Biological Evaluation of T&E Species

Total Page:16

File Type:pdf, Size:1020Kb

Biological Evaluation of T&E Species PXP Plains Exploration & Production Company Revisions to the Platform Hidalgo Development and Production Plan to Include Development of the Western Half NW/4 of Lease OCS-P 0450 Accompanying Information Volume Biological Evaluation of Threatened and Endangered Species Submitted to: The Bureau of Ocean Energy Management Pacific OCS Region Submitted by: Plains Exploration & Production Company October 2012 Address Inquiries To: Mr. David Rose Environmental Health and Safety Manager Plains Exploration & Production Company 201 South Broadway Orcutt, CA 93455 (805) 934-8220 [email protected] Accompanying Information Volume – Biological Evaluation Hidalgo DPP Revision Table of Contents Page 1.0 Purpose and Overview ........................................................................................................ 1 2.0 Project Description and Location ........................................................................................ 1 2.1 Proposed Drilling Activities ............................................................................................. 2 2.1.1 Drill Muds and Cuttings............................................................................................ 3 2.1.2 Produced Water ......................................................................................................... 3 2.1.3 Support Activities ..................................................................................................... 3 3.0 Protected Species ................................................................................................................ 4 3.1 Marine Mannals ................................................................................................................ 9 3.1.1 Southern Sea Otter (Threatened) .............................................................................. 9 3.1.2 Steller Sea Lion (Threatened) ................................................................................. 14 3.1.3 Guadalupe Fur Seal (Threatened) ........................................................................... 15 3.1.4 Blue Whale (Endangered) ....................................................................................... 16 3.1.5 Fin Whale (Endangered) ......................................................................................... 18 3.1.6 Sei Whale (Endangered) ......................................................................................... 19 3.1.7 Humpback Whale (Endangered) ............................................................................. 20 3.1.8 North Pacific Right Whale (Endangered) ............................................................... 21 3.1.9 Sperm Whale (Endangered) .................................................................................... 23 3.2 Birds ............................................................................................................................... 24 3.2.1 California Least Tern (Endangered) ....................................................................... 24 3.2.2 Marbled Murrelet (Threatened) .............................................................................. 26 3.2.3 Western Snowy Plover (Threatened) ...................................................................... 28 3.2.4 Short-tailed Albatross (Endangered) ....................................................................... 31 3.2.5 Light-footed Clapper Rail (Endangered) ................................................................ 33 3.3 Reptiles ........................................................................................................................... 35 3.3.1 Leatherback Sea Turtle (Endangered) .................................................................... 35 3.3.2 Green Sea Turtle (Endangered) .............................................................................. 37 3.3.3 Olive Ridley Sea Turtle (Threatened) ..................................................................... 38 3.3.4 Loggerhead Sea Turtle (Endangered) ..................................................................... 39 3.4 Invertebrates ................................................................................................................... 41 3.4.1 White Abalone (Endangered) ................................................................................. 41 3.4.2 Black Abalone (Endangered) .................................................................................. 43 3.5 Amphibians .................................................................................................................... 45 3.5.1 California Red-legged Frog (Threatened) ............................................................... 45 3.6 Fish ................................................................................................................................. 47 3.6.1 Tidewater Goby (Endangered) ................................................................................ 47 3.6.2 Steelhead Trout (Endangered) ................................................................................ 48 3.7 Plants .............................................................................................................................. 51 3.7.1 Salt Marsh Bird’s-Beak (Endangered) .................................................................... 51 3.7.2 California Sea-Blite (Endangered) .......................................................................... 52 4.0 Potentially Signficant Impacts Sources ............................................................................ 53 4.1 Noise, Lighting, and Disturbance ................................................................................... 53 4.1.1 Vessel Traffic .......................................................................................................... 53 4.1.2 Aircraft Traffic ........................................................................................................ 54 4.1.3 Offshore Drilling ..................................................................................................... 55 i Accompanying Information Volume – Biological Evaluation Hidalgo DPP Revision Table of Contents Page 4.1.4 Offshore Production ................................................................................................ 56 4.1.5 Lighting ................................................................................................................... 56 4.2 Effluent Discharges ........................................................................................................ 57 4.2.1 Drilling Fluids ......................................................................................................... 57 4.2.2 Produced Water ....................................................................................................... 58 4.3 Oil Spills ......................................................................................................................... 59 4.3.1 Oil Spill Risk Assessment ....................................................................................... 59 4.3.2 Oil Spill Prevention and Response ......................................................................... 64 5.0 Impacts to Threatened and Endangered Species ............................................................... 67 5.1 Marine Mammals ........................................................................................................... 67 5.1.1 Southern Sea Otter (Threatened) ............................................................................ 72 5.1.2 Steller Sea Lion (Threatened) ................................................................................. 74 5.1.3 Guadalupe Fur Seal (Threatened) ........................................................................... 74 5.1.4 Blue Whale (Endangered) ....................................................................................... 74 5.1.5 Fin Whale (Endangered) ......................................................................................... 76 5.1.6 Sei Whale (Endangered) ......................................................................................... 76 5.1.7 Humpback Whale (Endangered) ............................................................................. 76 5.1.8 North Pacific Right Whale (Endangered) ............................................................... 77 5.1.9 Sperm Whale (Endangered) .................................................................................... 78 5.2 Birds ............................................................................................................................... 78 5.2.1 California Least Tern (Endangered) ....................................................................... 81 5.2.2 Marbled Murrelet (Threatened) .............................................................................. 82 5.2.3 Western Snowy Plover (Threatened) ...................................................................... 83 5.2.4 Light-footed Clapper Rail (Endangered) ................................................................ 84 5.2.5 Short-tailed Albatross (Endangered) ....................................................................... 85 5.3 Reptiles ........................................................................................................................... 85 5.3.1 Leatherback Sea Turtle (Endangered) .................................................................... 87 5.3.2 Green Sea Turtle (Endangered) .............................................................................
Recommended publications
  • Baylisascariasis
    Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B.
    [Show full text]
  • Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2017 Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management Jarod D. Raithel Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Raithel, Jarod D., "Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human- Dominated Landscape: Implications for Management" (2017). All Graduate Theses and Dissertations. 6633. https://digitalcommons.usu.edu/etd/6633 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INTEGRATING BLACK BEAR BEHAVIOR, SPATIAL ECOLOGY, AND POPULATION DYNAMICS IN A HUMAN-DOMINATED LANDSCAPE: IMPLICATIONS FOR MANAGEMENT by Jarod D. Raithel A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: _______________________ _______________________ Lise M. Aubry, Ph.D. Melissa J. Reynolds-Hogland, Ph.D. Major Professor Committee Member _______________________ _______________________ David N. Koons, Ph.D. Eric M. Gese, Ph.D. Committee Member Committee Member _______________________ _______________________ Joseph M. Wheaton, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright Jarod Raithel 2017 All Rights Reserved iii ABSTRACT Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management by Jarod D.
    [Show full text]
  • Phylogeographic and Diversification Patterns of the White-Nosed Coati
    Molecular Phylogenetics and Evolution 131 (2019) 149–163 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeographic and diversification patterns of the white-nosed coati (Nasua narica): Evidence for south-to-north colonization of North America T ⁎ Sergio F. Nigenda-Moralesa, , Matthew E. Gompperb, David Valenzuela-Galvánc, Anna R. Layd, Karen M. Kapheime, Christine Hassf, Susan D. Booth-Binczikg, Gerald A. Binczikh, Ben T. Hirschi, Maureen McColginj, John L. Koprowskik, Katherine McFaddenl,1, Robert K. Waynea, ⁎ Klaus-Peter Koepflim,n, a Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA b School of Natural Resources, University of Missouri, Columbia, MO 65211, USA c Departamento de Ecología Evolutiva, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico d Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA e Department of Biology, Utah State University, Logan, UT 84322, USA f Wild Mountain Echoes, Vail, AZ 85641, USA g New York State Department of Environmental Conservation, Albany, NY 12233, USA h Amsterdam, New York 12010, USA i Zoology and Ecology, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia j Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA k School of Natural Resources and the Environment, The University of Arizona, Tucson, AZ 85721, USA l College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA m Smithsonian Conservation Biology Institute, National Zoological Park, Washington, D.C.
    [Show full text]
  • The Red and Gray Fox
    The Red and Gray Fox There are five species of foxes found in North America but only two, the red (Vulpes vulpes), And the gray (Urocyon cinereoargentus) live in towns or cities. Fox are canids and close relatives of coyotes, wolves and domestic dogs. Foxes are not large animals, The red fox is the larger of the two typically weighing 7 to 5 pounds, and reaching as much as 3 feet in length (not including the tail, which can be as long as 1 to 1 and a half feet in length). Gray foxes rarely exceed 11 or 12 pounds and are often much smaller. Coloration among fox greatly varies, and it is not always a sure bet that a red colored fox is indeed a “red fox” and a gray colored fox is indeed a “gray fox. The one sure way to tell them apart is the white tip of a red fox’s tail. Gray Fox (Urocyon cinereoargentus) Red Fox (Vulpes vulpes) Regardless of which fox both prefer diverse habitats, including fields, woods, shrubby cover, farmland or other. Both species readily adapt to urban and suburban areas. Foxes are primarily nocturnal in urban areas but this is more an accommodation in avoiding other wildlife and humans. Just because you may see it during the day doesn’t necessarily mean it’s sick. Sometimes red fox will exhibit a brazenness that is so overt as to be disarming. A homeowner hanging laundry may watch a fox walk through the yard, going about its business, seemingly oblivious to the human nearby.
    [Show full text]
  • Mammalia, Carnivora) from the Blancan of Florida
    THREE NEW PROCYONIDS (MAMMALIA, CARNIVORA) FROM THE BLANCAN OF FLORIDA Laura G. Emmert1,2 and Rachel A. Short1,3 ABSTRACT Fossils of the mammalian family Procyonidae are relatively abundant at many fossil localities in Florida. Analysis of specimens from 16 late Blancan localities from peninsular Florida demonstrate the presence of two species of Procyon and one species of Nasua. Procyon gipsoni sp. nov. is slightly larger than extant Procyon lotor and is distinguished by five dental characters including a lack of a crista between the para- cone and hypocone on the P4, absence of a basin at the lingual intersection of the hypocone and protocone on the P4, and a reduced metaconule on the M1. Procyon megalokolos sp. nov. is significantly larger than extant P. lotor and is characterized primarily by morphology of the postcrania, such as an expanded and posteriorly rotated humeral medial epicondyle, more prominent tibial tuberosity, and more pronounced radioulnar notch. Other than larger size, the dentition of P. megalokolos falls within the range of variation observed in extant P. lotor, suggesting that it may be an early member of the P. lotor lineage. Nasua mast- odonta sp. nov. has a unique accessory cusp on the m1 as well as multiple morphological differences in the dentition and postcrania, such as close appression of the trigonid of the m1 and a less expanded medial epicondyle of the humerus. We also synonymize Procyon rexroadensis, formerly the only known Blancan Procyon species in North America, with P. lotor due to a lack of distinct dental morphological features observed in specimens from its type locality in Kansas.
    [Show full text]
  • Mitochondrial Genomes of the United States Distribution
    fevo-09-666800 June 2, 2021 Time: 17:52 # 1 ORIGINAL RESEARCH published: 08 June 2021 doi: 10.3389/fevo.2021.666800 Mitochondrial Genomes of the United States Distribution of Gray Fox (Urocyon cinereoargenteus) Reveal a Major Phylogeographic Break at the Great Plains Suture Zone Edited by: Fernando Marques Quintela, Dawn M. Reding1*, Susette Castañeda-Rico2,3,4, Sabrina Shirazi2†, Taxa Mundi Institute, Brazil Courtney A. Hofman2†, Imogene A. Cancellare5, Stacey L. Lance6, Jeff Beringer7, 8 2,3 Reviewed by: William R. Clark and Jesus E. Maldonado Terrence C. Demos, 1 Department of Biology, Luther College, Decorah, IA, United States, 2 Center for Conservation Genomics, Smithsonian Field Museum of Natural History, Conservation Biology Institute, National Zoological Park, Washington, DC, United States, 3 Department of Biology, George United States Mason University, Fairfax, VA, United States, 4 Smithsonian-Mason School of Conservation, Front Royal, VA, United States, Ligia Tchaicka, 5 Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, United States, 6 Savannah River State University of Maranhão, Brazil Ecology Laboratory, University of Georgia, Aiken, SC, United States, 7 Missouri Department of Conservation, Columbia, MO, *Correspondence: United States, 8 Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States Dawn M. Reding [email protected] We examined phylogeographic structure in gray fox (Urocyon cinereoargenteus) across † Present address: Sabrina Shirazi, the United States to identify the location of secondary contact zone(s) between eastern Department of Ecology and and western lineages and investigate the possibility of additional cryptic intraspecific Evolutionary Biology, University of California Santa Cruz, Santa Cruz, divergences.
    [Show full text]
  • Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
    Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult).
    [Show full text]
  • FOXES: Captive Rearing Considerations & Natural History
    captive REARING of foxes Elisa Fosco Director of Animal Care Walden’s Puddle, Wildlife Center of Greater Nashville CANIDAE FAMILY Includes wolves, jackals, and dogs ◼ Carnassial teeth 8 genera of fox ◼ 27 species Gray (Urocyon cinereoargenteus) and Red (Vulpes vulpes) found in North America RED FOX (vulpes vulpes) “Cat-like canid” Widespread, naturally occurring in 4 continents Many variations in coat color Adapts well to urban environments Mainly carnivorous, consuming invertebrates and rodents GRAY FOX (Urocyon cinereoargenteus) Among most primitive of canids Found only in North and South America Monogamous 1 of 2 canids capable of tree climbing, also good swimmers Omnivorous, consuming more vegetable matter than red fox HABITAT SELECTION RED GRAY Highly adaptable to Gray foxes are more urban environments seclusive than reds Prefers farmland, and Prefer thicker forested wooded lots with open and partially open fields brush Do NOT prefer rural landscapes BREEDING Dens are used during breeding season ◼ Crevices in rock, groundhog burrows, hollow trees, etc. Gestation: ~53 days Average litter size: 4-5 Related females co-parent NEONATE IDENTIFICATION: RED FOX White tail tip!! ◼ Identifying characteristic Charcoal fur at birth ◼ Stockings not distinguishable in first couple weeks Black elliptical pupils NEONATE IDENTIFICATION: GRAY FOX Russet patches behind ears Black stripe on dorsal surface of tail Black tail tip Fox rehabilitation Reasons for Admission: Mange HBC Gunshot Viral issues 2° Rodenticide toxicity Orphaned ◼ likely due to the above FOX MANGE Sarcoptes scabeii ◼ Mite More common in red foxes Most often treated with Ivermectin, Selemectin or Bravecto™ Standard mange treatment may also includes aggressive fluid therapy for rehydration and wound management as needed Mange is also commonly seen in coyotes, raccoons and squirrels.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Raccoons Procyon Lotor
    Raccoons Procyon lotor The raccoon, (Procyon lotor), is closely related to the dog and the bear families although its disposition resembles that of a small bear. Characteristic features include short, pointed ears: a long, pointed snout; and greyish-brown, long fur covering the body. The raccoon's most distinguishing features are the black masks around the eyes and the black rings around the long, bushy tail. A raccoon may be two to three feet or more long and weigh between 15 and 30 pounds when mature. Raccoons are excellent climbers and have very dexterous fore paws. They are primarily nocturnal creatures but occasionally venture out in the daytime particularly toward evening. During the fall and winter months (November through March), they may den-up in their home quarters during the coldest periods. This is not true hibernation, as the raccoons will wander out during warm spells. Reproduction Raccoons breed in late winter or early spring. The gestation period is 63 days. Females produce one litter per year ranging in size from three to six young (kits). The litter is born in a sheltered den, usually a hollow log, tree or rock crevice. Raccoons are sociable animals in their family group. After two months of age the young accompany the mother on excursions for food and may travel several miles. Family groups remain intact for about a year. Distribution and Habitat Raccoons are very common throughout Connecticut and the northeastern United States. Color shadings in the fur may vary according to age, sex and range area. They inhabit a wide range of habitats, but prefer mature woodlands along streams, ponds, wetlands and marshes.
    [Show full text]
  • EUPHAUSIIDS in the GULF of CALIFORNIA-THE 1957 CRUISES Calcofi Rep., Vol
    BRINTON AND TOWNSEND: EUPHAUSIIDS IN THE GULF OF CALIFORNIA-THE 1957 CRUISES CalCOFI Rep., Vol. XXI, 1980 EUPHAUSIIDS IN THE GULF OF CALIFORNIA-THE 1957 CRUISES E. BRINTON AND A.W. TOWNSEND Marine Life Research Group Scripps institution of Oceanography La Jolla. CA 92093 ABSTRACT las especies y de sus etapas de vida, en particular las de Euphasiid crustaceans in the Gulf of California were las larvas mas juveniles, se describen en relacion con las examined from four bimonthly CalCOFI grid cruises variaciones estacionales en el flujo y las temperaturas de during February through August of 1957. Of the nine las aguas del Golfo. species found to regularly inhabit the Gulf, Nematoscelis dificilis and Nyctiphanes simplex are common to the INTRODUCTION warm-temperate California Current. These have the The Gulf of California is inhabited by dense stocks of broadest ranges in the Gulf, peaking in abundance and plankton (Osario-Tafall 1946; Zeitzschel 1969). This reproducing maximally during February-April and Feb- appendix of the North Pacific Ocean communicates. ruary-June respectively, before intense August heating with the 'eastern boundary circulation at the northern limit takes place in the Gulf. Euphausia eximia, a species of the eastern tropical Pacific, which is characterized by having high densities at zones considered marginal to the its distinctive oxygen-deficient layer. The 1 000-km axis eastern tropical Pacific, also varies little in range during of the Gulf extends from the mouth at the tropic, 23"27'N, the year, consistently occupying the southern half of the to latitude 32"N, which is within the belt of the warm- Gulf.
    [Show full text]
  • Home-Range and Habitat Selection by Adult Cougars in Southern California
    HOME-RANGE AND HABITAT SELECTION BY ADULT COUGARS IN SOUTHERN CALIFORNIA BRETT G. DICKSON,1,2School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA PAUL BEIER, School of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA Abstract:Understanding the impact of habitat fragmentation, roads, and other anthropogenic influences on cougars (Puma concolor) requires quantitative assessment of habitat selection at multiple scales. We calculated annu- al and multiyear home ranges using a fixed-kernel (FK) estimator of home range for 13adult female and 2adult male radiotagged cougars that were monitored October 1986through December 1992in the Santa Ana Mountain Range of southern California, USA. Using compositional analysis, we assessed diurnal use of vegetation types and areas near roads at 2orders of selection (second- and third-order; Johnson 1980). Mean annual and multiyear 85% FK home ranges for males were larger than those reported by previous studies in California. Mean wet-season 85% FK home ranges were significantly larger than those of the dry season. At both scales of selection and across sea- sons, cougars preferred riparian habitats and avoided human-dominated habitats. Grasslands were the most avoid- ed natural vegetation type at both scales of selection. Although cougar home ranges tended to be located away from high- and low-speed 2-lane paved roads (second-order avoidance), cougars did not avoid roads within their home range, especially when roads were in preferred riparian areas. Protection of habitat mosaics that include unroaded riparian areas is critical to the conservation of this cougar population. JOURNAL OF WILDLIFE MANAGEMENT 6640):1235–1245 Key words:California, compositional analysis, cougar, fixed-kernel home range, habitat selection, home range, Puma concolor, riparian, roads, scale, vegetation.
    [Show full text]