Orthogonal Matrices and Diagonalization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diagonalizing a Matrix
Diagonalizing a Matrix Definition 1. We say that two square matrices A and B are similar provided there exists an invertible matrix P so that . 2. We say a matrix A is diagonalizable if it is similar to a diagonal matrix. Example 1. The matrices and are similar matrices since . We conclude that is diagonalizable. 2. The matrices and are similar matrices since . After we have developed some additional theory, we will be able to conclude that the matrices and are not diagonalizable. Theorem Suppose A, B and C are square matrices. (1) A is similar to A. (2) If A is similar to B, then B is similar to A. (3) If A is similar to B and if B is similar to C, then A is similar to C. Proof of (3) Since A is similar to B, there exists an invertible matrix P so that . Also, since B is similar to C, there exists an invertible matrix R so that . Now, and so A is similar to C. Thus, “A is similar to B” is an equivalence relation. Theorem If A is similar to B, then A and B have the same eigenvalues. Proof Since A is similar to B, there exists an invertible matrix P so that . Now, Since A and B have the same characteristic equation, they have the same eigenvalues. > Example Find the eigenvalues for . Solution Since is similar to the diagonal matrix , they have the same eigenvalues. Because the eigenvalues of an upper (or lower) triangular matrix are the entries on the main diagonal, we see that the eigenvalues for , and, hence, are . -
Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases
Week 11 Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 11.1 Opening Remarks 11.1.1 Low Rank Approximation * View at edX 463 Week 11. Orthogonal Projection, Low Rank Approximation, and Orthogonal Bases 464 11.1.2 Outline 11.1. Opening Remarks..................................... 463 11.1.1. Low Rank Approximation............................. 463 11.1.2. Outline....................................... 464 11.1.3. What You Will Learn................................ 465 11.2. Projecting a Vector onto a Subspace........................... 466 11.2.1. Component in the Direction of ............................ 466 11.2.2. An Application: Rank-1 Approximation...................... 470 11.2.3. Projection onto a Subspace............................. 474 11.2.4. An Application: Rank-2 Approximation...................... 476 11.2.5. An Application: Rank-k Approximation...................... 478 11.3. Orthonormal Bases.................................... 481 11.3.1. The Unit Basis Vectors, Again........................... 481 11.3.2. Orthonormal Vectors................................ 482 11.3.3. Orthogonal Bases.................................. 485 11.3.4. Orthogonal Bases (Alternative Explanation).................... 488 11.3.5. The QR Factorization................................ 492 11.3.6. Solving the Linear Least-Squares Problem via QR Factorization......... 493 11.3.7. The QR Factorization (Again)........................... 494 11.4. Change of Basis...................................... 498 11.4.1. The Unit Basis Vectors, -
Orthogonal Bases and the -So in Section 4.8 We Discussed the Problem of Finding the Orthogonal Projection P
Orthogonal Bases and the -So In Section 4.8 we discussed the problemR. of finding the orthogonal projection p the vector b into the V of , . , suhspace the vectors , v2 ho If v1 v,, form a for V, and the in x n matrix A has these basis vectors as its column vectors. ilt the orthogonal projection p is given by p = Ax where x is the (unique) solution of the normal system ATAx = A7b. The formula for p takes an especially simple and attractive Form when the ba vectors , . .. , v1 v are mutually orthogonal. DEFINITION Orthogonal Basis An orthogonal basis for the suhspacc V of R” is a basis consisting of vectors , ,v,, that are mutually orthogonal, so that v v = 0 if I j. If in additii these basis vectors are unit vectors, so that v1 . = I for i = 1. 2 n, thct the orthogonal basis is called an orthonormal basis. Example 1 The vectors = (1, 1,0), v2 = (1, —1,2), v3 = (—1,1,1) form an orthogonal basis for . We “normalize” ‘ R3 can this orthogonal basis 1w viding each basis vector by its length: If w1=—- (1=1,2,3), lvii 4.9 Orthogonal Bases and the Gram-Schmidt Algorithm 295 then the vectors /1 I 1 /1 1 ‘\ 1 2” / I w1 0) W2 = —— _z) W3 for . form an orthonormal basis R3 , . ..., v, of the m x ii matrix A Now suppose that the column vectors v v2 form an orthogonal basis for the suhspacc V of R’. Then V}.VI 0 0 v2.v .. -
MATH 2370, Practice Problems
MATH 2370, Practice Problems Kiumars Kaveh Problem: Prove that an n × n complex matrix A is diagonalizable if and only if there is a basis consisting of eigenvectors of A. Problem: Let A : V ! W be a one-to-one linear map between two finite dimensional vector spaces V and W . Show that the dual map A0 : W 0 ! V 0 is surjective. Problem: Determine if the curve 2 2 2 f(x; y) 2 R j x + y + xy = 10g is an ellipse or hyperbola or union of two lines. Problem: Show that if a nilpotent matrix is diagonalizable then it is the zero matrix. Problem: Let P be a permutation matrix. Show that P is diagonalizable. Show that if λ is an eigenvalue of P then for some integer m > 0 we have λm = 1 (i.e. λ is an m-th root of unity). Hint: Note that P m = I for some integer m > 0. Problem: Show that if λ is an eigenvector of an orthogonal matrix A then jλj = 1. n Problem: Take a vector v 2 R and let H be the hyperplane orthogonal n n to v. Let R : R ! R be the reflection with respect to a hyperplane H. Prove that R is a diagonalizable linear map. Problem: Prove that if λ1; λ2 are distinct eigenvalues of a complex matrix A then the intersection of the generalized eigenspaces Eλ1 and Eλ2 is zero (this is part of the Spectral Theorem). 1 Problem: Let H = (hij) be a 2 × 2 Hermitian matrix. Use the Min- imax Principle to show that if λ1 ≤ λ2 are the eigenvalues of H then λ1 ≤ h11 ≤ λ2. -
3.3 Diagonalization
3.3 Diagonalization −4 1 1 1 Let A = 0 1. Then 0 1 and 0 1 are eigenvectors of A, with corresponding @ 4 −4 A @ 2 A @ −2 A eigenvalues −2 and −6 respectively (check). This means −4 1 1 1 −4 1 1 1 0 1 0 1 = −2 0 1 ; 0 1 0 1 = −6 0 1 : @ 4 −4 A @ 2 A @ 2 A @ 4 −4 A @ −2 A @ −2 A Thus −4 1 1 1 1 1 −2 −6 0 1 0 1 = 0−2 0 1 − 6 0 11 = 0 1 @ 4 −4 A @ 2 −2 A @ @ −2 A @ −2 AA @ −4 12 A We have −4 1 1 1 1 1 −2 0 0 1 0 1 = 0 1 0 1 @ 4 −4 A @ 2 −2 A @ 2 −2 A @ 0 −6 A 1 1 (Think about this). Thus AE = ED where E = 0 1 has the eigenvectors of A as @ 2 −2 A −2 0 columns and D = 0 1 is the diagonal matrix having the eigenvalues of A on the @ 0 −6 A main diagonal, in the order in which their corresponding eigenvectors appear as columns of E. Definition 3.3.1 A n × n matrix is A diagonal if all of its non-zero entries are located on its main diagonal, i.e. if Aij = 0 whenever i =6 j. Diagonal matrices are particularly easy to handle computationally. If A and B are diagonal n × n matrices then the product AB is obtained from A and B by simply multiplying entries in corresponding positions along the diagonal, and AB = BA. -
R'kj.Oti-1). (3) the Object of the Present Article Is to Make This Estimate Effective
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 259, Number 2, June 1980 EFFECTIVE p-ADIC BOUNDS FOR SOLUTIONS OF HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY B. DWORK AND P. ROBBA Dedicated to K. Iwasawa Abstract. We consider a finite set of power series in one variable with coefficients in a field of characteristic zero having a chosen nonarchimedean valuation. We study the growth of these series near the boundary of their common "open" disk of convergence. Our results are definitive when the wronskian is bounded. The main application involves local solutions of ordinary linear differential equations with analytic coefficients. The effective determination of the common radius of conver- gence remains open (and is not treated here). Let K be an algebraically closed field of characteristic zero complete under a nonarchimedean valuation with residue class field of characteristic p. Let D = d/dx L = D"+Cn_lD'-l+ ■ ■■ +C0 (1) be a linear differential operator with coefficients meromorphic in some neighbor- hood of the origin. Let u = a0 + a,jc + . (2) be a power series solution of L which converges in an open (/>-adic) disk of radius r. Our object is to describe the asymptotic behavior of \a,\rs as s —*oo. In a series of articles we have shown that subject to certain restrictions we may conclude that r'KJ.Oti-1). (3) The object of the present article is to make this estimate effective. At the same time we greatly simplify, and generalize, our best previous results [12] for the noneffective form. Our previous work was based on the notion of a generic disk together with a condition for reducibility of differential operators with unbounded solutions [4, Theorem 4]. -
Math 2331 – Linear Algebra 6.2 Orthogonal Sets
6.2 Orthogonal Sets Math 2331 { Linear Algebra 6.2 Orthogonal Sets Jiwen He Department of Mathematics, University of Houston [email protected] math.uh.edu/∼jiwenhe/math2331 Jiwen He, University of Houston Math 2331, Linear Algebra 1 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix 6.2 Orthogonal Sets Orthogonal Sets: Examples Orthogonal Sets: Theorem Orthogonal Basis: Examples Orthogonal Basis: Theorem Orthogonal Projections Orthonormal Sets Orthonormal Matrix: Examples Orthonormal Matrix: Theorems Jiwen He, University of Houston Math 2331, Linear Algebra 2 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets Orthogonal Sets n A set of vectors fu1; u2;:::; upg in R is called an orthogonal set if ui · uj = 0 whenever i 6= j. Example 82 3 2 3 2 39 < 1 1 0 = Is 4 −1 5 ; 4 1 5 ; 4 0 5 an orthogonal set? : 0 0 1 ; Solution: Label the vectors u1; u2; and u3 respectively. Then u1 · u2 = u1 · u3 = u2 · u3 = Therefore, fu1; u2; u3g is an orthogonal set. Jiwen He, University of Houston Math 2331, Linear Algebra 3 / 12 6.2 Orthogonal Sets Orthogonal Sets Basis Projection Orthonormal Matrix Orthogonal Sets: Theorem Theorem (4) Suppose S = fu1; u2;:::; upg is an orthogonal set of nonzero n vectors in R and W =spanfu1; u2;:::; upg. Then S is a linearly independent set and is therefore a basis for W . Partial Proof: Suppose c1u1 + c2u2 + ··· + cpup = 0 (c1u1 + c2u2 + ··· + cpup) · = 0· (c1u1) · u1 + (c2u2) · u1 + ··· + (cpup) · u1 = 0 c1 (u1 · u1) + c2 (u2 · u1) + ··· + cp (up · u1) = 0 c1 (u1 · u1) = 0 Since u1 6= 0, u1 · u1 > 0 which means c1 = : In a similar manner, c2,:::,cp can be shown to by all 0. -
CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n. -
Section 5 Summary
Section 5 summary Brian Krummel November 4, 2019 1 Terminology Eigenvalue Eigenvector Eigenspace Characteristic polynomial Characteristic equation Similar matrices Similarity transformation Diagonalizable Matrix of a linear transformation relative to a basis System of differential equations Solution to a system of differential equations Solution set of a system of differential equations Fundamental solutions Initial value problem Trajectory Decoupled system of differential equations Repeller / source Attractor / sink Saddle point Spiral point Ellipse trajectory 1 2 How to find eigenvalues, eigenvectors, and a similar ma- trix 1. First we find eigenvalues of A by finding the roots of the characteristic equation det(A − λI) = 0: Note that if A is upper triangular (or lower triangular), then the eigenvalues λ of A are just the diagonal entries of A and the multiplicity of each eigenvalue λ is the number of times λ appears as a diagonal entry of A. 2. For each eigenvalue λ, find a basis of eigenvectors corresponding to the eigenvalue λ by row reducing A − λI and find the solution to (A − λI)x = 0 in vector parametric form. Note that for a general n × n matrix A and any eigenvalue λ of A, dim(Eigenspace corresp. to λ) = # free variables of (A − λI) ≤ algebraic multiplicity of λ. 3. Assuming A has only real eigenvalues, check if A is diagonalizable. If A has n distinct eigenvalues, then A is definitely diagonalizable. More generally, if dim(Eigenspace corresp. to λ) = algebraic multiplicity of λ for each eigenvalue λ of A, then A is diagonalizable and Rn has a basis consisting of n eigenvectors of A. -
Diagonalizable Matrix - Wikipedia, the Free Encyclopedia
Diagonalizable matrix - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Matrix_diagonalization Diagonalizable matrix From Wikipedia, the free encyclopedia (Redirected from Matrix diagonalization) In linear algebra, a square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix P such that P −1AP is a diagonal matrix. If V is a finite-dimensional vector space, then a linear map T : V → V is called diagonalizable if there exists a basis of V with respect to which T is represented by a diagonal matrix. Diagonalization is the process of finding a corresponding diagonal matrix for a diagonalizable matrix or linear map.[1] A square matrix which is not diagonalizable is called defective. Diagonalizable matrices and maps are of interest because diagonal matrices are especially easy to handle: their eigenvalues and eigenvectors are known and one can raise a diagonal matrix to a power by simply raising the diagonal entries to that same power. Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor in each direction, determined by the scale factors on each axis (diagonal entries). Contents 1 Characterisation 2 Diagonalization 3 Simultaneous diagonalization 4 Examples 4.1 Diagonalizable matrices 4.2 Matrices that are not diagonalizable 4.3 How to diagonalize a matrix 4.3.1 Alternative Method 5 An application 5.1 Particular application 6 Quantum mechanical application 7 See also 8 Notes 9 References 10 External links Characterisation The fundamental fact about diagonalizable maps and matrices is expressed by the following: An n-by-n matrix A over the field F is diagonalizable if and only if the sum of the dimensions of its eigenspaces is equal to n, which is the case if and only if there exists a basis of Fn consisting of eigenvectors of A. -
EIGENVALUES and EIGENVECTORS 1. Diagonalizable Linear Transformations and Matrices Recall, a Matrix, D, Is Diagonal If It Is
EIGENVALUES AND EIGENVECTORS 1. Diagonalizable linear transformations and matrices Recall, a matrix, D, is diagonal if it is square and the only non-zero entries are on the diagonal. This is equivalent to D~ei = λi~ei where here ~ei are the standard n n vector and the λi are the diagonal entries. A linear transformation, T : R ! R , is n diagonalizable if there is a basis B of R so that [T ]B is diagonal. This means [T ] is n×n similar to the diagonal matrix [T ]B. Similarly, a matrix A 2 R is diagonalizable if it is similar to some diagonal matrix D. To diagonalize a linear transformation is to find a basis B so that [T ]B is diagonal. To diagonalize a square matrix is to find an invertible S so that S−1AS = D is diagonal. Fix a matrix A 2 Rn×n We say a vector ~v 2 Rn is an eigenvector if (1) ~v 6= 0. (2) A~v = λ~v for some scalar λ 2 R. The scalar λ is the eigenvalue associated to ~v or just an eigenvalue of A. Geo- metrically, A~v is parallel to ~v and the eigenvalue, λ. counts the stretching factor. Another way to think about this is that the line L := span(~v) is left invariant by multiplication by A. n An eigenbasis of A is a basis, B = (~v1; : : : ;~vn) of R so that each ~vi is an eigenvector of A. Theorem 1.1. The matrix A is diagonalizable if and only if there is an eigenbasis of A. -
Math 1553 Introduction to Linear Algebra
Announcements Monday, November 5 I The third midterm is on Friday, November 16. I That is one week from this Friday. I The exam covers xx4.5, 5.1, 5.2. 5.3, 6.1, 6.2, 6.4, 6.5. I WeBWorK 6.1, 6.2 are due Wednesday at 11:59pm. I The quiz on Friday covers xx6.1, 6.2. I My office is Skiles 244 and Rabinoffice hours are: Mondays, 12{1pm; Wednesdays, 1{3pm. Section 6.4 Diagonalization Motivation Difference equations Many real-word linear algebra problems have the form: 2 3 n v1 = Av0; v2 = Av1 = A v0; v3 = Av2 = A v0;::: vn = Avn−1 = A v0: This is called a difference equation. Our toy example about rabbit populations had this form. The question is, what happens to vn as n ! 1? I Taking powers of diagonal matrices is easy! I Taking powers of diagonalizable matrices is still easy! I Diagonalizing a matrix is an eigenvalue problem. 2 0 4 0 8 0 2n 0 D = ; D2 = ; D3 = ;::: Dn = : 0 −1 0 1 0 −1 0 (−1)n 0 −1 0 0 1 0 1 0 0 1 0 −1 0 0 1 1 2 1 3 1 D = @ 0 2 0 A ; D = @ 0 4 0 A ; D = @ 0 8 0 A ; 1 1 1 0 0 3 0 0 9 0 0 27 0 (−1)n 0 0 1 n 1 ::: D = @ 0 2n 0 A 1 0 0 3n Powers of Diagonal Matrices If D is diagonal, then Dn is also diagonal; its diagonal entries are the nth powers of the diagonal entries of D: (CDC −1)(CDC −1) = CD(C −1C)DC −1 = CDIDC −1 = CD2C −1 (CDC −1)(CD2C −1) = CD(C −1C)D2C −1 = CDID2C −1 = CD3C −1 CDnC −1 Closed formula in terms of n: easy to compute 1 1 2n 0 1 −1 −1 1 2n + (−1)n 2n + (−1)n+1 = : 1 −1 0 (−1)n −2 −1 1 2 2n + (−1)n+1 2n + (−1)n Powers of Matrices that are Similar to Diagonal Ones What if A is not diagonal? Example 1=2 3=2 Let A = .