Detroit Lake

Total Page:16

File Type:pdf, Size:1020Kb

Detroit Lake Detroit Lake Marion/Linn County Willamette/Sandy Basin Location Area 3,580 acres (1,448.8 hect) Elevation 1,569 ft (478.2 m) Type reservoir Use multipurpose Location 46 miles southeast of Salem Access adjacent to Ore Hw y 22 USGS Quad Detroit (24K), North Santiam River (100K) Coordinates 44˚ 43' 17" N, 122˚ 14' 55" W USPLSS tow nship 10S, range 05E, section 07 Detroit Lake is a large storage reservoir on the North Fork of the Santiam River, one of 13 multipurpose, water resource projects in the Willamette River basin constructed and operated by the U. S. Army Corps of Engineers. The project became operational in 1953, at the same time as Big Cliff Lake, a reregulating reservoir (surge basin) immediately downstream from Detroit Lake. Detroit Lake was intended primarily for flood control and power generation, but the large reservoir has become one of the major recreation resources in western Oregon. Nearly half a million people visit each year, most of them coming during the busy summer months when high water levels are maintained. It is a beautiful, nine-mile long impoundment Source: Oregon Department of Transportation, no date. View looking south. which twists its way through the western slopes of the Cascade Mountains below Mt. Jefferson. Three main arms branch off the main stem, and the flooded tributaries reach deeply ` Drainage Basin Characteristics into the mountainous and forested terrain. Shoreline slopes are quite steep and, as a result, very little land around the lake is suited for development. There are several patches of private Area 423.0 sq mi (1,095.6 sq km) Relief steep Precip 65-120 in (165-305 cm ) land on these slopes. The town of Detroit, from which Detroit Lake derives its name (many Agriculture Michigan people have lived in the area), lies on the shoreline where the Breitenbush River Land Forest Range Water Irrig Non Irrig Urban Other joins the lake. Us e % 96.3 0.2 1.6 - - 0.1 1.9 Note s Other - Rock outcrops The lower portion of the drainage basin consists of andesite lava flows mixed with ash beds, Lake Morphometry M axim um Average all deeply incised and dissected by stream action. Some slope failure has occurred in parts of Area 3,580.0 acres (1,448.8 hect) Depth 440 ft (134.1 m) 121ft (36.9 M) the basin but turbidity has not been a problem as in some other area reservoirs (for example, Ave/Max Depth Ratio 0.280 Volume 455,000 acre ft (562.06 cu hm ) Hills Creek Lake). A granitic intrusion, a fairly uncommon rock type for this part of the state, Shoal area 5% Volum e factor 1.10 Shape factor 4.10 crops up by Detroit Dam. It is a mass of andesitic magma that did not reach the surface and Length of Shoreline 35.5 mi (57.1 km) Retention tim e 3 mo cooled more slowly at depth. Possibly it represents the core of an old volcano that fed the Notes Area, volume, and depth from U.S. Army Corps of Engineers surrounding volcanoes during the buildup of the Cascades about 25 million years ago. Most of the large drainage basin is covered with a coniferous forest managed by the Willamette W ater Quality National Forest. Douglas fir is the dominant species in the lower portion of the drainage Trophic status mesotrophic, no evidence of cultural enrichment basin, grading into hemlock and true firs at the higher elevations. Sam ple date 09/15/82 Tem p 64.9F (18.3C) Diss. Oxygen (m g/l) 9.5 Fishing leads the list of recreational activities at Detroit Lake, with an estimated 100,000 Transparency 18.4 ft (5.6 m) Phosp (mg/l) 0.017 Cholorophyl a (mg/l) 1.7 angling-days and a catch of 200,000 fish per year. About 85 percent of the catch is rainbow Alkalinity 14 Conductivity (umhos/cm) 34 pH - trout; these are stocked in large numbers by the Oregon Department of Fish and Wildlife, Major Na K Ca Mg Cl SO4 with legal-size and fingerlings added monthly in summer. Piety Knob, a large island rising Ions 2.2 0.5 3.5 1.0 0.6 0.2 450 feet from the center of the reservoir, is adjacent to a favorite trolling area. Brook trout, Notes - cutthroat trout, kokanee, and bullhead supplement the trout fishery, and chinook salmon have 11/07/82 51.8F (11.0C) occasionally been stocked. Since the 463-foot high concrete dam presents an effective barrier Sam ple date Tem p Diss. Oxygen (m g/l) - to migrating adult salmon and steelhead, these fish are intercepted six miles downstream at Transparency - Phosp (mg/l) 0.028 Cholorophyl a (mg/l) 2.9 7.1 Minto Station. Eggs are artificially fertilized here and taken upstream to Marion Forks Alkalinity 14 Conductivity (umhos/cm) 34 pH Hatchery, where the fingerlings are released. Unfortunately, the Minto facility has failed to Major Na K Ca Mg Cl SO4 attract sufficient numbers of chinook because of low-temperature hydropower releases from Ions 2.4 0.8 3.5 1.1 0.7 0.1 Notes - Detroit Lake which tend to hold water temperatures well below the optional temperature range for chinook migration (Larson 1980). Detroit Lake also receives some of the heaviest pleasure boating lake is mesotrophic or moderately productive. The concentration of phosphorus suggests that use in the state. Based on the total number of boating days estimated for 1975, this was the the lake is eutrophic; however, the lake is quite deep and the phosphorus in the third "most used" lake in the state, following coastal Tenmile Lake and Diamond Lake lake evidently does not stimulate eutrophic conditions. Overall, Detroit Lake is mesotrophic, (Frenkel 1975). Five boat ramps and two marinas help make it a very popular water-skiing although at the low end. There is no evidence of cultural enrichment from the high amount of spot. One campground, located on Piety Knob, can be reached only by boat. Three other recreational use. The phytoplankton is composed primarily of four algal species. campgrounds, including the large Detroit State Park on the north shore, provide over 200 tent Rhodomonas minuta was always dominant in the samples collected in 1982; its occurrence is and trailer spots around the lake. Two marinas in town offer boat rentals, moorage, and other not associated with any particular trophic state. Fragilaria crotonensis, and to a lesser extent accommodations. Anabaena, are common, and both indicate mesotrophic to eutrophic conditions. Cryptomonas erosa does not indicate any trophic state, as it is equally common in oligotrophic to eutrophic The water level in Detroit Lake varies throughout the year, a pattern typical of other storage lakes. The total phytoplankton densities are typical of mesotrophic lakes. impoundments in the Willamette Valley. It is a response to seasonal patterns of precipitation and'runoff, and also to downstream requirements and power demands. From 1 December until 31 January, which is the major flood period, the volume of water is about one-half the maximum to allow for storage of flood waters. During late winter and spring, surface runoff fills the reservoir to near capacity, except during drier years. Until August, it is kept at a fairly constant high level, coincident with the recreation season. August through November is the season during which the water is gradually drawn back down to the minimum flood control elevation. This minimum level is 100 feet below full pool elevation and the surface area of the lake is about one-half of the area at full pool. In fall, the released water is used primarily for power production, and two generator units provide 100 megawatts of peak electrical output. Detroit Lake develops a pronounced thermal stratification with surface water as warm as 68 degrees Fahrenheit (20 degrees Celsius) in the summer, whereas water temperature below 100 feet does not exceed 50 degrees Fahrenheit (10 degrees Celsius). Major ion concentrations arelow, as is characteristic of Cascade reservoirs, and oxygen is near saturation at all depths. Chlorophyl concentrations and water transparency indicate that the 70 Atlas of Oregon Lakes Source: US Forest Service, 1974. Vertical photograph. Photo Captions 1. Detroit Lake 2. Big Cliff Lake 3. Dam 4. Oregon Hwy. 22 5. Detroit (town) Lake Reports 71 .
Recommended publications
  • A History of the Kokanee in Detroit Reservoir J. J
    A HISTORY OF THE KOKANEE IN DETROIT RESERVOIR By J. J. Wetherbee, District Fishery Biologist Data on trapping and spawning by: W. C. Wingfield, Superintendent, Roaring River Hatchery Scale analysis by: F. H. Sumner, Scale analyst, Oregon Game Commission 1965 TABLE OF CONTENTS Page I. Introduction 1 II. Environment and Food Habits 1 III. Stocking 4 IV. Sport Fishery 5 V. Spawning Runs 7 VI. Egg-Take Operation 10 VII. Spawning Habits and Propagation 16 VIII. Age and Growth 19 IX. Future Outlook for Kokanee Populations in Detroit Reservoir 21 X. Considerations for Future Management of Kokanee 22 I INTRODUCTION Kokanee were originally stocked in Detroit Reservoir in 11959. This species was introduced in hopes that it would utilize pelagiczoo plankton and provide a more varied sport fishery. The trout fishery in the reservoir depends primarily on heavy plants of legal-sized rainbow trout, supplemented by stocking fingerling rainbow. As the introduction of the kokanee has been somewhat successful in this fluctuating impoundment, a compilation of all known biologi- cal data would be of interest and aid in the future management of this species. II ENVIRONMENT AND FOOD HABITS Detroit is a multi-purpose reservoir maintained by the Corps of Engineers and contains 3,580 surfaceacres at full pool and 1,250 acres at minimum pool. Elevation is 1,569 feet at full pool. An annual drawdown of about 1)40 feet is usually accomplished by December 1. The reservoir is normally maintained at full pool from May to SepteMber. As Detroit is subjected to extreme fluctuations and is character- ized by a steeply sloping shoreline, it cannot be classedas a productive water.
    [Show full text]
  • An Evaluation of Spring Chinook Salmon Reintroductions Above Detroit Dam, North Santiam River, Using Genetic Pedigree Analysis P
    AN EVALUATION OF SPRING CHINOOK SALMON REINTRODUCTIONS ABOVE DETROIT DAM, NORTH SANTIAM RIVER, USING GENETIC PEDIGREE ANALYSIS Prepared for: U. S. ARMY CORPS OF ENGINEERS PORTLAND DISTRICT – WILLAMETTE VALLEY PROJECT 333 SW First Ave. Portland, Oregon 97204 Prepared by: Kathleen G. O’Malley1, Melissa L. Evans1, Marc A. Johnson1,2, Dave Jacobson1, and Michael Hogansen2 1Oregon State University Department of Fisheries and Wildlife Coastal Oregon Marine Experiment Station Hatfield Marine Science Center 2030 SE Marine Science Drive Newport, Oregon 97365 2Oregon Department of Fish and Wildlife Upper Willamette Research, Monitoring, and Evaluation Corvallis Research Laboratory 28655 Highway 34 Corvallis, Oregon 97333 SUMMARY For approximately two decades, hatchery-origin (HOR) spring Chinook salmon have been released (“outplanted”) above Detroit Dam on the North Santiam River. Here we used genetic parentage analysis to evaluate the contribution of salmon outplants to subsequent natural-origin (NOR) salmon recruitment to the river. Despite sampling limitations encountered during several years of the study, we were able to determine that most NOR salmon sampled in 2013 (59%) and 2014 (66%) were progeny of outplanted salmon. We were also able to estimate fitness, a cohort replacement rate (CRR), and the effective number of breeders (Nb) for salmon outplanted above Detroit Dam in 2009. On average, female fitness was ~5× (2.72:0.52 progeny) that of males and fitness was highly variable among individuals (range: 0-20 progeny). It is likely that the highly skewed male:female sex ratio (~6:1) among outplanted salmon limited reproductive opportunities for males in 2009. The CRR was 1.07, as estimated from female replacement.
    [Show full text]
  • Analyzing Dam Feasibility in the Willamette River Watershed
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Spring 6-8-2017 Analyzing Dam Feasibility in the Willamette River Watershed Alexander Cameron Nagel Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geography Commons, Hydrology Commons, and the Water Resource Management Commons Let us know how access to this document benefits ou.y Recommended Citation Nagel, Alexander Cameron, "Analyzing Dam Feasibility in the Willamette River Watershed" (2017). Dissertations and Theses. Paper 4012. https://doi.org/10.15760/etd.5896 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Analyzing Dam Feasibility in the Willamette River Watershed by Alexander Cameron Nagel A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geography Thesis Committee: Heejun Chang, Chair Geoffrey Duh Paul Loikith Portland State University 2017 i Abstract This study conducts a dam-scale cost versus benefit analysis in order to explore the feasibility of each the 13 U.S. Army Corps of Engineers (USACE) commissioned dams in Oregon’s Willamette River network. Constructed between 1941 and 1969, these structures function in collaboration to comprise the Willamette River Basin Reservoir System (WRBRS). The motivation for this project derives from a growing awareness of the biophysical impacts that dam structures can have on riparian habitats. This project compares each of the 13 dams being assessed, to prioritize their level of utility within the system.
    [Show full text]
  • Simulations of a Hypothetical Temperature Control Structure at Detroit Dam on the North Santiam River, Northwestern Oregon
    Prepared in cooperation with the U.S. Army Corps of Engineers Simulations of a Hypothetical Temperature Control Structure at Detroit Dam on the North Santiam River, Northwestern Oregon Open-File Report 2015–1012 U.S. Department of the Interior U.S. Geological Survey Simulations of a Hypothetical Temperature Control Structure at Detroit Dam on the North Santiam River, Northwestern Oregon By Norman L. Buccola, Adam J. Stonewall, and Stewart A. Rounds Prepared in cooperation with the U.S. Army Corps of Engineers Open-File Report 2015–1012 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Buccola, N.L., Stonewall, A.J., and Rounds, S.A., 2015, Simulations of a hypothetical temperature control structure at Detroit Dam on the North Santiam River, northwestern Oregon: U.S.
    [Show full text]
  • Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon
    Prepared in cooperation with the City of Salem, Oregon Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon Scientific Investigations Report 2007-5008 U.S. Department of the Interior U.S. Geological Survey Front Cover: Photograph of Detroit Lake and Piety Island, looking east. (Photograph by Mark Uhrich, U.S. Geological Survey, September 29, 2004.) Insets from left to right: Inset 1: Photograph showing aerial view of Detroit Dam, taken from just west of the dam. (Photograph from U.S. Army Corps of Engineers, July 11, 1990.) Inset 2: Photograph showing Breitenbush River storm inflow to Detroit Lake, looking west. (Photograph by Heather Bragg, U.S. Geological Survey, April 14, 2002.) Inset 3: Photograph showing Breitenbush River inflow to Detroit Lake, looking west. (Photograph by Heather Bragg, U.S. Geological Survey, November 7, 2006.) Back Cover: View of Mt. Jefferson over Detroit Lake, looking east. (Photograph by David Piatt, U.S. Geological Survey, July 4, 2004.) Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon By Annett B. Sullivan, Stewart A. Rounds, Steven Sobieszczyk, and Heather M. Bragg Prepared in cooperation with the City of Salem, Oregon Scientific Investigations Report 2007–5008 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Monitoring and Evaluation Report Willamette National Forest Fiscal Year 2011
    AUGUST 2011 United States Department of Agriculture Monitoring and Forest Service Evaluation Report Pacific Northwest Region Willamette National Forest Fiscal Year 2011 Ames Creek, Sweet Home, Oregon i AUGUST 2011 ii AUGUST 2011 Welcome to the 2011 Willamette National Forest annual Monitoring and Evaluation report. This is our 23th year implementing the 1990 Willamette National Forest Plan, and this report is intended to give you an update on the services and products we provide. Our professionals monitor a wide variety of forest resources and have summarized their findings for your review. As I reviewed the Forest Plan Monitoring Report I got an opportunity to see the work our specialists are doing in one place and I can’t help but share my appreciation with what the Willamette’s resource specialists are accomplishing. I am overwhelmed by the effort our professionals are doing to get the work done and complete necessary monitoring under declining budgets. Our specialists have entered into partnerships, written grants, and managed volunteers in addition to working with numerous local and federal agencies. We are in the community and hope you enjoying the forests. I invite you to read this year’s report and contact myself or my staff with any questions, ideas, or concerns you may have. I appreciate your continued interest in the Willamette National Forest. Sincerely, MEG MITCHELL Forest Supervisor Willamette National Forest r6-will-009-11 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual's income is derived from any public assistance program.
    [Show full text]
  • Preliminary Study of the Water-Temperature Regime of the North Santiam River Downstream from Detroit and Big Cliff Dams, Oregon
    PRELIMINARY STUDY OF THE WATER-TEMPERATURE REGIME OF THE NORTH SANTIAM RIVER DOWNSTREAM FROM DETROIT AND BIG CLIFF DAMS, OREGON By Antonius Laenen and R. Peder Hansen U.S. GEOLOGICAL SURVEY WATER-RESOURCES INVESTIGATIONS REPORT 84-4105 Prepared in cooperation with the U.S. ARMY CORPS OF ENGINEERS PORTLAND,OREGON 1985 UNITED STATES DEPARTMENT OF THE INTERIOR DONALD PAUL MODEL, SECRETARY GEOLOGICAL SURVEY Dallas L. Peck, Director For additional Information write to: Copies of this report can U.S. Geological Survey, WRD be purchased from: 847 N.E. 19th Ave., Suite 300 Portland, Oregon 97232 Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, Colorado 80225 (Telephone:(303) 776-7476) CONTENTS Page Abstract 1 Introduction 1 Problems 3 Objective 3 Approach 5 Physical setting 5 Geography 5 Climate 6 Reservoir 6 Data network 8 Existing long-term stations 8 Additional sites 8 Field surveys 9 Temperature model 9 Convection-diffusion equation 11 Dispersion term 11 Surface-exchange term 12 Model segmentation 15 Calibration/verification 15 Sensitivity 19 Accuracy 22 Ana I yses 25 Simulation of various temperature releases, August 30 to September 2, 1982 25 Simulation of various temperature releases, March 29 to April 1, 1983 29 Simulation of nonreservoir conditions 29 Results 29 Summary and conclusions 35 Future studies 35 Selected references 36 Supplemental data 37 ILLUSTRATIONS Page Figure 1. Map showing the Wlllamette River basin, principal rivers and reservoirs, and study area 2 2. Map showing location of data-col lection network 4 3. Schematic diagram of the computational scheme for the Lagranglan reference-frame model 10 4.
    [Show full text]
  • Environmental Flows Workshop for the Santiam River Basin, Oregon
    SUMMARY REPORT: Environmental Flows Workshop for the Santiam River Basin, Oregon January 2013 North Santiam River downstream from Detroit Lake near Niagara at about river mile 57. Photograph by Casey Lovato, U.S. Geological Survey, June 2011. Leslie Bach Jason Nuckols Emilie Blevins THE NATURE CONSERVANCY IN OREGON 821 SE 14TH AVENUE PORTLAND, OREGON 97214 nature.org/oregon 1 This page is intentionally left blank. 2 Summary Report: Environmental Flows Workshop for the Santiam River Basin, Oregon Contents Introduction 4 Background 4 Santiam River 5 Environmental Flow Workshop 6 Workshop Results 10 Fall Flows 10 Winter Flows 11 Spring Flows 12 Summer Flows 14 Flow Recommendations by Reach 16 Recommendations for Future Studies 20 References Cited 22 Appendix A. Workshop Agenda 23 Appendix B. List of workshop attendees 24 3 Introduction Background The Willamette River and its tributaries support a rich diversity of aquatic flora and fauna, including important runs of salmon and steelhead. The river is also home to the majority of Oregon’s population and provides vital goods and services to the region and beyond. The U.S. Army Corps of Engineers (USACE) operates 13 dams in the Willamette Basin - 11 multiple purpose storage reservoirs and 2 regulating reservoirs. All 13 of the dams are located on major tributaries; there are no USACE dams on the mainstem Willamette River. The dams provide important benefits to society, including flood risk reduction, hydropower and recreation. At the same time, the dams have changed the flow conditions in the river with associated effects on ecosystem processes and native fish and wildlife.
    [Show full text]
  • Final Report
    Willamette Basin Annual Water Quality Report for 2015 Detroit Reservoir at Low Elevation (1202 feet) on November 6, due to 2015 Drought, North Santiam River, Oregon Final Report Page intentionally left blank Final Report, July 2016 i Table Of Contents 1.0 Executive Summary ................................................................................................................ 10 2.0 Introduction and Purpose ........................................................................................................ 12 3.0 Water Quality related Achievements ...................................................................................... 14 3.1 Corps Achievements in Meeting CWA-TMDL and EPA-BiOp Recommendations: ............. 14 4.0 Willamette Project Background .............................................................................................. 15 5.0 Description of the 2015 Water Year ....................................................................................... 19 5.1 Willamette Basin Hydrology .................................................................................................. 19 5.2 Willamette Mainstem Conditions ........................................................................................... 21 6.0 North Santiam Subbasin.......................................................................................................... 25 6.1 Water Quality Improvement Measures Conducted in 2015 .................................................... 25 6.2 Water Quality Monitoring and Results
    [Show full text]
  • Insights on the Hydrologic Impacts of Large Dams in Oregon.Pdf
    Dams in Oregon: impacts, opportunities and future directions Rose Wallick Chauncey Anderson, Stewart Rounds, Mackenzie Keith, Krista Jones USGS Oregon Water Science Center U.S. Department of the Interior U.S. Geological Survey Dams in Oregon Dam Height More than 1,100 dams in state dam inventory 48 dams more than 100ft tall 10 dams more than 300 ft tall Cougar Dam is tallest – 519 ft Overview Purpose and environmental impacts of dams Strategies to address impacts . Removal, infrastructure modifications, operations Science insights from USGS studies Future directions U.S. has more than 87,000 documented dams Source: National Inventory of Dams, ttp://nid.usace.army.mil/ Detroit Dam, completed 1953, 463 ft Dams built perdecade Damsbuilt After Doyle et al. (2003) Cougar Dam, completed 1963, 519 ft Photographs courtesy USACE Purpose of dams Dams provide: . Hydropower . Flood control . Water storage . Navigation Middle Fork Willamette, USGS photo . Recreation . Other benefits Detroit Lake, Photo courtesy: https://www.detroitlakeoregon.org/ Environmental impacts of dams . Alter river flows, water temperature, water quality, trap sediment, carbon, nutrients in reservoirs . Block fish passage . Change ecosystems above and below dams . Support conditions that can lead to harmful algae blooms Cougar Reservoir, South Fork McKenzie, USGS photo Middle Fork Willamette River below Dexter Dam, USGS photo Motivating factors for removing, upgrading or re-operating dams Examples include: • Dams age, expensive to maintain safely • Facilities may not work as
    [Show full text]
  • Detroit Lake and Big Cliff Lake, Oregon
    Public Information: Project Data U.S. Army Corps of Engineers Detroit Lake and Portland District Big Cliff Lake, Detroit P.O. Box 2946 Measure Metric Portland, Oregon 97208-2946 US Army Corps Oregon Dam http://www.nwp.usace.army.mil of Engineers R Length 1,523.5 ft 464.5 m Phone: 503-808-4510 Portland District Height 463 ft 141.1 m 2009 Elevation (NGVD*) 1,580 ft 481 m Total kilowatt capacity 100,000 kw TO ENJOY A SAFE OUTING Lake OBSERVE THESE SAFETY TIPS Length 9 mi 14.4 km Area when full 3,500 ac 1,432 ha BOATING Wear a personal flotation device (PFD), and observe Big Cliff posted boating speeds at all times. Measure Metric Dam Docks at Detroit lake WATER SKIING Length 280 ft 85.3 m Have two people in the tow boat, one to drive and one Height 191 ft 58.2 m to watch the skier. Avoid skiing near swimmers and Detroit and Big Cliff lakes are located 43 miles southeast of Salem Elevation (NGVD*) 1,212 ft 369 m fishermen. ALWAYS wear a life jacket when skiing and on the North Fork of the Santiam River. They are operated by the Total kilowatt capacity 18,000 kw NEVER ski after dusk. Corps of Engineers as part of a system of thirteen multi-purpose dams and reservoirs that make up the Willamette Valley Project. Lake Length 2.8 mi 4.5 km FISHING These dams and reservoirs work together for the purposes of flood Stay clear of boat channels and swimming areas.
    [Show full text]
  • North Santiam Subbasin Fish Operations Plan 2018 Chapter 2
    North Santiam Subbasin Fish Operations Plan 2018 Chapter 2 – North Santiam Subbasin Table of Contents 1. NORTH SANTIAM SUB-BASIN OVERVIEW ......................................................................................... 1 2. FACILITIES ........................................................................................................................................ 5 2.1. Detroit Dam ..................................................................................................................................... 6 2.2. Big Cliff Dam .................................................................................................................................. 6 2.3. Minto Fish Facility ........................................................................................................................... 7 3. DAM OPERATIONS ............................................................................................................................ 7 3.1. Flow Management ........................................................................................................................... 7 3.2. Downstream Fish Passage ................................................................................................................ 9 3.3. Water Quality Management ............................................................................................................. 9 3.4. Spill Management .........................................................................................................................
    [Show full text]