10 | Fixed-Axis Rotation 475 10 | FIXED-AXIS ROTATION
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rotational Motion (The Dynamics of a Rigid Body)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates. -
Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File
SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S. Department of Energy - Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File Q1'2015 Q1'2014 State MW CF CF Arizona 227 15.8% 21.0% California 5,182 13.2% 19.8% Colorado 2,299 36.4% 40.9% Hawaii 171 21.0% 18.3% Iowa 4,977 40.8% 44.4% Idaho 532 28.3% 42.0% Illinois 3,524 38.0% 42.3% Indiana 1,537 32.6% 29.8% Kansas 2,898 41.0% 46.5% Massachusetts 29 41.7% 52.4% Maryland 120 38.6% 37.6% Maine 401 40.1% 36.3% Michigan 1,374 37.9% 36.7% Minnesota 2,440 42.4% 45.5% Missouri 454 29.3% 35.5% Montana 605 46.4% 43.5% North Dakota 1,767 42.8% 49.8% Nebraska 518 49.4% 53.2% New Hampshire 147 36.7% 34.6% New Mexico 773 23.1% 40.8% Nevada 152 22.1% 22.0% New York 1,712 33.5% 32.8% Ohio 403 37.6% 41.7% Oklahoma 3,158 36.2% 45.1% Oregon 3,044 15.3% 23.7% Pennsylvania 1,278 39.2% 40.0% South Dakota 779 47.4% 50.4% Tennessee 29 22.2% 26.4% Texas 12,308 27.5% 37.7% Utah 306 16.5% 24.2% Vermont 109 39.1% 33.1% Washington 2,724 20.6% 29.5% Wisconsin 608 33.4% 38.7% West Virginia 583 37.8% 38.0% Wyoming 1,340 39.3% 52.2% Total 58,507 31.6% 37.7% SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S. -
The Rotation Group in Plate Tectonics and the Representation of Uncertainties of Plate Reconstructions
Geophys. J. In?. (1990) 101, 649-661 The rotation group in plate tectonics and the representation of uncertainties of plate reconstructions T. Chang’ J. Stock2 and P. Molnar3 ‘Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903-3199, USA ‘Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA ’Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Accepted 1989 December 27. Received 1989 December 27; in original form 1989 August 11 Downloaded from SUMMARY The calculation of the uncertainty in an estimated rotation requires a parametriza- tion of the rotation group; that is, a unique mapping of the rotation group to a point in 3-D Euclidean space, R3. Numerous parametrizations of a rotation exist, http://gji.oxfordjournals.org/ including: (1) the latitude and longitude of the axis of rotation and the angle of rotation; (2) a representation as a Cartesian vector with length equal to the rotation angle and direction parallel to the rotation axis; (3) Euler angles; or (4) unit length quaternions (or, equivalently, Cayley-Klein parameters). The uncertainty in a rotation is determined by the effect of nearby rotations on the rotated data. The uncertainty in a rotation is small, if rotations close to the best fitting rotation degrade the fit of the data by a large amount, and it is large, if only rotations differing by a large amount cause such a degradation. Ideally, we would at California Institute of Technology on August 29, 2014 like to parametrize the rotations in such a way so that their representation as points in R3 would have the property that the distance between two points in R3 reflects the effects of the corresponding rotations on the fit of the data. -
Influence of Angular Velocity of Pedaling on the Accuracy of The
Research article 2018-04-10 - Rev08 Influence of Angular Velocity of Pedaling on the Accuracy of the Measurement of Cyclist Power Abstract Almost all cycling power meters currently available on the The miscalculation may be—even significantly—greater than we market are positioned on rotating parts of the bicycle (pedals, found in our study, for the following reasons: crank arms, spider, bottom bracket/hub) and, regardless of • the test was limited to only 5 cyclists: there is no technical and construction differences, all calculate power on doubt other cyclists may have styles of pedaling with the basis of two physical quantities: torque and angular velocity greater variations of angular velocity; (or rotational speed – cadence). Both these measures vary only 2 indoor trainer models were considered: other during the 360 degrees of each revolution. • models may produce greater errors; The torque / force value is usually measured many times during slopes greater than 5% (the only value tested) may each rotation, while the angular velocity variation is commonly • lead to less uniform rotations and consequently neglected, considering only its average value for each greater errors. revolution (cadence). It should be noted that the error observed in this analysis This, however, introduces an unpredictable error into the power occurs because to measure power the power meter considers calculation. To use the average value of angular velocity means the average angular velocity of each rotation. In power meters to consider each pedal revolution as perfectly smooth and that use this type of calculation, this error must therefore be uniform: but this type of pedal revolution does not exist in added to the accuracy stated by the manufacturer. -
PHYSICS of ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3
Chapter 2 PHYSICS OF ARTIFICIAL GRAVITY Angie Bukley1, William Paloski,2 and Gilles Clément1,3 1 Ohio University, Athens, Ohio, USA 2 NASA Johnson Space Center, Houston, Texas, USA 3 Centre National de la Recherche Scientifique, Toulouse, France This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented. Figure 2-01. Artist's concept of one of NASA early (1962) concepts for a manned space station with artificial gravity: a self- inflating 22-m-diameter rotating hexagon. Photo courtesy of NASA. 1 ARTIFICIAL GRAVITY: WHAT IS IT? 1.1 Definition Artificial gravity is defined in this book as the simulation of gravitational forces aboard a space vehicle in free fall (in orbit) or in transit to another planet. Throughout this book, the term artificial gravity is reserved for a spinning spacecraft or a centrifuge within the spacecraft such that a gravity-like force results. One should understand that artificial gravity is not gravity at all. Rather, it is an inertial force that is indistinguishable from normal gravity experience on Earth in terms of its action on any mass. A centrifugal force proportional to the mass that is being accelerated centripetally in a rotating device is experienced rather than a gravitational pull. -
Low Power Energy Harvesting and Storage Techniques from Ambient Human Powered Energy Sources
University of Northern Iowa UNI ScholarWorks Dissertations and Theses @ UNI Student Work 2008 Low power energy harvesting and storage techniques from ambient human powered energy sources Faruk Yildiz University of Northern Iowa Copyright ©2008 Faruk Yildiz Follow this and additional works at: https://scholarworks.uni.edu/etd Part of the Power and Energy Commons Let us know how access to this document benefits ouy Recommended Citation Yildiz, Faruk, "Low power energy harvesting and storage techniques from ambient human powered energy sources" (2008). Dissertations and Theses @ UNI. 500. https://scholarworks.uni.edu/etd/500 This Open Access Dissertation is brought to you for free and open access by the Student Work at UNI ScholarWorks. It has been accepted for inclusion in Dissertations and Theses @ UNI by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. LOW POWER ENERGY HARVESTING AND STORAGE TECHNIQUES FROM AMBIENT HUMAN POWERED ENERGY SOURCES. A Dissertation Submitted In Partial Fulfillment of the Requirements for the Degree Doctor of Industrial Technology Approved: Dr. Mohammed Fahmy, Chair Dr. Recayi Pecen, Co-Chair Dr. Sue A Joseph, Committee Member Dr. John T. Fecik, Committee Member Dr. Andrew R Gilpin, Committee Member Dr. Ayhan Zora, Committee Member Faruk Yildiz University of Northern Iowa August 2008 UMI Number: 3321009 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. -
Basement Flood Mitigation
1 Mitigation refers to measures taken now to reduce losses in the future. How can homeowners and renters protect themselves and their property from a devastating loss? 2 There are a range of possible causes for basement flooding and some potential remedies. Many of these low-cost options can be factored into a family’s budget and accomplished over the several months that precede storm season. 3 There are four ways water gets into your basement: Through the drainage system, known as the sump. Backing up through the sewer lines under the house. Seeping through cracks in the walls and floor. Through windows and doors, called overland flooding. 4 Gutters can play a huge role in keeping basements dry and foundations stable. Water damage caused by clogged gutters can be severe. Install gutters and downspouts. Repair them as the need arises. Keep them free of debris. 5 Channel and disperse water away from the home by lengthening the run of downspouts with rigid or flexible extensions. Prevent interior intrusion through windows and replace weather stripping as needed. 6 Many varieties of sturdy window well covers are available, simple to install and hinged for easy access. Wells should be constructed with gravel bottoms to promote drainage. Remove organic growth to permit sunlight and ventilation. 7 Berms and barriers can help water slope away from the home. The berm’s slope should be about 1 inch per foot and extend for at least 10 feet. It is important to note permits are required any time a homeowner alters the elevation of the property. -
Energy Harvesting from Rotating Structures
ENERGY HARVESTING FROM ROTATING STRUCTURES Tzern T. Toh, A. Bansal, G. Hong, Paul D. Mitcheson, Andrew S. Holmes, Eric M. Yeatman Department of Electrical & Electronic Engineering, Imperial College London, U.K. Abstract: In this paper, we analyze and demonstrate a novel rotational energy harvesting generator using gravitational torque. The electro-mechanical behavior of the generator is presented, alongside experimental results from an implementation based on a conventional DC motor. The off-axis performance is also modeled. Designs for adaptive power processing circuitry for optimal power harvesting are presented, using SPICE simulations. Key Words: energy-harvesting, rotational generator, adaptive generator, double pendulum 1. INTRODUCTION with ω the angular rotation rate of the host. Energy harvesting from moving structures has been a topic of much research, particularly for applications in powering wireless sensors [1]. Most motion energy harvesters are inertial, drawing power from the relative motion between an oscillating proof mass and the frame from which it is suspended [2]. For many important applications, including tire pressure sensing and condition monitoring of machinery, the host structure undergoes continuous rotation; in these Fig. 1: Schematic of the gravitational torque cases, previous energy harvesters have typically generator. IA is the armature current and KE is the been driven by the associated vibration. In this motor constant. paper we show that rotational motion can be used directly to harvest power, and that conventional Previously we reported initial experimental rotating machines can be easily adapted to this results for this device, and circuit simulations purpose. based on a buck-boost converter [3]. In this paper All mechanical to electrical transducers rely on we consider a Flyback power conversion circuit, the relative motion of two generator sections. -
Simple Harmonic Motion
[SHIVOK SP211] October 30, 2015 CH 15 Simple Harmonic Motion I. Oscillatory motion A. Motion which is periodic in time, that is, motion that repeats itself in time. B. Examples: 1. Power line oscillates when the wind blows past it 2. Earthquake oscillations move buildings C. Sometimes the oscillations are so severe, that the system exhibiting oscillations break apart. 1. Tacoma Narrows Bridge Collapse "Gallopin' Gertie" a) http://www.youtube.com/watch?v=j‐zczJXSxnw II. Simple Harmonic Motion A. http://www.youtube.com/watch?v=__2YND93ofE Watch the video in your spare time. This professor is my teaching Idol. B. In the figure below snapshots of a simple oscillatory system is shown. A particle repeatedly moves back and forth about the point x=0. Page 1 [SHIVOK SP211] October 30, 2015 C. The time taken for one complete oscillation is the period, T. In the time of one T, the system travels from x=+x , to –x , and then back to m m its original position x . m D. The velocity vector arrows are scaled to indicate the magnitude of the speed of the system at different times. At x=±x , the velocity is m zero. E. Frequency of oscillation is the number of oscillations that are completed in each second. 1. The symbol for frequency is f, and the SI unit is the hertz (abbreviated as Hz). 2. It follows that F. Any motion that repeats itself is periodic or harmonic. G. If the motion is a sinusoidal function of time, it is called simple harmonic motion (SHM). -
Rotational Piezoelectric Energy Harvesting: a Comprehensive Review on Excitation Elements, Designs, and Performances
energies Review Rotational Piezoelectric Energy Harvesting: A Comprehensive Review on Excitation Elements, Designs, and Performances Haider Jaafar Chilabi 1,2,* , Hanim Salleh 3, Waleed Al-Ashtari 4, E. E. Supeni 1,* , Luqman Chuah Abdullah 1 , Azizan B. As’arry 1, Khairil Anas Md Rezali 1 and Mohammad Khairul Azwan 5 1 Department of Mechanical and Manufacturing, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Malaysia; [email protected] (L.C.A.); [email protected] (A.B.A.); [email protected] (K.A.M.R.) 2 Midland Refineries Company (MRC), Ministry of Oil, Baghdad 10022, Iraq 3 Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang 43000, Malaysia; [email protected] 4 Mechanical Engineering Department, College of Engineering University of Baghdad, Baghdad 10022, Iraq; [email protected] 5 Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-15 Uniten, Kajang 43000, Malaysia; [email protected] * Correspondence: [email protected] (H.J.C.); [email protected] (E.E.S.) Abstract: Rotational Piezoelectric Energy Harvesting (RPZTEH) is widely used due to mechanical rotational input power availability in industrial and natural environments. This paper reviews the recent studies and research in RPZTEH based on its excitation elements and design and their influence on performance. It presents different groups for comparison according to their mechanical Citation: Chilabi, H.J.; Salleh, H.; inputs and applications, such as fluid (air or water) movement, human motion, rotational vehicle tires, Al-Ashtari, W.; Supeni, E.E.; and other rotational operational principal including gears. The work emphasises the discussion of Abdullah, L.C.; As’arry, A.B.; Rezali, K.A.M.; Azwan, M.K. -
Hub City Powertorque® Shaft Mount Reducers
Hub City PowerTorque® Shaft Mount Reducers PowerTorque® Features and Description .................................................. G-2 PowerTorque Nomenclature ............................................................................................ G-4 Selection Instructions ................................................................................ G-5 Selection By Horsepower .......................................................................... G-7 Mechanical Ratings .................................................................................... G-12 ® Shaft Mount Reducers Dimensions ................................................................................................ G-14 Accessories ................................................................................................ G-15 Screw Conveyor Accessories ..................................................................... G-22 G For Additional Models of Shaft Mount Reducers See Hub City Engineering Manual Sections F & J DOWNLOAD AVAILABLE CAD MODELS AT: WWW.HUBCITYINC.COM Certified prints are available upon request EMAIL: [email protected] • www.hubcityinc.com G-1 Hub City PowerTorque® Shaft Mount Reducers Ten models available from 1/4 HP through 200 HP capacity Manufacturing Quality Manufactured to the highest quality 98.5% standards in the industry, assembled Efficiency using precision manufactured components made from top quality per Gear Stage! materials Designed for the toughest applications in the industry Housings High strength ductile -
Chapter 5 ANGULAR MOMENTUM and ROTATIONS
Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.