The Myth of the Fourth Industrial Revolution Ian Moll

Total Page:16

File Type:pdf, Size:1020Kb

The Myth of the Fourth Industrial Revolution Ian Moll The Myth of the Fourth Industrial Revolution Ian Moll Abstract: This article argues that there is no such phenomenon as a Fourth Industrial Revolution. It derives a framework for the analysis of any industrial revolution from a careful historical account of the arche- typal First Industrial Revolution. The suggested criteria for any socio- economic transformation to be considered an industrial revolution are that it must encompass a technological revolution; a transformation of the labour process; a fundamental change in workplace relations; new forms of community and social relationships; and global socio-economic transformations. These transformations indeed characterise the Second and Third Industrial Revolutions. The aggregate of technical innova- tions in the latter is carefully examined, because this is a crucial part of determining whether we can meaningfully claim that a Fourth Industrial Revolution is underway. The article demonstrates that we cannot. Keywords: Africa, colonisation, Fourth Industrial Revolution, informa- tion technology, labour process, social change, Third Industrial Revo- lution, workplace relations The Fourth Industrial Revolution (4IR) is all the rage these days. Enthusiasts point to an apparently staggering array of ‘new’ technol- ogies – usually digital – that sound smart and make us feel outdated and in awe of the future: technologies like blockchain, big data, artificial intelligence, the Internet of Things and fully autonomous killer robots. They declare that these technologies are converging in unprecedented ways, and predict changes that will transform every part of our lives. But are these dramatic new entrants really revolu- tionising our world in the way that we are told? Theoria, Issue 167, Vol. 68, No. 2 (June 2021): 1-38 © Author(s) doi:10.3167/th.2021.6816701 • ISSN 0040-5817 (Print) • ISSN 1558-5816 (Online) 2 Ian Moll The argument in this article is that a 4IR is not yet upon us, and that there is little evidence that it is on the horizon. A careful analysis of the First, Second and Third Industrial Revolutions will demonstrate that an industrial revolution encompasses a complex, mutually generative range of economic, social and political trans- formations. The First Industrial Revolution (1IR) was a period of fundamental, transcontinental change characterised by the complex conjunction of socio-economic practices and innovations. As the archetypal industrial revolution, it provides historians a framework of analysis that can be used to determine whether any period of substantial development can be considered to be an industrial revo- lution. The key features of the Second and Third Industrial Revolu- tions clearly meet the criteria in this framework, demonstrating that the socio-economic transformations that occurred during these peri- ods were, indeed, industrial revolutions. However, the argument here is that the same cannot be said about the alleged 4IR. Changes in the twenty-first century are generally the continued evolution of the Third Industrial Revolution (3IR). The First Industrial Revolution: 1760–1850 Two contrasting narratives of the 1IR predominate in the popular imagination.1 The first tells a triumphant story of Britain’s rise to prosperity and global dominance through rapid industrialisation and increased productivity made possible by a sudden explosion of technological innovation. It invokes the fantastical image of George Stephenson driving ‘Rocket’, the first operational steam locomo- tive, down a railway line through crowds of cheering, top-hatted men. In this story, the 1IR was ‘fundamentally a technological rev- olution [focused on] the sources of invention’ (Allen 2006: 2). The second narrative highlights the degradation of the working class and the appalling working and living conditions associated with the rise of large factories and crowded cities. In this picture, ‘an exploited and dispirited army of men, women and children is engaged for starvation wages in a seemingly endless round of drudgery . the sole beneficiary of their efforts is the grasping, tyrannical, licen- tious factory master’ (Bythell 1983: 17). The Myth of the Fourth Industrial Revolution 3 While both of these narratives are obviously oversimplified, together they capture the rise of the factory and the tension between the massively increased economic production and massively degraded social structures that characterised the 1IR. While tech- nological innovations contributed to this revolution, it was driven by socio-economic forces. The interaction between the economic, political, social and technological changes that took place during this period, locally and globally, brought about the kind of funda- mental and sustained transformation that historians term a ‘revolu- tion’. The dramatic rise of the merchant bourgeoisie underlies the over- turning of social and political norms during the 1IR. While political power in Britain up to the 1700s had been concentrated in the hands of a small, landed aristocracy driving a feudal economy, over sev- eral decades a system of proto-industries began developing which supplied goods to Britain’s rapidly expanding colonial markets. It was not the aristocracy that benefitted most from this ‘domestic cottage system’, however, but a rising class of increasingly wealthy merchants. As demand from British consumers and colonies in India, North America and the Caribbean increased, cottage industries simply could not make enough quickly enough. As large-scale factories arose to meet the demand of Britain’s global market, the cottage industries collapsed. Duncan Bythell (1983) notes that the same merchant-manufacturers who had profited from the organised cot- tage industry system turned their backs on it and became the new factory owners of the rising capitalist order. Enabling this industrial transformation was a fleet of technologi- cal innovations. Jeremy Greenwood (1999) notes that ‘for the econ- omy as a whole to switch from manual techniques to mechanised production required hundreds of inventors, thousands of innovat- ing entrepreneurs, and tens of thousands of mechanics, technicians, and dexterous rank and file workers’ (1999: 8). In 1871, James Watt’s innovative steam engine, which could be harnessed to power machines in factories, was an iconic invention of this period, as was Stephenson’s ‘Rocket’ in 1830. John Kay’s flying shuttle, James Hargreaves’ spinning jenny, Samuel Crompton’s spinning mule and other new machines dramatically increased productivity in the textile 4 Ian Moll industry: in 1800, for example, a cotton spinner could spin 200 times as much in a day as they could in 1700 (BBC n.d.). In America, Eli Whitney invented the cotton gin, a machine that separated cotton fibres from their seeds. Other technologies developed rapidly across industries – notably, machinery and metal-working procedures for factories (Greenwood 1999). Paul Kennedy proposes that ‘no earlier technological breakthroughs produced anything like the rise in out- put that flowed from the Industrial Revolution’ (1993: 8). However, this rapid development of the technologies of produc- tion brought with it the appalling labour processes characteristic of the 1IR factory. Kennedy describes the plight of British work- ers at the end of the eighteenth century: ‘Suffering under awful conditions in factories and mines, they were organised alongside their machines in a strict, time-driven system of labour unlike any- thing known previously’ (1993: 8). In contrast to work in the pre- industrial cottage system, factory workers lost autonomy in the work process. Children, too, often worked in the most exploitative conditions possible; they were paid the least and forced to work in the most dangerous situations (Humphries 2013). Friedrich Engels (1845) aptly summed up the workers’ plight thus: ‘The industrial revolution has simply carried this [the exploitation of workers] out to its logical end by making the workers machines pure and simple, taking from them the last trace of independent activity’. The clear hierarchy of workers and bosses – whose interests dif- fered fundamentally – became the crucible in which new social classes began to form. E. P. Thompson suggests that ‘the outstand- ing fact’ of the 1IR was the ‘formation of the working class’ (1963: 194). Bythell notes that ‘because ownership of these machines, of the building which houses them and the engine which drives them, rests with the private capitalist, there exists an unbridgeable gulf between him and his property-less, wage-earning employees’ (1983: 17–18). It is no wonder that the issues surrounding labour in the factories of the 1IR provided fertile ground for the rallying call of the Communist Manifesto in 1848: The modern bourgeois society that has sprouted from the ruins of feu- dal society has . simplified class antagonisms. Society as a whole is more and more splitting up into two great hostile camps, into two great classes directly facing each other – bourgeoisie and proletariat. (Marx and Engels 1848: 14–15) The Myth of the Fourth Industrial Revolution 5 Figure 1. Increase in Number of Families and Income per Capita for Three Classes in British Society: 1759–1846 (Statistics are from Allen 2019) Despite economic growth, this social cleavage permeated and consolidated itself in British society. As C. Grove Haines and Warren B. Walsh put it, ‘poverty stalked in the midst of plenty. While statistics revealed steadily mounting material welfare and the growth of national and per capita wealth, hundreds
Recommended publications
  • PROGRAMME V3 – 16 September 2019
    NATIONAL HIGHER EDUCATION CONFERENCE 2-4 October 2019 CSIR ICC, Pretoria Reinventing South Africa’s Universities for the Future UPDATED DRAFT PROGRAMME V3 – 16 September 2019 This programme is subject to further change and will be updated regularly WEDNESDAY 2 OCTOBER 2019 Pre-conference workshops 08:00 – 11:30 Student success (participation by invitation only) HELM (participation by invitation only) Conference 10:30 – 11:45 Registration Tea and coffee on arrival 12:00 – 12:15 Opening and welcome: Prof Thandwa Mthembu, Vice-Chancellor: Durban University of Technology and Venue Chairperson: Universities South Africa Board of Directors 12:15 – 13:00 Opening keynote address: Speaker to be confirmed. Venue 13:00 – 14:00 Lunch Venue 14:00 – 15:30 Session A Session B Session C Venue Venue Venue Ethics and integrity in research New Technologies and the Labour The production of Institutional Culture publishing Market (provisional) in South African Universities and the limits of transformation Speakers: Speaker: Speakers: Dr Molapo Qhobela, CEO: NRF Dr Surendra (Colin) Thakur, Director: Prof André Keet, Chair of Critical Studies Prof Stephanie Burton, Vice-Principal: NEMISA KZN e-Skills CoLab, Durban in Higher Education Transformation: Research and Postgraduate Education, University of Technology Nelson Mandela University University of Pretoria More speakers to be confirmed Prof Pamela Dube, Deputy Vice- Chancellor: Student Development and Support, University of the Western Cape Mr George Mvalo, Director: Social Justice and Transformation, Vaal
    [Show full text]
  • Creativity and Artificial Intelligence: a Digital Art Perspective Bo Xing And
    Creativity and Artificial Intelligence: A Digital Art Perspective Bo Xing and Tshilidzi Marwala University of Johannesburg PO Box 524, Auckland Park, 2006 Republic of South Africa [email protected] Abstract This paper describes the application of artificial intelligence (AI) to the creation of digital art. AI is a computational paradigm that codifies intelligence into machines. There are generally three types of AI and these are machine learning, evolutionary programming and soft computing. Machine learning is the statistical approach to building intelligent systems. Evolutionary programming is the use of natural evolutionary systems to design intelligent machines. Some of the evolutionary programming systems include genetic algorithm which is inspired by the principles of evolution and swarm optimization which is inspired by the swarming of birds, fish, ants etc. Soft computing includes techniques such as agent based modelling and fuzzy logic. Opportunities on the applications of these to digital art are explored. 1. Introduction In the age of the 4th Industrial Revolution (4IR) (Xing and Marwala, 2017), many countries (Shah et al., 2015; Ding and Li, 2015) are setting out an overarching goal of building/securing an “innovation-driven” economy. As innovation emphasizes the implementation of ideas, creativity is typically regarded as the first stage of innovation in which generating ideas becomes the dominant focus (Tang and Werner, 2017; Amabile, 1996; Mumford and Gustafson, 1988; Rank et al., 2004; West, 2002). In other words, if creativity is absent, innovation could be just luck. Though creativity can be generally understood as the capability of producing original and novel work or knowledge, the universal definition of creativity remains rather controversial, mainly due to its complex nature (Tang and Werner, 2017; Hernández-Romero, 2017).
    [Show full text]
  • Engineering Growth: Innovative Capacity and Development in the Americas∗
    Engineering Growth: Innovative Capacity and Development in the Americas∗ William F. Maloneyy Felipe Valencia Caicedoz July 1, 2016 Abstract This paper offers the first systematic historical evidence on the role of a central actor in modern growth theory- the engineer. We collect cross-country and state level data on the population share of engineers for the Americas, and county level data on engineering and patenting for the US during the Second Industrial Revolution. These are robustly correlated with income today after controlling for literacy, other types of higher order human capital (e.g. lawyers, physicians), demand side factors, and instrumenting engineering using the Land Grant Colleges program. We support these results with historical case studies from the US and Latin America. A one standard deviation increase in engineers in 1880 accounts for a 16% increase in US county income today, and patenting capacity contributes another 10%. Our estimates also help explain why countries with similar levels of income in 1900, but tenfold differences in engineers diverged in their growth trajectories over the next century. Keywords: Innovative Capacity, Human Capital, Engineers, Technology Diffusion, Patents, Growth, Development, History. JEL: O11,O30,N10,I23 ∗Corresponding author Email: [email protected]. We thank Ufuk Akcigit, David de la Croix, Leo Feler, Claudio Ferraz, Christian Fons-Rosen, Oded Galor, Steve Haber, Lakshmi Iyer, David Mayer- Foulkes, Stelios Michalopoulos, Guy Michaels, Petra Moser, Giacomo Ponzetto, Luis Serven, Andrei Shleifer, Moritz Shularick, Enrico Spolaore, Uwe Sunde, Bulent Unel, Nico Voigtl¨ander,Hans-Joachim Voth, Fabian Waldinger, David Weil and Gavin Wright for helpful discussions. We are grateful to William Kerr for making available the county level patent data.
    [Show full text]
  • Criminal Justice and the Technological Revolution Download The
    Criminal justice and the technological revolution COVID-19 has prompted a profound shift in the use of technology across justice systems internationally. The challenge today is how to build on and accelerate recent progress. Criminal justice and the technological revolution The journey towards a fully digitally-enabled criminal justice system is underway and the potential benefits are vast. The work yet to do is daunting, but the increased access to justice it could deliver is exciting. In this article, we set out some ways that digital and The impact of these changes still needs to be virtual justice can support service transformation evaluated, but this remains a profound shift. And in for victims, witnesses, people with convictions, and many cases, COVID-19 responses either accelerated or criminal justice professionals. We focus on the need to complemented longer-term initiatives to digitise large create a new digital ecosystem around current services parts of the criminal justice system. Our work shows and to target technology investments on the biggest that our focus geographies all have major programmes problems highlighted in our international research of technology-enabled change underway to digitise effort: and manage criminal case information through online platforms and to increase use of remote and virtual • Harnessing digital twin capabilities to reduce court working technologies. Many involve long-term billion- backlogs dollar investments and are among the most significant change programmes operating across governments. • Making virtual prisons a reality Digital and virtual justice at a crossroads • Supporting rehabilitation through virtual desistance The challenge today is how to build on and accelerate platforms recent progress.
    [Show full text]
  • Fourth Industrial Revolution, Challenge Accepted a Guide to Understanding Why Japan Is Set to Re-Own International Leadership in the ‘Era of Acceleration’
    J APAN Fourth Industrial Revolution, challenge accepted A guide to understanding why Japan is set to re-own international leadership in the ‘era of acceleration’ As the dominant force in global manufacturing in the 1970s and early 1980s, particularly in the consumer electronics industry, Japan became an economic juggernaut and a poster boy for technological innovation. However, what followed has since become commonly known Like any revolution, there will is already a pioneer – is expected to as the “Lost Decades”: a period of be winners and losers, so Japan, it grow at an annual rate of 12% to “Japan’s forte is in economic decline characterized by seems, couldn’t have timed its manu- reach $79.5bn by 2022. creating high-quality a loss of ground to manufacturing facturing comeback much better. On Yoshiharu Inaba, Chairman and authentic products” rivals in the Asian region and further the back of Prime Minister Shinzo CEO of FANUC – Japan’s leading exasperated by the global fnancial Abe’s eponymous ‘Abenomics’ strate- robotics company – believes the Kazuhiro Kashio, crisis in 2008. gy and Japanese industry’s great glo- signifcance of such growth will be President, CASIO The pendulum though has swung balization push, the country shipped historically monumental. once again, and this period in the run $645.2 billion worth of goods inter- “With the invention of steam en- up to 2020 – the year Japan will host nationally last year, up by 11.1% since gines, Britain’s industrial revolution ucts were synonymous with quality the Olympics – is being marked as 2009 when the economic recession boosted the effciency of manufac- and reliability, and the world knew the country’s great comeback to kicked in, and up 3.2% from 2015.
    [Show full text]
  • Spring Quarter 2019 – Undergraduate Course Offerings
    Spring Quarter 2019 – Undergraduate Course Offerings Courses with an asterisk (*) are open for Pre-registration. ANTHROPOLOGY ANTHRO 221-0 - Social and Health Inequalities 20 (32686) Thomas McDade - TuTh 2:00PM - 3:20PM *Income inequality in the U.S is expanding, while social inequalities in health remain large, and represent longstanding challenges to public health. This course will investigate trends in social and health inequality in the U.S., and their intersection, with attention to the broader global context as well. It will examine how social stratification by race/ethnicity, gender, marital status, national origin, sexual orientation, education, and/or other dimensions influence the health status of individuals, families, and populations; and, conversely, how health itself is thought to be a fundamental determinant of key social outcomes such as educational achievement and economic status. The course will draw on research from anthropology, sociology, psychology, economics, political science, social epidemiology, biomedicine, and evolutionary biology. ANTHRO 314-0 - Human Growth & Development 20 (32683) Erin Beth Waxenbaum Dennison - MoWe 9:30AM - 10:50AM *In this course, we will examine human growth and development. By its very nature, this topic is a bio cultural process that requires an integrated analysis of social construction and biological phenomena. To this end, we will incorporate insight from evolutionary ecology, developmental biology and psychology, human biology and cultural anthropology. Development is not a simple matter of biological unfolding from birth through adolescence; rather, it is a process that is designed to be in sync with the surrounding environment within which the organism develops. Additionally we will apply these bio cultural and socio-ecological insights to emerging health challenges associated with these developmental stages.
    [Show full text]
  • EDITORIAL BOARD THOUGHTS the Fourth Industrial Revolution Does It Pose an Existential Threat to Libraries? Brady Lund
    EDITORIAL BOARD THOUGHTS The Fourth Industrial Revolution Does It Pose an Existential Threat to Libraries? Brady Lund No. No, it does not. Not any more than any other technological innovation (information systems, personal computers, the Internet, e-readers, Google, Google Scholar) did. However, what is very likely is that the technologies that emerge from this era will slowly (but surely) lead to profound changes in how libraries operate. Those libraries that fail to understand or embrace these technologies may, in fact, be left behind. So, we must, as always, stay abreast of trends in emerging technologies and what the literature (i.e., articles in this journal) propose as ideas for adopting (and adapting) them to better serve our patrons. With this column, my aim is to briefly discuss what the fourth industrial revolution is and its relevance within our profession. THE “FOURTH” INDUSTRIAL REVOLUTION? The term “fourth industrial revolution” describes the evolution of information technology towards greater automation and interconnectedness. It includes or incorporates technological advancements such as artificial intelligence, blockchain, advanced robotics, the Internet of Things, autonomous vehicles, virtual reality, 3D printing, nanotechnology, and quantum computing.1 Imaginations can run amok with idyllic visions of Walt Disney’s EPCOT—a utopian world of interconnectedness and efficiency—or dystopian nightmares captured in the mind of Stephen King, George Orwell, or Pixar’s WALL-E. If we have learned anything from the past though—and after the last 12 months I cannot be entirely sure of that—it is that reality is likely to settle somewhere in the middle. Some things will improve dramatically in our lives but there will also be negative impacts—funding changes, learning curves, and maybe a bit of soul-searching within the profession (not that that last one is necessarily a bad thing).
    [Show full text]
  • Mental Strain As Field of Action in the 4Th Industrial Revolution
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 17 ( 2014 ) 100 – 105 Variety Management in Manufacturing. Proceedings of the 47th CIRP Conference on Manufacturing Systems Mental strain as field of action in the 4th industrial revolution Uwe DOMBROWSKI, Tobias WAGNER* Institute for Advanced Industrial Management (IFU), Technische Universität Braunschweig, Langer Kamp 19, 38106 Braunschweig * Corresponding author. Tel.: "+49 531 391-2725" ; Fax: +49 531 391-8237. E-mail address: [email protected] Abstract Industrial revolutions have changed the society by a development of key-technologies. The vision of the 4th industrial revolution is triggered by technological concepts and solutions to realize a combination of the economy of scale with the economy of scope. This aim is also known as mass customization and is characterized by handling a high level of complexity with a total network integration of products and production processes. These technology-driven changes also lead to new fields of activity in the industrial science and the occupational psychology. The 4th industrial revolution intends to implement the collaboration between humans and machines. At the same time, processes are locally controlled and planned. For humans, this results to new work items. Resulting psychological effects should be investigated. This paper classifies the 4th industrial revolution systematically and describes future changes for employees. It derives the necessity of labor- psychological analysis of new key technologies like cyber physical systems. A theoretical foundation of a psychological work requirement analysis by using the VERA method is given.
    [Show full text]
  • Object Detection Using Convolutional Neural Network Trained on Synthetic Images
    Master of Science Thesis in Electrical Engineering Department of Electrical Engineering, Linköping University, 2018 Object Detection Using Convolutional Neural Network Trained on Synthetic Images Margareta Vi Master of Science Thesis in Electrical Engineering Object Detection Using Convolutional Neural Network Trained on Synthetic Images Margareta Vi LiTH-ISY-EX--18/5180--SE Supervisor: Mikael Persson isy, Linköpings universitet Alexander Poole Company Examiner: Michael Felsberg isy, Linköpings universitet Computer Vision Laboratory Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2018 Margareta Vi Abstract Training data is the bottleneck for training Convolutional Neural Networks. A larger dataset gives better accuracy though also needs longer training time. It is shown by finetuning neural networks on synthetic rendered images, that the mean average precision increases. This method was applied to two different datasets with five distinctive objects in each. The first dataset consisted of ran- dom objects with different geometric shapes. The second dataset contained ob- jects used to assemble IKEA furniture. The neural network with the best perfor- mance, trained on 5400 images, achieved a mean average precision of 0:81 on a test which was a sample of a video sequence. Analysis of the impact of the factors dataset size, batch size, and numbers of epochs used in training and dif- ferent network architectures were done. Using synthetic images to train CNN’s is a promising path to take for object detection where access to large amount of annotated image data is hard to come by. iii Acknowledgments I would like to thank my supervisor at my company Alexander Poole, for always being helpful and coming with interesting ideas.
    [Show full text]
  • Previous Awardees
    LIFETIME ACHIEVEMENT Dr Bernard Fanaroff CHAMPION OF RESEARCH CAPACITY DEVELOPMENT AND TRANSFORMATION AT SOUTH AFRICAN HIGHER EDUCATION INSTITUTIONS Professor Faizal Bux HAMILTON NAKI Professor Edmund February EXCELLENCE IN SCIENCE ENGAGEMENT Dr Rehana Malgas-Enus RESEARCH EXCELLENCE FOR NEXT GENERATION RESEARCHERS Mrs Natalie Benjamin-Damons Mr Edward Netherlands RESEARCH EXCELLENCE FOR EARLY CAREER / EMERGING RESEARCHERS Professor Tricia Naicker Dr Mohlopheni Marakalala LIFETIME ACHIEVEMENT Professor Brian O’Connell CHAMPION OF RESEARCH CAPACITY DEVELOPMENT AND TRANSFORMATION AT SOUTH AFRICAN HIGHER EDUCATION INSTITUTIONS Professor Diane Hildebrandt HAMILTON NAKI Professor Lungisile Ntsebeza EXCELLENCE IN SCIENCE ENGAGEMENT Dr Tiisetso Lephoto RESEARCH EXCELLENCE FOR NEXT GENERATION RESEARCHERS Ms Shakira Choonara Dr Lukhanyo Mekuto RESEARCH EXCELLENCE FOR EARLY CAREER / EMERGING RESEARCHERS Professor Nicole Falkof Dr Musa Manzi SCIENCE TEAM Professor Bongani Mayosi and the UCT / Grootte Schuur Cardiovascular Genetics Laboratory LIFETIME ACHIEVEMENT Professor Chabani Manganyi CHAMPION OF RESEARCH CAPACITY DEVELOPMENT AND TRANSFORMATION AT SOUTH AFRICAN HIGHER EDUCATION INSTITUTIONS Professor José Frantz HAMILTON NAKI Professor Lerothodi Leeuw EXCELLENCE IN SCIENCE ENGAGEMENT Professor Lee Berger RESEARCH EXCELLENCE FOR NEXT GENERATION RESEARCHERS Dr Pragashnie Govender Mr Sooraj Baijnath RESEARCH EXCELLENCE FOR EARLY CAREER / EMERGING RESEARCHERS Professor Nosipho Moloto Professor Mark Engel LIFETIME ACHIEVEMENT Professor Michael Feast
    [Show full text]
  • Technology, Labor, and Mechanized Bodies in Victorian Culture
    Syracuse University SURFACE English - Dissertations College of Arts and Sciences 12-2012 The Body Machinic: Technology, Labor, and Mechanized Bodies in Victorian Culture Jessica Kuskey Syracuse University Follow this and additional works at: https://surface.syr.edu/eng_etd Part of the English Language and Literature Commons Recommended Citation Kuskey, Jessica, "The Body Machinic: Technology, Labor, and Mechanized Bodies in Victorian Culture" (2012). English - Dissertations. 62. https://surface.syr.edu/eng_etd/62 This Dissertation is brought to you for free and open access by the College of Arts and Sciences at SURFACE. It has been accepted for inclusion in English - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. ABSTRACT While recent scholarship focuses on the fluidity or dissolution of the boundary between body and machine, “The Body Machinic” historicizes the emergence of the categories of “human” and “mechanical” labor. Beginning with nineteenth-century debates about the mechanized labor process, these categories became defined in opposition to each other, providing the ideological foundation for a dichotomy that continues to structure thinking about our relation to technology. These perspectives are polarized into technophobic fears of dehumanization and machines “taking over,” or technological determinist celebrations of new technologies as improvements to human life, offering the tempting promise of maximizing human efficiency. “The Body Machinic” argues that both sides to this dichotomy function to mask the ways the apparent body-machine relation is always the product of human social relations that become embedded in the technologies of the labor process. Chapter 1 identifies the emergence of this dichotomy in the 1830s “Factory Question” debates: while critics of the factory system described workers as tools appended to monstrous, living machines, apologists claimed large-scale industrial machinery relieved human toil by replicating the laboring body in structure and function.
    [Show full text]
  • The Cottage Industry
    The Cottage Industry • The Cottage Industry – A family or small group of workers made products from their homes to sell, usually just to earn extra money (not to make a living). Before the Industrial Revolution, this was how products were manufactured. – Merchants (business people) delivered materials to the house – The workers in the house turned the materials into a product to be sold – The merchants returned to collect the product and pay the workers. – The merchants sold the product in other markets. The Cottage Industry The Cottage Industry • Modern Examples: – www.etsy.com – Fredericton Farmers Market – http://www.youtube.com/watch?v=i5UbII_Q0_c – http://www.youtube.com/watch?v=C7vElymyRDQ &feature=related The Factory System • The Factory System – Machines did work that was once done by hand. Workers were paid to operate the machines. – Faster – Cheaper – One machine could do the work of 50 or more people. – Machines were powered by coal, steam or water. The Factory System Cottage Industry Factory System Source of Power Hand Machines Place of Production In the home In the factories Scale of Production Small Scale Large Scale (Large-scale? Small-scale?) Cost of finished product Expensive Cheap Production Capacity Few Many How much could be made? Worker Safety Safe Dangerous Skill Requirements of Must be very skilled to Little or no skill required to Labourers craft products operate machines Speed of producing one Slow. One product made at Very fast. Multiple item a time. products made at once. Cottage vs. Factory Cottage Factory Hand-made products Machine-made products One person makes one One person makes one whole product part of a product Made in the home Made in a factory Expensive to produce Cheap to produce Time consuming Fast Review Slip • Answer the following question: – Why was the Factory System better for England’s economy than the Cottage Industry? .
    [Show full text]