Empirical Process Proof of the Asymptotic Distribution of Sample

Total Page:16

File Type:pdf, Size:1020Kb

Empirical Process Proof of the Asymptotic Distribution of Sample Spring 1998 John Rust Economics 551b 37 Hillhouse, Rm. 27 Empirical Pro cess Pro of of the Asymptotic Distribution of Sample Quantiles th ~ De nition: Given 2 0; 1, the quantile of a random variable X with CDF F is de ned by: 1 F = inf fx j F x g: th th Note that is the median, is the 25 p ercentile, etc. Further if we de ne the 0 quantile :5 :25 as = lim and de ne similarly, it is easy to see that these are the lower and upp er 0 1 !0 ~ ~ p oints in the supp ort of X i.e. the minimum and maximum p ossible values of X which might ~ be 1 and +1 if X has unb ounded supp ort. Note also that if F is strictly increasing in a 1 neighb orho o d of , then = F is the usual inverse of the CDF F . If F happ ens to have \ at" sections, sayaninterval of p oints x satisfying F x= , then is the smallest x in this interval. The following lemma, a slightly mo di ed version of a lemma from R. J. Ser ing, 1980 Approximation Theorems of Mathematical Statistics Wiley, New York, provides some 1 basic prop erties of the quantile function F : 1 Lemma 1: Let F be a CDF. The quantile function F , 2 0; 1 is non-decreasing and left continuous, and satis es: 1 1. F F x x; 1 <x<1 1 2. F F ; 0 < <1 1 1 3. If F is strictly increasing in a neighb orho o d of = F wehave: F F = and 1 F F = . 1 4. F x if and only if x F . ~ ~ De nition: Let X ;:::;X bearandom sample of size N from a CDF F . Then the sample 1 N quantile ^ , 2 0; 1 is de ned by: 1 ^ = F ; N where F is the empirical CDF de ned by: N N X 1 ~ F x= I fX xg: N i N i=1 1 1 1 ~ ~ Thus ^ = F :5 is the sample median F :5 = medX ;:::;X , and ^ = F 0 is :5 1 N 0 N N N 1 1 ~ ~ the sample minimum, F 0 = minX ;:::;X , and ^ = F 1 is the sample maximum, 1 N 1 N N 1 ~ ~ F 1 = maxX ;:::;X . Since empirical CDF's have jumps of size 1=N unless more than 1 N N ~ one of the fX g's take the same value, then we can b ound the maximum di erence b etween i 1 and F F in Lemma 1-2 as follows: 1 ~ ~ Lemma 2: Let X ;:::;X bearandom sample from a CDF F and suppose that in this 1 N ~ ~ ~ ~ sample each X happens to be distinct, so that by reindexing we have X < X < < X < i 1 2 N1 ~ X . Then for al l 2 0; 1 we have: N 1 1 jF F j : N N N The following theorem shows that the asymptotic distribution of the sample quantiles ^ for 2 0; 1 are normally distributed. It is imp ortant to note that we exclude the two cases =0 and = 1 in this theorem since the asymptotic distribution of these extreme value statistics is very di erent and generally non-normal. ~ ~ Theorem: Let X ;:::;X be IID draws from a CDF F with continuous density f . Then if 1 N f > 0, we have: p p 1 1 2 N ^ = N F F = N0; ; N where: 1 2 = : 2 f Pro of: The Central Limit Theorem for IID random variables implies that for any x in the supp ort of F wehave: p 2 N F x F x = N 0; ; N 2 1 where = F x[1 F x]. Letting x = = F and using Lemma 1-3 wehave: p p 1 1 N F F = N F F F F = N 0; 1 : N N Furthermore, the prop ertyofstochastic equicontinuity from the theory of empirical processes see D. Andrews, 1996 Handbook of Econometrics vol. 4 for an accessible intro duction and de nition of sto chastic equicontinuity, wehave that the result given ab ove is una ected if we replace by a consistent estimate ^ : p p 1 1 N F ^ F ^ = N F F F F = N 0; 1 : N N N N Now note that Lemma 1-2 implies that p p 1 1 1 N F F N F F F F : N N N N ~ However since the true CDF F has a density, the probability of observing duplicate fX g's is i zero, so Lemma 2 implies that with probability1 wehave: p p p 1 1 1 N F F F F = N F F + O 1= N ; N p N N N which implies that: p 1 = N 0; 1 : N F F N 1 Nowwe apply the Delta theorem, i.e. wedoaTaylor series expansion of F F ab out the N 1 limiting p oint = F to get: h i 1 1 1 1 F F = F F + f ~ F F ; N N 2 where ~ is a p oint on the line segmentbetween ^ and . Using the result ab ove and Lemma 1-3 wehave: ! 1 p p F F 1 1 2 N N F F = N = N 0; ; N f ~ where wehave used Slutsky's Theorem and the fact that ~ ! since ^ ! with probability 1. 3.
Recommended publications
  • Applied Biostatistics Mean and Standard Deviation the Mean the Median Is Not the Only Measure of Central Value for a Distribution
    Health Sciences M.Sc. Programme Applied Biostatistics Mean and Standard Deviation The mean The median is not the only measure of central value for a distribution. Another is the arithmetic mean or average, usually referred to simply as the mean. This is found by taking the sum of the observations and dividing by their number. The mean is often denoted by a little bar over the symbol for the variable, e.g. x . The sample mean has much nicer mathematical properties than the median and is thus more useful for the comparison methods described later. The median is a very useful descriptive statistic, but not much used for other purposes. Median, mean and skewness The sum of the 57 FEV1s is 231.51 and hence the mean is 231.51/57 = 4.06. This is very close to the median, 4.1, so the median is within 1% of the mean. This is not so for the triglyceride data. The median triglyceride is 0.46 but the mean is 0.51, which is higher. The median is 10% away from the mean. If the distribution is symmetrical the sample mean and median will be about the same, but in a skew distribution they will not. If the distribution is skew to the right, as for serum triglyceride, the mean will be greater, if it is skew to the left the median will be greater. This is because the values in the tails affect the mean but not the median. Figure 1 shows the positions of the mean and median on the histogram of triglyceride.
    [Show full text]
  • TR Multivariate Conditional Median Estimation
    Discussion Paper: 2004/02 TR multivariate conditional median estimation Jan G. de Gooijer and Ali Gannoun www.fee.uva.nl/ke/UvA-Econometrics Department of Quantitative Economics Faculty of Economics and Econometrics Universiteit van Amsterdam Roetersstraat 11 1018 WB AMSTERDAM The Netherlands TR Multivariate Conditional Median Estimation Jan G. De Gooijer1 and Ali Gannoun2 1 Department of Quantitative Economics University of Amsterdam Roetersstraat 11, 1018 WB Amsterdam, The Netherlands Telephone: +31—20—525 4244; Fax: +31—20—525 4349 e-mail: [email protected] 2 Laboratoire de Probabilit´es et Statistique Universit´e Montpellier II Place Eug`ene Bataillon, 34095 Montpellier C´edex 5, France Telephone: +33-4-67-14-3578; Fax: +33-4-67-14-4974 e-mail: [email protected] Abstract An affine equivariant version of the nonparametric spatial conditional median (SCM) is con- structed, using an adaptive transformation-retransformation (TR) procedure. The relative performance of SCM estimates, computed with and without applying the TR—procedure, are compared through simulation. Also included is the vector of coordinate conditional, kernel- based, medians (VCCMs). The methodology is illustrated via an empirical data set. It is shown that the TR—SCM estimator is more efficient than the SCM estimator, even when the amount of contamination in the data set is as high as 25%. The TR—VCCM- and VCCM estimators lack efficiency, and consequently should not be used in practice. Key Words: Spatial conditional median; kernel; retransformation; robust; transformation. 1 Introduction p s Let (X1, Y 1),...,(Xn, Y n) be independent replicates of a random vector (X, Y ) IR IR { } ∈ × where p > 1,s > 2, and n>p+ s.
    [Show full text]
  • 5. the Student T Distribution
    Virtual Laboratories > 4. Special Distributions > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5. The Student t Distribution In this section we will study a distribution that has special importance in statistics. In particular, this distribution will arise in the study of a standardized version of the sample mean when the underlying distribution is normal. The Probability Density Function Suppose that Z has the standard normal distribution, V has the chi-squared distribution with n degrees of freedom, and that Z and V are independent. Let Z T= √V/n In the following exercise, you will show that T has probability density function given by −(n +1) /2 Γ((n + 1) / 2) t2 f(t)= 1 + , t∈ℝ ( n ) √n π Γ(n / 2) 1. Show that T has the given probability density function by using the following steps. n a. Show first that the conditional distribution of T given V=v is normal with mean 0 a nd variance v . b. Use (a) to find the joint probability density function of (T,V). c. Integrate the joint probability density function in (b) with respect to v to find the probability density function of T. The distribution of T is known as the Student t distribution with n degree of freedom. The distribution is well defined for any n > 0, but in practice, only positive integer values of n are of interest. This distribution was first studied by William Gosset, who published under the pseudonym Student. In addition to supplying the proof, Exercise 1 provides a good way of thinking of the t distribution: the t distribution arises when the variance of a mean 0 normal distribution is randomized in a certain way.
    [Show full text]
  • Theoretical Statistics. Lecture 20
    Theoretical Statistics. Lecture 20. Peter Bartlett 1. Recall: Functional delta method, differentiability in normed spaces, Hadamard derivatives. [vdV20] 2. Quantile estimates. [vdV21] 3. Contiguity. [vdV6] 1 Recall: Differentiability of functions in normed spaces Definition: φ : D E is Hadamard differentiable at θ D tangentially → ∈ to D D if 0 ⊆ φ′ : D E (linear, continuous), h D , ∃ θ 0 → ∀ ∈ 0 if t 0, ht h 0, then → k − k → φ(θ + tht) φ(θ) − φ′ (h) 0. t − θ → 2 Recall: Functional delta method Theorem: Suppose φ : D E, where D and E are normed linear spaces. → Suppose the statistic Tn : Ωn D satisfies √n(Tn θ) T for a random → − element T in D D. 0 ⊂ If φ is Hadamard differentiable at θ tangentially to D0 then ′ √n(φ(Tn) φ(θ)) φ (T ). − θ If we can extend φ′ : D E to a continuous map φ′ : D E, then 0 → → ′ √n(φ(Tn) φ(θ)) = φ (√n(Tn θ)) + oP (1). − θ − 3 Recall: Quantiles Definition: The quantile function of F is F −1 : (0, 1) R, → F −1(p) = inf x : F (x) p . { ≥ } Quantile transformation: for U uniform on (0, 1), • F −1(U) F. ∼ Probability integral transformation: for X F , F (X) is uniform on • ∼ [0,1] iff F is continuous on R. F −1 is an inverse (i.e., F −1(F (x)) = x and F (F −1(p)) = p for all x • and p) iff F is continuous and strictly increasing. 4 Empirical quantile function For a sample with distribution function F , define the empirical quantile −1 function as the quantile function Fn of the empirical distribution function Fn.
    [Show full text]
  • A Tail Quantile Approximation Formula for the Student T and the Symmetric Generalized Hyperbolic Distribution
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Schlüter, Stephan; Fischer, Matthias J. Working Paper A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution IWQW Discussion Papers, No. 05/2009 Provided in Cooperation with: Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics Suggested Citation: Schlüter, Stephan; Fischer, Matthias J. (2009) : A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution, IWQW Discussion Papers, No. 05/2009, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW), Nürnberg This Version is available at: http://hdl.handle.net/10419/29554 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu IWQW Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung Diskussionspapier Discussion Papers No.
    [Show full text]
  • Stat 5102 Lecture Slides: Deck 1 Empirical Distributions, Exact Sampling Distributions, Asymptotic Sampling Distributions
    Stat 5102 Lecture Slides: Deck 1 Empirical Distributions, Exact Sampling Distributions, Asymptotic Sampling Distributions Charles J. Geyer School of Statistics University of Minnesota 1 Empirical Distributions The empirical distribution associated with a vector of numbers x = (x1; : : : ; xn) is the probability distribution with expectation operator n 1 X Enfg(X)g = g(xi) n i=1 This is the same distribution that arises in finite population sam- pling. Suppose we have a population of size n whose members have values x1, :::, xn of a particular measurement. The value of that measurement for a randomly drawn individual from this population has a probability distribution that is this empirical distribution. 2 The Mean of the Empirical Distribution In the special case where g(x) = x, we get the mean of the empirical distribution n 1 X En(X) = xi n i=1 which is more commonly denotedx ¯n. Those with previous exposure to statistics will recognize this as the formula of the population mean, if x1, :::, xn is considered a finite population from which we sample, or as the formula of the sample mean, if x1, :::, xn is considered a sample from a specified population. 3 The Variance of the Empirical Distribution The variance of any distribution is the expected squared deviation from the mean of that same distribution. The variance of the empirical distribution is n 2o varn(X) = En [X − En(X)] n 2o = En [X − x¯n] n 1 X 2 = (xi − x¯n) n i=1 The only oddity is the use of the notationx ¯n rather than µ for the mean.
    [Show full text]
  • The Probability Lifesaver: Order Statistics and the Median Theorem
    The Probability Lifesaver: Order Statistics and the Median Theorem Steven J. Miller December 30, 2015 Contents 1 Order Statistics and the Median Theorem 3 1.1 Definition of the Median 5 1.2 Order Statistics 10 1.3 Examples of Order Statistics 15 1.4 TheSampleDistributionoftheMedian 17 1.5 TechnicalboundsforproofofMedianTheorem 20 1.6 TheMedianofNormalRandomVariables 22 2 • Greetings again! In this supplemental chapter we develop the theory of order statistics in order to prove The Median Theorem. This is a beautiful result in its own, but also extremely important as a substitute for the Central Limit Theorem, and allows us to say non- trivial things when the CLT is unavailable. Chapter 1 Order Statistics and the Median Theorem The Central Limit Theorem is one of the gems of probability. It’s easy to use and its hypotheses are satisfied in a wealth of problems. Many courses build towards a proof of this beautiful and powerful result, as it truly is ‘central’ to the entire subject. Not to detract from the majesty of this wonderful result, however, what happens in those instances where it’s unavailable? For example, one of the key assumptions that must be met is that our random variables need to have finite higher moments, or at the very least a finite variance. What if we were to consider sums of Cauchy random variables? Is there anything we can say? This is not just a question of theoretical interest, of mathematicians generalizing for the sake of generalization. The following example from economics highlights why this chapter is more than just of theoretical interest.
    [Show full text]
  • Central Limit Theorem and Its Applications to Baseball
    Central Limit Theorem and Its Applications to Baseball by Nicole Anderson A project submitted to the Department of Mathematical Sciences in conformity with the requirements for Math 4301 (Honours Seminar) Lakehead University Thunder Bay, Ontario, Canada copyright c (2014) Nicole Anderson Abstract This honours project is on the Central Limit Theorem (CLT). The CLT is considered to be one of the most powerful theorems in all of statistics and probability. In probability theory, the CLT states that, given certain conditions, the sample mean of a sufficiently large number or iterates of independent random variables, each with a well-defined ex- pected value and well-defined variance, will be approximately normally distributed. In this project, a brief historical review of the CLT is provided, some basic concepts, two proofs of the CLT and several properties are discussed. As an application, we discuss how to use the CLT to study the sampling distribution of the sample mean and hypothesis testing using baseball statistics. i Acknowledgements I would like to thank my supervisor, Dr. Li, who helped me by sharing his knowledge and many resources to help make this paper come to life. I would also like to thank Dr. Adam Van Tuyl for all of his help with Latex, and support throughout this project. Thank you very much! ii Contents Abstract i Acknowledgements ii Chapter 1. Introduction 1 1. Historical Review of Central Limit Theorem 1 2. Central Limit Theorem in Practice 1 Chapter 2. Preliminaries 3 1. Definitions 3 2. Central Limit Theorem 7 Chapter 3. Proofs of Central Limit Theorem 8 1.
    [Show full text]
  • Notes Mean, Median, Mode & Range
    Notes Mean, Median, Mode & Range How Do You Use Mode, Median, Mean, and Range to Describe Data? There are many ways to describe the characteristics of a set of data. The mode, median, and mean are all called measures of central tendency. These measures of central tendency and range are described in the table below. The mode of a set of data Use the mode to show which describes which value occurs value in a set of data occurs most frequently. If two or more most often. For the set numbers occur the same number {1, 1, 2, 3, 5, 6, 10}, of times and occur more often the mode is 1 because it occurs Mode than all the other numbers in the most frequently. set, those numbers are all modes for the data set. If each number in the set occurs the same number of times, the set of data has no mode. The median of a set of data Use the median to show which describes what value is in the number in a set of data is in the middle if the set is ordered from middle when the numbers are greatest to least or from least to listed in order. greatest. If there are an even For the set {1, 1, 2, 3, 5, 6, 10}, number of values, the median is the median is 3 because it is in the average of the two middle the middle when the numbers are Median values. Half of the values are listed in order. greater than the median, and half of the values are less than the median.
    [Show full text]
  • Global Investigation of Return Autocorrelation and Its Determinants
    Global investigation of return autocorrelation and its determinants Pawan Jaina,, Wenjun Xueb aUniversity of Wyoming bFlorida International University ABSTRACT We estimate global return autocorrelation by using the quantile autocorrelation model and investigate its determinants across 43 stock markets from 1980 to 2013. Although our results document a decline in autocorrelation across the entire sample period for all countries, return autocorrelation is significantly larger in emerging markets than in developed markets. The results further document that larger and liquid stock markets have lower return autocorrelation. We also find that price limits in most emerging markets result in higher return autocorrelation. We show that the disclosure requirement, public enforcement, investor psychology, and market characteristics significantly affect return autocorrelation. Our results document that investors from different cultural backgrounds and regulation regimes react differently to corporate disclosers, which affects return autocorrelation. Keywords: Return autocorrelation, Global stock markets, Quantile autoregression model, Legal environment, Investor psychology, Hofstede’s cultural dimensions JEL classification: G12, G14, G15 Corresponding author, E-mail: [email protected]; fax: 307-766-5090. 1. Introduction One of the most striking asset pricing anomalies is the existence of large, positive, short- horizon return autocorrelation in stock portfolios, first documented in Conrad and Kaul (1988) and Lo and MacKinlay (1990). This existence of
    [Show full text]
  • Depth, Outlyingness, Quantile, and Rank Functions in Multivariate & Other Data Settings Eserved@D = *@Let@Token
    DEPTH, OUTLYINGNESS, QUANTILE, AND RANK FUNCTIONS – CONCEPTS, PERSPECTIVES, CHALLENGES Depth, Outlyingness, Quantile, and Rank Functions in Multivariate & Other Data Settings Robert Serfling1 Serfling & Thompson Statistical Consulting and Tutoring ASA Alabama-Mississippi Chapter Mini-Conference University of Mississippi, Oxford April 5, 2019 1 www.utdallas.edu/∼serfling DEPTH, OUTLYINGNESS, QUANTILE, AND RANK FUNCTIONS – CONCEPTS, PERSPECTIVES, CHALLENGES “Don’t walk in front of me, I may not follow. Don’t walk behind me, I may not lead. Just walk beside me and be my friend.” – Albert Camus DEPTH, OUTLYINGNESS, QUANTILE, AND RANK FUNCTIONS – CONCEPTS, PERSPECTIVES, CHALLENGES OUTLINE Depth, Outlyingness, Quantile, and Rank Functions on Rd Depth Functions on Arbitrary Data Space X Depth Functions on Arbitrary Parameter Space Θ Concluding Remarks DEPTH, OUTLYINGNESS, QUANTILE, AND RANK FUNCTIONS – CONCEPTS, PERSPECTIVES, CHALLENGES d DEPTH, OUTLYINGNESS, QUANTILE, AND RANK FUNCTIONS ON R PRELIMINARY PERSPECTIVES Depth functions are a nonparametric approach I The setting is nonparametric data analysis. No parametric or semiparametric model is assumed or invoked. I We exhibit the geometric structure of a data set in terms of a center, quantile levels, measures of outlyingness for each point, and identification of outliers or outlier regions. I Such data description is developed in terms of a depth function that measures centrality from a global viewpoint and yields center-outward ordering of data points. I This differs from the density function,
    [Show full text]
  • Sampling Student's T Distribution – Use of the Inverse Cumulative
    Sampling Student’s T distribution – use of the inverse cumulative distribution function William T. Shaw Department of Mathematics, King’s College, The Strand, London WC2R 2LS, UK With the current interest in copula methods, and fat-tailed or other non-normal distributions, it is appropriate to investigate technologies for managing marginal distributions of interest. We explore “Student’s” T distribution, survey its simulation, and present some new techniques for simulation. In particular, for a given real (not necessarily integer) value n of the number of degrees of freedom, −1 we give a pair of power series approximations for the inverse, Fn ,ofthe cumulative distribution function (CDF), Fn.Wealsogivesomesimpleandvery fast exact and iterative techniques for defining this function when n is an even −1 integer, based on the observation that for such cases the calculation of Fn amounts to the solution of a reduced-form polynomial equation of degree n − 1. We also explain the use of Cornish–Fisher expansions to define the inverse CDF as the composition of the inverse CDF for the normal case with a simple polynomial map. The methods presented are well adapted for use with copula and quasi-Monte-Carlo techniques. 1 Introduction There is much interest in many areas of financial modeling on the use of copulas to glue together marginal univariate distributions where there is no easy canonical multivariate distribution, or one wishes to have flexibility in the mechanism for combination. One of the more interesting marginal distributions is the “Student’s” T distribution. This statistical distribution was published by W. Gosset in 1908.
    [Show full text]