Yarkovsky Drift Detections for 247 Near-Earth Asteroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Overview of Hayabusa2 Mission and Asteroid 162173 Ryugu
Asteroid Science 2019 (LPI Contrib. No. 2189) 2086.pdf AN OVERVIEW OF HAYABUSA2 MISSION AND ASTEROID 162173 RYUGU. S. Watanabe1,2, M. Hira- bayashi3, N. Hirata4, N. Hirata5, M. Yoshikawa2, S. Tanaka2, S. Sugita6, K. Kitazato4, T. Okada2, N. Namiki7, S. Tachibana6,2, M. Arakawa5, H. Ikeda8, T. Morota6,1, K. Sugiura9,1, H. Kobayashi1, T. Saiki2, Y. Tsuda2, and Haya- busa2 Joint Science Team10, 1Nagoya University, Nagoya 464-8601, Japan ([email protected]), 2Institute of Space and Astronautical Science, JAXA, Japan, 3Auburn University, U.S.A., 4University of Aizu, Japan, 5Kobe University, Japan, 6University of Tokyo, Japan, 7National Astronomical Observatory of Japan, Japan, 8Research and Development Directorate, JAXA, Japan, 9Tokyo Institute of Technology, Japan, 10Hayabusa2 Project Summary: The Hayabusa2 mission reveals the na- Combined with the rotational motion of the asteroid, ture of a carbonaceous asteroid through a combination global surveys of Ryugu were conducted several times of remote-sensing observations, in situ surface meas- from ~20 km above the sub-Earth point (SEP), includ- urements by rovers and a lander, an active impact ex- ing global mapping from ONC-T (Fig. 1) and TIR, and periment, and analyses of samples returned to Earth. scan mapping from NIRS3 and LIDAR. Descent ob- Introduction: Asteroids are fossils of planetesi- servations covering the equatorial zone were performed mals, building blocks of planetary formation. In partic- from 3-7 km altitudes above SEP. Off-SEP observa- ular carbonaceous asteroids (or C-complex asteroids) tions of the polar regions were also conducted. Based are expected to have keys identifying the material mix- on these observations, we constructed two types of the ing in the early Solar System and deciphering the global shape models (using the Structure-from-Motion origin of water and organic materials on Earth [1]. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
1620 Geographos and 433 Eros: Shaped by Planetary Tides?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server 1620 Geographos and 433 Eros: Shaped by Planetary Tides? W. F. Bottke, Jr. Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853-6801 D. C. Richardson Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 P. Michel Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy and S. G. Love Jet Propulsion Laboratory, California Institute of Technology, M/S 306-438, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 Received 23 September 1998; accepted 10 December 1998 –2– ABSTRACT Until recently, most asteroids were thought to be solid bodies whose shapes were determined largely by collisions with other asteroids (Davis et al., 1989). It now seems that many asteroids are little more than rubble piles, held together by self-gravity (Burns 1998); this means that their shapes may be strongly distorted by tides during close encounters with planets. Here we report on numerical simulations of encounters between a ellipsoid-shaped rubble-pile asteroid and the Earth. After an encounter, many of the simulated asteroids develop the same rotation rate and distinctive shape (i.e., highly elongated with a single convex side, tapered ends, and small protuberances swept back against the rotation direction) as 1620 Geographos. Since our numerical studies show that these events occur with some frequency, we suggest that Geographos may be a tidally distorted object. In addition, our work shows that 433 Eros, which will be visited by the NEAR spacecraft in 1999, is much like Geographos, which suggests that it too may have been molded by tides in the past. -
Physical Properties of Near-Earth Asteroids
Planet. Space Sci., Vol. 46, No. 1, pp. 47-74, 1998 Pergamon N~I1998 Elsevier Science Ltd All rights reserved. Printed in Great Britain 00324633/98 $19.00+0.00 PII: SOO32-0633(97)00132-3 Physical properties of near-Earth asteroids D. F. Lupishko’ and M. Di Martino’ ’ Astronomical Observatory of Kharkov State University, Sumskaya str. 35, Kharkov 310022, Ukraine ‘Osservatorio Astronomic0 di Torino, I-10025 Pino Torinese (TO), Italy Received 5 February 1997; accepted 20 June 1997 rather small objects, usually of the order of a few kilo- metres or less. MBAs of such sizes are generally not access- ible to ground-based observations. Therefore, when NEAs approach the Earth (at distances which can be as small as 0.01-0.02 AU and sometimes less) they give a unique chance to study objects of such small sizes. Some of them possibly represent primordial matter, which has preserved a record of the earliest stages of the Solar System evolution, while the majority are fragments coming from catastrophic collisions that occurred in the asteroid main- belt and could provide “a look” at the interior of their much larger parent bodies. Therefore, NEAs are objects of special interest for sev- eral reasons. First, from the point of view of fundamental science, the problems raised by their origin in planet- crossing orbits, their life-time, their possible genetic relations with comets and meteorites, etc. are closely connected with the solution of the major problem of “We are now on the threshold of a new era of asteroid planetary science of the origin and evolution of the Solar studies” System. -
Origin and Evolution of Trojan Asteroids 725
Marzari et al.: Origin and Evolution of Trojan Asteroids 725 Origin and Evolution of Trojan Asteroids F. Marzari University of Padova, Italy H. Scholl Observatoire de Nice, France C. Murray University of London, England C. Lagerkvist Uppsala Astronomical Observatory, Sweden The regions around the L4 and L5 Lagrangian points of Jupiter are populated by two large swarms of asteroids called the Trojans. They may be as numerous as the main-belt asteroids and their dynamics is peculiar, involving a 1:1 resonance with Jupiter. Their origin probably dates back to the formation of Jupiter: the Trojan precursors were planetesimals orbiting close to the growing planet. Different mechanisms, including the mass growth of Jupiter, collisional diffusion, and gas drag friction, contributed to the capture of planetesimals in stable Trojan orbits before the final dispersal. The subsequent evolution of Trojan asteroids is the outcome of the joint action of different physical processes involving dynamical diffusion and excitation and collisional evolution. As a result, the present population is possibly different in both orbital and size distribution from the primordial one. No other significant population of Trojan aster- oids have been found so far around other planets, apart from six Trojans of Mars, whose origin and evolution are probably very different from the Trojans of Jupiter. 1. INTRODUCTION originate from the collisional disruption and subsequent reaccumulation of larger primordial bodies. As of May 2001, about 1000 asteroids had been classi- A basic understanding of why asteroids can cluster in fied as Jupiter Trojans (http://cfa-www.harvard.edu/cfa/ps/ the orbit of Jupiter was developed more than a century lists/JupiterTrojans.html), some of which had only been ob- before the first Trojan asteroid was discovered. -
Arecibo Radar Observations of 14 High-Priority Near-Earth Asteroids in CY2020 and January 2021 Patrick A
Arecibo Radar Observations of 14 High-Priority Near-Earth Asteroids in CY2020 and January 2021 Patrick A. Taylor (LPI, USRA), Anne K. Virkki, Flaviane C.F. Venditti, Sean E. Marshall, Dylan C. Hickson, Luisa F. Zambrano-Marin (Arecibo Observatory, UCF), Edgard G. Rivera-Valent´ın, Sriram S. Bhiravarasu, Betzaida Aponte-Hernandez (LPI, USRA), Michael C. Nolan, Ellen S. Howell (U. Arizona), Tracy M. Becker (SwRI), Jon D. Giorgini, Lance A. M. Benner, Marina Brozovic, Shantanu P. Naidu (JPL), Michael W. Busch (SETI), Jean-Luc Margot, Sanjana Prabhu Desai (UCLA), Agata Rozek˙ (U. Kent), Mary L. Hinkle (UCF), Michael K. Shepard (Bloomsburg U.), and Christopher Magri (U. Maine) Summary We propose the continuation of the long-running project R3037 to physically and dynamically characterize the population of near-Earth asteroids with the Arecibo S-band (2380 MHz; 12.6 cm) planetary radar system. The objectives of project R3037 are to: (1) collect high-resolution radar images of and (2) report ultra-precise radar astrometry for the strongest predicted radar targets for the 2020 calendar year plus early January 2021. Such images will be used for three-dimensional shape modeling as the data sets allow. These observations will be carried out as part of the NASA- funded Arecibo planetary radar program, Grant No. 80NSSC19K0523, to PI Anne Virkki (Arecibo Observatory, University of Central Florida) with Patrick Taylor as Institutional PI at the Lunar and Planetary Institute (Universities Space Research Association). Background Radar is arguably the most powerful Earth-based technique for post-discovery physical and dynamical characterization of near-Earth asteroids (NEAs) and plays a crucial role in the nation’s planetary defense initiatives led through the NASA Planetary Defense Coordination Office. -
Constraints on the Near-Earth Asteroid Obliquity Distribution from The
Astronomy & Astrophysics manuscript no. main c ESO 2017 September 4, 2017 Constraints on the near-Earth asteroid obliquity distribution from the Yarkovsky effect C. Tardioli1,?, D. Farnocchia2, B. Rozitis3, D. Cotto-Figueroa4, S. R. Chesley2, T. S. Statler5; 6, and M. Vasile1 1 Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, UK 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 3 School of Physical Sciences, The Open University, Milton Keynes, MK7 6AA, UK 4 Department of Physics and Electronics, University of Puerto Rico at Humacao, Humacao, 00792, Puerto Rico 5 Department of Astronomy, University of Maryland, College Park, MD, 20742, USA 6 Planetary Science Division, Science Mission Directorate, NASA Headquarters, Washington DC, 20546, USA September 4, 2017 ABSTRACT Aims. From lightcurve and radar data we know the spin axis of only 43 near-Earth asteroids. In this paper we attempt to constrain the spin axis obliquity distribution of near-Earth asteroids by leveraging the Yarkovsky effect and its dependence on an asteroid’s obliquity. Methods. By modeling the physical parameters driving the Yarkovsky effect, we solve an inverse problem where we test different simple parametric obliquity distributions. Each distribution re- sults in a predicted Yarkovsky effect distribution that we compare with a χ2 test to a dataset of 125 Yarkovsky estimates. Results. We find different obliquity distributions that are statistically satisfactory. In particular, among the considered models, the best-fit solution is a quadratic function, which only depends on two parameters, favors extreme obliquities, consistent with the expected outcomes from the YORP effect, has a 2:1 ratio between retrograde and direct rotators, which is in agreement with theoretical predictions, and is statistically consistent with the distribution of known spin axes of near-Earth asteroids. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
Detecting the Yarkovsky Effect Among Near-Earth Asteroids From
Detecting the Yarkovsky effect among near-Earth asteroids from astrometric data Alessio Del Vignaa,b, Laura Faggiolid, Andrea Milania, Federica Spotoc, Davide Farnocchiae, Benoit Carryf aDipartimento di Matematica, Universit`adi Pisa, Largo Bruno Pontecorvo 5, Pisa, Italy bSpace Dynamics Services s.r.l., via Mario Giuntini, Navacchio di Cascina, Pisa, Italy cIMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Lille, 77 av. Denfert-Rochereau F-75014 Paris, France dESA SSA-NEO Coordination Centre, Largo Galileo Galilei, 1, 00044 Frascati (RM), Italy eJet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, 91109 CA, USA fUniversit´eCˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, Boulevard de l’Observatoire, Nice, France Abstract We present an updated set of near-Earth asteroids with a Yarkovsky-related semi- major axis drift detected from the orbital fit to the astrometry. We find 87 reliable detections after filtering for the signal-to-noise ratio of the Yarkovsky drift esti- mate and making sure the estimate is compatible with the physical properties of the analyzed object. Furthermore, we find a list of 24 marginally significant detec- tions, for which future astrometry could result in a Yarkovsky detection. A further outcome of the filtering procedure is a list of detections that we consider spurious because unrealistic or not explicable with the Yarkovsky effect. Among the smallest asteroids of our sample, we determined four detections of solar radiation pressure, in addition to the Yarkovsky effect. As the data volume increases in the near fu- ture, our goal is to develop methods to generate very long lists of asteroids with reliably detected Yarkovsky effect, with limited amounts of case by case specific adjustments. -
General Assembly Distr.: General 7 January 2005
United Nations A/AC.105/839 General Assembly Distr.: General 7 January 2005 Original: English Committee on the Peaceful Uses of Outer Space Scientific and Technical Subcommittee Forty-second session Vienna, 21 February-4 March 2004 Item 10 of the provisional agenda∗ Near-Earth objects Information on research in the field of near-Earth objects carried out by international organizations and other entities Note by the Secretariat Contents Page I. Introduction ................................................................... 2 II. Replies received from international organizations and other entities ..................... 2 European Space Agency ......................................................... 2 The Spaceguard Foundation ...................................................... 17 __________________ ∗ A/AC.105/C.1/L.277. V.05-80067 (E) 010205 020205 *0580067* A/AC.105/839 I. Introduction In accordance with the agreement reached at the forty-first session of the Scientific and Technical Subcommittee (A/AC.105/823, annex II, para. 18) and endorsed by the Committee on the Peaceful Uses of Outer Space at its forty-seventh session (A/59/20, para. 140), the Secretariat invited international organizations, regional bodies and other entities active in the field of near-Earth object (NEO) research to submit reports on their activities relating to near-Earth object research for consideration by the Subcommittee. The present document contains reports received by 17 December 2004. II. Replies received from international organizations and other entities European Space Agency Overview of activities of the European Space Agency in the field of near-Earth object research: hazard mitigation Summary 1. Near-Earth objects (NEOs) pose a global threat. There exists overwhelming evidence showing that impacts of large objects with dimensions in the order of kilometres (km) have had catastrophic consequences in the past. -
Near Earth Objects As Resources for Space Industrialization
Solar System Development Journal (2001) 1(1), 1-31 http://www.resonance-pub.com ISSN:1534-8016 NEAR EARTH OBJECTS AS RESOURCES FOR SPACE INDUSTRIALIZATION MARK SONTER Consultant, Asteroid Enterprises Pty Ltd, 28 Ian Bruce Crescent, Balgownie, New South Wales 2519, Australia [email protected] (Received 11 February 2001, and in final form 13 August 2001*) This paper reviews concepts for mining the Near-Earth Asteroids for supply of resources to future in-space industrial activities. It identifies Expectation Net Present Value as the appropriate measure for determining the technical and economic feasibility of a hypothetical asteroid mining venture, just as it is the appropriate measure for the feasibility of a proposed terrestrial mining venture. In turn, ENPV can obviously be used as a ‘design driver’ to sieve the alternative options, in selection of target, mission profile, mining and processing methods, propulsion for return trajectory, and earth-capture mechanism. 1. INTRODUCTION The Near Earth Asteroids are potential impact threats to Earth, but also a particularly accessible subset of them does provide potentially attractive targets for resources to support space industrialization. Robust technical and economic approaches to evaluation of the feasibility of proposed projects are necessary for assessment of such space mining ventures. This paper discusses the technical engineering and mission–planning choices and shows how the concept of probabilistic Net Present Value can be used to optimize these choices, and hence select between alternative asteroid mining mission designs. The generic mission reviewed envisages a lightweight remote (teleoperated) or semiautonomous miner, recovering products such as water or nickel-iron metal, from highly- accessible NEAs, and returning it to Low Earth Orbit (LEO), for sale and use in LEO, using solar power and some of the recovered mass as propellant. -
Asteroids and Comets: U.S
Columbia Law School Scholarship Archive Faculty Scholarship Faculty Publications 1997 Asteroids and Comets: U.S. and International Law and the Lowest-Probability, Highest Consequence Risk Michael B. Gerrard Columbia Law School, [email protected] Anna W. Barber Follow this and additional works at: https://scholarship.law.columbia.edu/faculty_scholarship Part of the Environmental Law Commons, and the International Law Commons Recommended Citation Michael B. Gerrard & Anna W. Barber, Asteroids and Comets: U.S. and International Law and the Lowest- Probability, Highest Consequence Risk, 6 N.Y.U. ENVTL. L. J. 4 (1997). Available at: https://scholarship.law.columbia.edu/faculty_scholarship/697 This Article is brought to you for free and open access by the Faculty Publications at Scholarship Archive. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of Scholarship Archive. For more information, please contact [email protected]. COLLOQUIUM ARTICLES ASTEROIDS AND COMETS: U.S. AND INTERNATIONAL LAW AND THE LOWEST-PROBABILITY, HIGHEST ICONSEQUENCE RISK MICHAEL B. GERRARD AND ANNA W. BARBER* INTRODUCrION Asteroids' and comets2 pose unique policy problems. They are the ultimate example of a low probability, high consequence event: no one in recorded human history is confirmed to have ever died from an asteroid or a comet, but the odds are that at some time in the next several centuries (and conceivably next year) an asteroid or a comet will cause mass localized destruction and that at some time in the coming half million years (and con- ceivably next year), an asteroid or a comet will kill several billion people.