salmon et al. -
X Men: Purification
X MEN: PURIFICATION Christopher Welsh Based on the characters from Marvel Comics 2020 1. EXT. VAN CORTLAND PARK - NIGHT A huge podium has been erected and there stands a fair haired man, burdened with glorious purpose. Dressed in a suit and has a black overcoat. MATTHEW RISMAN (late forties). Hundreds of people with signs and banners surround him. RISMAN Too long has this scourge been left. Unchallenged. Unchecked. we say No more. The crowd cheer RISMAN I chose this place because of it's symbolism from the cinematic classic, The Warriors. Here a man stood and said the future was ours if you could count. That among those gathered and those not organised would be an army that could run the city. Now dont get me wrong I have higher aspiration than crime and "BOPPING".....in fact I have something else in mind. The salvation of Humanity. CROWD MEMBER WE CAN DIG IT A raucous laughter. RISMAN We will flood this city and drown this atrocity called mutant. It is God's will, with the lord at your back who can stop us. Crowd now frenzied all begin to move away from the podium. ZOOM OUT to the huge crowds walking through the park. Even more waiting outside. ROLL TITLES 2. INT. SPACE STATION - DAY Complex equipment, and screens flickering. Everything damaged. Strewn corpses and weird lumps spread over the walls and equipment. HANK MCCOY AKA BEAS T, a blue furred Kelsey Grammer, wearing a space suit. ABIGAIL BRAND a green haired half human half alien badass beside him. 2. -
Rings and Moons of Saturn 1 Rings and Moons of Saturn
PYTS/ASTR 206 – Rings and Moons of Saturn 1 Rings and Moons of Saturn PTYS/ASTR 206 – The Golden Age of Planetary Exploration Shane Byrne – [email protected] PYTS/ASTR 206 – Rings and Moons of Saturn 2 In this lecture… Rings Discovery What they are How to form rings The Roche limit Dynamics Voyager II – 1981 Gaps and resonances Shepherd moons Voyager I – 1980 – Titan Inner moons Tectonics and craters Cassini – ongoing Enceladus – a very special case Outer Moons Captured Phoebe Iapetus and Hyperion Spray-painted with Phoebe debris PYTS/ASTR 206 – Rings and Moons of Saturn 3 We can divide Saturn’s system into three main parts… The A-D ring zone Ring gaps and shepherd moons The E ring zone Ring supplies by Enceladus Tethys, Dione and Rhea have a lot of similarities The distant satellites Iapetus, Hyperion, Phoebe Linked together by exchange of material PYTS/ASTR 206 – Rings and Moons of Saturn 4 Discovery of Saturn’s Rings Discovered by Galileo Appearance in 1610 baffled him “…to my very great amazement Saturn was seen to me to be not a single star, but three together, which almost touch each other" It got more confusing… In 1612 the extra “stars” had disappeared “…I do not know what to say…" PYTS/ASTR 206 – Rings and Moons of Saturn 5 In 1616 the extra ‘stars’ were back Galileo’s telescope had improved He saw two “half-ellipses” He died in 1642 and never figured it out In the 1650s Huygens figured out that Saturn was surrounded by a flat disk The disk disappears when seen edge on He discovered Saturn’s