Foundationone Cdx Sample Report

Total Page:16

File Type:pdf, Size:1020Kb

Foundationone Cdx Sample Report PATIENT TUMOR TYPE QRF# Bladder urothelial (transitional cell) carcinoma Interpretive content on this page and subsequent Biomarker Findings pages is provided as a professional service, and is TTumorumor Mutational BurBurdenden -- TMB-High (23 Muts/Mb) not reviewed or approved by the FDA. MicrMicrosatosatellitellite Statuse Status -- MS-Stable PPAATIENTTIENT Genomic Findings DISEASE Bladder urothelial (transitional cell) carcinoma For a complete list of the genes assayed, please refer to the Appendix. NAME CCCND1CND1 amplification DATE OF BIRTH SEX ERBB3ERBB3 amplification MEDICAL RECORD # RAF1RAF1 amplification PHYPHYSICIANSICIAN BCL2L1BCL2L1 amplification ORDERING PHYSICIAN CDKN2ACDKN2A p16INK4a D84N and p14ARF R98Q MEDICAL FACILITY FFGF19GF19 amplification ADDITIONAL RECIPIENT FFGF3GF3 amplification MEDICAL FACILITY ID PATHOLOGIST FFGF4GF4 amplification SPESPECIMENCIMEN LLYNYN amplification TERTERTT prpromotomoter -er -146C>T146C>T SPECIMEN SITE TP53TP53 E285KE285K SPECIMEN ID SPECIMEN TYPE DATE OF COLLECTION 1818TTherherapiesapies with CClinicallinical Benefit 2266CClinical Tlinical Trialsrials SPECIMEN RECEIVED 00TTherherapiesapies with Lack of RResponseesponse THERAPIES WITH CLINICAL BENEFIT THERAPIES WITH CLINICAL BENEFIT BIOMARKER FINDINGS (IN P(IN PAATIENT’TIENT’S TUS TUMORMOR TYPE) (IN O(IN OTHER TUTHER TUMORMOR TYPE) Tumor Mutational Burden - TMB-High (23 Atezolizumab none Muts/Mb) Avelumab Durvalumab Nivolumab 10 T10 Trialsrials see psee p..1717 Pembrolizumab Microsatellite status - MS-Stable No therNo therapiesapies or clinical trials. see Biomarker Findings section THERAPIES WITH CLINICAL BENEFIT THERAPIES WITH CLINICAL BENEFIT GENOMIC FINDINGS (IN P(IN PAATIENT’TIENT’S TUS TUMORMOR TYPE) (IN O(IN OTHER TUTHER TUMORMOR TYPE) CCND1 - amplification none Abemaciclib Palbociclib 6 T6 Trialsrials see psee p..2020 Ribociclib ERBB3 - amplification none Ado-trastuzumab emtansine Afatinib Lapatinib SAMPLEPertuzumab Trastuzumab 3 T3 Trialsrials see psee p..2121 Trastuzumab-dkst The content provided as a professional service by Foundation Medicine, Inc., has not been reviewed or approved by the FDA. Electronically signed by Julia Elvin, M.D., Ph.D. | Jeffrey Ross, M.D., Medical Director | 25 May 2018 | Sample PSample Prrepareparaation:tion:150 Second St., 1st Floor, Cambridge, MA 02141 ··CLIA: 22D2027531 Foundation Medicine, Inc. | 1.888.988.3639 Sample AnalyAnalysis:sis:150 Second St., 1st Floor, Cambridge, MA 02141 ··CLIA: 22D2027531 PROFESSIONAL SERVICES - PAGE 1 of 23 PATIENT TUMOR TYPE QRF# Bladder urothelial (transitional cell) carcinoma THERAPIES WITH CLINICAL BENEFIT THERAPIES WITH CLINICAL BENEFIT GENOMIC FINDINGS (IN P(IN PAATIENT’TIENT’S TUS TUMORMOR TYPE) (IN O(IN OTHER TUTHER TUMORMOR TYPE) RAF1 - amplification none Cobimetinib Regorafenib Sorafenib 9 T9 Trialsrials see psee p..2222 Trametinib GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Alterations section. BCL2L1 amplification p. 5 FGF4 amplification p. 7 CDKN2A p16INK4a D84N and p14ARF R98Q p. 5 LYN amplification p. 7 FGF19 amplification p. 6 TERT promoter -146C>T p. 8 FGF3 amplification p. 6 TP53 E285K p. 8 Note: Genomic alterations detected may be associated with activity of certain FDA approved drugs; however, the agents listed in this report may have varied clinical evidence in the patient’s tumor type. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient’s tumor type. SAMPLE The content provided as a professional service by Foundation Medicine, Inc., has not been reviewed or approved by the FDA. Electronically signed by Julia Elvin, M.D., Ph.D. | Jeffrey Ross, M.D., Medical Director | 25 May 2018 | Sample PSample Prrepareparaation:tion:150 Second St., 1st Floor, Cambridge, MA 02141 ··CLIA: 22D2027531 Foundation Medicine, Inc. | 1.888.988.3639 Sample AnalyAnalysis:sis:150 Second St., 1st Floor, Cambridge, MA 02141 ··CLIA: 22D2027531 PROFESSIONAL SERVICES - PAGE 2 of 23 PATIENT TUMOR TYPE QRF# Bladder urothelial (transitional cell) carcinoma BIOMARKER FINDINGFINDINGSS BIOMARKER with high mutational burden, including 3 and grade of bladder cancers14. For patients Tumor Mutational patients with endometrial adenocarcinoma with metastatic urothelial carcinoma receiving who reported sustained partial responses atezolizumab, however, higher median Burden following treatment with pembrolizumab8 or mutation load has been reported to be 9 CACATEGORTEGORYY nivolumab , a patient with hypermutant significantly associated with improved TMB-High (23 Muts/Mb) glioblastoma who obtained clinical benefit progression-free and overall survival3,15. from pembrolizumab10, and two pediatric patients with biallelic mismatch repair FINDING SUMMARSUMMARYY POPOTENTIALTENTIAL TREATREATMENT STMENT STRATRATEGIESTEGIES deficiency (bMMRD)-associated Tumor mutation burden (TMB, also known as On the basis of emerging clinical evidence, ultrahypermutant glioblastoma who mutation load) is a measure of the number of increased TMB may be associated with greater experienced clinically and radiologically somatic protein-coding base substitution and 11 sensitivity to immunotherapeutic agents, significant responses to nivolumab . In insertion/deletion mutations occurring in a including anti-CTLA-41, anti-PD-L12-4, and patients with melanoma, mutational load was tumor specimen. TMB is affected by a variety anti-PD-1 therapies5-7; FDA-approved agents associated with long-term clinical benefit from of causes, including exposure to mutagens ipilimumab1,12 and anti-PD-1/anti-PD-L1 16-17 include ipilimumab, atezolizumab, avelumab, such as ultraviolet light in melanoma and 4 durvalumab, pembrolizumab, and nivolumab. treatments . For patients with metastatic cigarette smoke in lung cancer5,18, mutations in In multiple solid tumor types, higher urothelial carcinoma, those who responded to the proofreading domains of DNA polymerases mutational burden has corresponded with atezolizumab treatment had a significantly encoded by the POLE and POLD1 genes19-23, response and improved prognosis. increased mutational load [12.4 mutations and microsatellite instability (MSI)19,22-23. The Pembrolizumab improved progression-free (mut) per megabase (Mb)] compared to tumor seen here harbors a high TMB. This 2 survival (14.5 vs. 3.4-3.7 months) in patients nonresponders (6.4 mut/Mb) , and mutational type of mutation load has been shown to be with non-small cell lung cancer (NSCLC) and load of 16 mut/Mb or higher was associated associated with sensitivity to immune 3 higher mutational load (greater than 200 with significantly longer overall survival . checkpoint inhibitors, including anti-CTLA-4 nonsynonymous mutations; hazard ratio = therapy in melanoma1, anti-PD-L1 therapy in 0.19)5. In studies of patients with either FREQUENCFREQUENCYY & PROGNOPROGNOSISSIS urothelial carcinoma2, and anti-PD-1 therapy NSCLC or colorectal cancer (CRC), patients In the Bladder Urothelial Carcinoma TCGA in non-small cell lung cancer and colorectal whose tumors harbor elevated mutational dataset, the median somatic mutation burden cancer5-6, potentially due to expression of burden reported higher overall response rates was 5.5 mutations per megabase (mut/MB)13. immune-reactive neoantigens in these to pembrolizumab5-7. Anti-PD-1 therapies have One study found somatic mutation number to tumors5. achieved clinical benefit for certain patients positively correlate with increased tumor stage BIOMARKER objective response rate (ORR) in MSS Microsatellite instability (MSI) is a condition of Microsatellite status colorectal cancer (CRC) compared with MSI-H genetic hypermutability that generates CRC (0% vs. 40%)6. Similarly, a clinical study excessive amounts of short insertion/deletion CACATEGORTEGORYY of nivolumab, alone or in combination with mutations in the genome; it generally occurs at MS-Stable ipilimumab, in patients with CRC reported a microsatellite DNA sequences and is caused by significantly higher response rate in patients a deficiency in DNA mismatch repair (MMR) with MSI-H tumors than those without27. in the tumor32. Defective MMR and POPOTENTIALTENTIAL TREATREATMENT STMENT STRATRATEGIESTEGIES consequent MSI occur as a result of genetic or On the basis of clinical evidence, MSS tumors FREQUENCFREQUENCYY & PROGNOPROGNOSISSIS epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, are significantly less likely than MSI-H tumors MSI has been detected in 26-49% of urothelial MSH6, or PMS232-34. The tumor seen here is to respond to anti-PD-1 immune checkpoint carcinomas29-30; MSI-high (MSI-H) has also inhibitors24-26, including approved therapies microsatellite-stable (MSS), equivalent to the been reported in multiple case studies of upper 6,27 clinical definition of an MSS tumor: one with nivolumab and pembrolizumab . In a urinary tract urothelial carcinoma31. MSI, as mutations in none of the tested microsatellite retrospective analysis of 361 patients with determined through loss of MSH2 or MSH6 markers35-37. MSS status indicates MMR solid tumors treated with pembrolizumab, 3% protein expression, correlated with non- proficiency and typically correlates with intact were MSI-H and experienced a significantly invasive, well-differentiated tumors and expression of
Recommended publications
  • (AZD6244) in an in Vivo Model of Childhood Astrocytoma
    Author Manuscript Published OnlineFirst on October 16, 2013; DOI: 10.1158/1078-0432.CCR-13-0842 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Development, Characterization, and Reversal of Acquired Resistance to the MEK1 Inhibitor Selumetinib (AZD6244) in an In Vivo Model of Childhood Astrocytoma Hemant K. Bid1, Aaron Kibler1, Doris A. Phelps1, Sagymbek Manap1, Linlin Xiao1, Jiayuh Lin1, David Capper2, Duane Oswald1, Brian Geier1, Mariko DeWire1,5, Paul D. Smith3, Raushan T. Kurmasheva1, Xiaokui Mo4, Soledad Fernandez4, and Peter J. Houghton1*. 1Center for Childhood Cancer & Blood Diseases, Nationwide Children’s Hospital, Columbus, OH 43205 2Institut of Pathology, Department Neuropathology, Ruprecht-Karls University and Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany 3Astrazeneca Ltd., Oncology iMed, Macclesfield, U.K. 4Center for Biostatistics, The Ohio State University, Columbus, OH 43221 5 Present address: Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 Correspondence to Peter J. Houghton, Ph.D. Center for Childhood Cancer & Blood Diseases Nationwide Children’s Hospital 700 Children’s Drive Columbus, OH 43205 Ph: 614-355-2633 Fx: 614-355-2792 [email protected] Running head: Acquired resistance to MEK Inhibition in astrocytoma models. Conflict of Interest Statement: The authors consider that there is no actual or perceived conflict of interest. Dr. Paul D. Smith is an employee of Astrazeneca. 1 Downloaded from clincancerres.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 16, 2013; DOI: 10.1158/1078-0432.CCR-13-0842 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Could Hbx Protein Expression Affect Signal Pathway Inhibition by Gefitinib Or Selumetinib, a MEK Inhibitor, in Hepatocellular Carcinoma Cell Lines?
    ORIGINAL ARTICLE Oncology & Hematology DOI: 10.3346/jkms.2011.26.2.214 • J Korean Med Sci 2011; 26: 214-221 Could HBx Protein Expression Affect Signal Pathway Inhibition by Gefitinib or Selumetinib, a MEK Inhibitor, in Hepatocellular Carcinoma Cell Lines? Yoon Kyung Park1, Kang Mo Kim1, Hepatitis B virus X (HBx) protein has been known to play an important role in development Young-Joo Lee2, Ki-Hun Kim2, of hepatocellular carcinoma (HCC). The aim of this study is to find out whether HBx Sung-Gyu Lee2, Danbi Lee1, protein expression affects antiproliferative effect of an epidermal growth factor receptor- Ju Hyun Shim1, Young-Suk Lim1, tyrosine kinase (EGFR-TK) inhibitor and a MEK inhibitor in HepG2 and Huh-7 cell lines. We 1 1 Han Chu Lee , Young-Hwa Chung , established HepG2 and Huh-7 cells transfected stably with HBx gene. HBx protein 1 1 Yung Sang Lee , and Dong Jin Suh expression increased pERK and pAkt expression as well as β-catenin activity in both cells. Departments of 1Internal Medicine and 2Surgery, Gefitinib (EGFR-TK inhibitor) inhibited pERK and pAkt expression andβ -catenin activity in Asan Medical Center, University of Ulsan College of both cells. Selumetinib (MEK inhibitor) reduced pERK level and β-catenin activity but pAkt Medicine, Seoul, Korea expression was rather elevated by selumetinib in these cells. Reduction of pERK levels was much stronger with selumetinib than gefitinib in both cells. The antiproliferative efficacy Received: 19 July 2010 Accepted: 2 November 2010 of selumetinib was more potent than that of gefitinib. However, the antiproliferative effect of gefitinib, as well as selumetinib, was not different between cell lines with or Address for Correspondence: without HBx expression.
    [Show full text]
  • Press Release
    Press Release Daiichi Sankyo and AstraZeneca Announce Global Development and Commercialization Collaboration for Daiichi Sankyo’s HER2 Targeting Antibody Drug Conjugate [Fam-] Trastuzumab Deruxtecan (DS-8201) Collaboration combines Daiichi Sankyo’s scientific and technological excellence with AstraZeneca’s global experience and resources in oncology to accelerate and expand the potential of [fam-] trastuzumab deruxtecan as monotherapy and combination therapy across a spectrum of HER2 expressing cancers AstraZeneca to pay Daiichi Sankyo up to $6.90 billion in total consideration, including $1.35 billion upfront payment and up to an additional $5.55 billion contingent upon achievement of future regulatory and sales milestones as well as other contingencies Companies to share equally development and commercialization costs as well as profits worldwide from [fam-] trastuzumab deruxtecan with Daiichi Sankyo maintaining exclusive rights in Japan Daiichi Sankyo is expected to book sales in U.S., certain countries in Europe, and certain other markets where Daiichi Sankyo has affiliates; AstraZeneca is expected to book sales in all other markets worldwide, including China, Australia, Canada and Russia Tokyo, Munich and Basking Ridge, NJ – (March 28, 2019) – Daiichi Sankyo Company, Limited (hereafter, Daiichi Sankyo) announced today that it has entered into a global development and commercialization agreement with AstraZeneca for Daiichi Sankyo’s lead antibody drug conjugate (ADC), [fam-] trastuzumab deruxtecan (DS-8201), currently in pivotal development for multiple HER2 expressing cancers including breast and gastric cancer, and additional development in non-small cell lung and colorectal cancer. Daiichi Sankyo and AstraZeneca will jointly develop and commercialize [fam-] trastuzumab deruxtecan as a monotherapy or a combination therapy worldwide, except in Japan where Daiichi Sankyo will maintain exclusive rights.
    [Show full text]
  • 07052020 MR ASCO20 Curtain Raiser
    Media Release New data at the ASCO20 Virtual Scientific Program reflects Roche’s commitment to accelerating progress in cancer care First clinical data from tiragolumab, Roche’s novel anti-TIGIT cancer immunotherapy, in combination with Tecentriq® (atezolizumab) in patients with PD-L1-positive metastatic non- small cell lung cancer (NSCLC) Updated overall survival data for Alecensa® (alectinib), in people living with anaplastic lymphoma kinase (ALK)-positive metastatic NSCLC Key highlights to be shared on Roche’s ASCO virtual newsroom, 29 May 2020, 08:00 CEST Basel, 7 May 2020 - Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced that new data from clinical trials of 19 approved and investigational medicines across 21 cancer types, will be presented at the ASCO20 Virtual Scientific Program organised by the American Society of Clinical Oncology (ASCO), which will be held 29-31 May, 2020. A total of 120 abstracts that include a Roche medicine will be presented at this year's meeting. "At ASCO, we will present new data from many investigational and approved medicines across our broad oncology portfolio," said Levi Garraway, M.D., Ph.D., Roche's Chief Medical Officer and Head of Global Product Development. “These efforts exemplify our long-standing commitment to improving outcomes for people with cancer, even during these unprecedented times. By integrating our medicines and diagnostics together with advanced insights and novel platforms, Roche is uniquely positioned to deliver the healthcare solutions of the future." Together with its partners, Roche is pioneering a comprehensive approach to cancer care, combining new diagnostics and treatments with innovative, integrated data and access solutions for approved medicines that will both personalise and transform the outcomes of people affected by this deadly disease.
    [Show full text]
  • MET Or NRAS Amplification Is an Acquired Resistance Mechanism to the Third-Generation EGFR Inhibitor Naquotinib
    www.nature.com/scientificreports OPEN MET or NRAS amplifcation is an acquired resistance mechanism to the third-generation EGFR inhibitor Received: 5 October 2017 Accepted: 16 January 2018 naquotinib Published: xx xx xxxx Kiichiro Ninomiya1, Kadoaki Ohashi1,2, Go Makimoto1, Shuta Tomida3, Hisao Higo1, Hiroe Kayatani1, Takashi Ninomiya1, Toshio Kubo4, Eiki Ichihara2, Katsuyuki Hotta5, Masahiro Tabata4, Yoshinobu Maeda1 & Katsuyuki Kiura2 As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimeritnib is the standard treatment for patients with non-small cell lung cancer harboring the EGFR T790M mutation; however, acquired resistance inevitably develops. Therefore, a next-generation treatment strategy is warranted in the osimertinib era. We investigated the mechanism of resistance to a novel EGFR-TKI, naquotinib, with the goal of developing a novel treatment strategy. We established multiple naquotinib-resistant cell lines or osimertinib-resistant cells, two of which were derived from EGFR-TKI-naïve cells; the others were derived from geftinib- or afatinib-resistant cells harboring EGFR T790M. We comprehensively analyzed the RNA kinome sequence, but no universal gene alterations were detected in naquotinib-resistant cells. Neuroblastoma RAS viral oncogene homolog (NRAS) amplifcation was detected in naquotinib-resistant cells derived from geftinib-resistant cells. The combination therapy of MEK inhibitors and naquotinib exhibited a highly benefcial efect in resistant cells with NRAS amplifcation, but the combination of MEK inhibitors and osimertinib had limited efects on naquotinib-resistant cells. Moreover, the combination of MEK inhibitors and naquotinib inhibited the growth of osimertinib-resistant cells, while the combination of MEK inhibitors and osimertinib had little efect on osimertinib-resistant cells.
    [Show full text]
  • DNA Replication During Acute MEK Inhibition Drives Acquisition of Resistance Through Amplification of the BRAF Oncogene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.23.436572; this version posted March 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Acquisition of MEKi resistance during DNA replication in drug Channathodiyil et al. DNA replication during acute MEK inhibition drives acquisition of resistance through amplification of the BRAF oncogene Prasanna Channathodiyil1,2, Anne Segonds-Pichon3, Paul D. Smith4, Simon J. Cook5 and Jonathan Houseley1,6,* 1 Epigenetics Programme, Babraham Institute, Cambridge, UK 2 ORCID: 0000-0002-9381-6089 3 Babraham Bioinformatics, Babraham Institute, Cambridge, UK. ORCID: 0000-0002-8369- 4882 4 Oncology R&D, AstraZeneca CRUK Cambridge Institute, Cambridge, UK 5 Signalling programme, Babraham Institute, Cambridge, UK. ORCID: 0000-0001-9087-1616 6 ORCID: 0000-0001-8509-1500 * Corresponding author: [email protected] Abstract Mutations and gene amplifications that confer drug resistance emerge frequently during chemotherapy, but their mechanism and timing is poorly understood. Here, we investigate BRAFV600E amplification events that underlie resistance to the MEK inhibitor selumetinib (AZD6244/ARRY-142886) in COLO205 cells. We find that de novo focal BRAF amplification is the primary path to resistance irrespective of pre-existing amplifications. Although selumetinib causes long-term G1 arrest, we observe that cells stochastically re-enter the cell cycle during treatment without reactivation of ERK1/2 or induction of a normal proliferative gene expression programme. Genes encoding DNA replication and repair factors are downregulated during G1 arrest, but many are transiently induced when cells escape arrest and enter S and G2.
    [Show full text]
  • Downloaded Uniformly Processed RNA-Seq Datasets from 3,764,506 High-Throughput Sequencing Samples from Skymap in Raw Count Format19
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 April 2020 doi:10.20944/preprints202003.0360.v2 TMPRSS2 transcriptional inhibition as a therapeutic strategy for COVID-19 Xinchen Wang, Ph.D.1*, Ryan S. Dhindsa, Ph.D.1,2, Gundula Povysil, M.D., Ph.D.1, Anthony Zoghbi, M.D.1,3,4, Joshua E. Motelow, M.D., Ph.D.1,5, Joseph A. Hostyk, B.Sc.1, Nicholas Nickols, M.D. Ph.D.6,7, Matthew Rettig, M.D.8,9, David B. Goldstein, Ph.D.1,2* 1Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, 2Department of Genetics & Development, Columbia University Irving Medical Center, New York, 3Department of Psychiatry, Columbia University Irving Medical Center, New York 4New York State Psychiatric Institute, New York 5Division of Pediatric Critical Care, Department of Pediatrics, New York-Presbyterian Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York 6Department of Radiation Oncology, University of California, Los Angeles, Los Angeles 7Department of Radiation Oncology, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California 8Division of Hematology and Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles 9Division of Hematology and Oncology, VA Greater Los Angeles Healthcare System, Los Angeles, Los Angeles, California *To whom correspondence should be addressed: [email protected] (X.W.), [email protected] (D.B.G.) Abstract There is an urgent need to identify effective therapies for COVID-19. The SARS-CoV-2 host factor protease TMPRSS2 is required for viral entry and thus an attractive target for therapeutic intervention.
    [Show full text]
  • CREB3L2-Pparg Fusion Mutation Identifies a Thyroid Signaling Pathway Regulated by Intramembrane Proteolysis
    Research Article CREB3L2-PPARg Fusion Mutation Identifies a Thyroid Signaling Pathway Regulated by Intramembrane Proteolysis Weng-Onn Lui,3 Lingchun Zeng,1 Victoria Rehrmann,1 Seema Deshpande,5 Maria Tretiakova,1 Edwin L. Kaplan,2 Ingo Leibiger,3 Barbara Leibiger,3 Ulla Enberg,3 Anders Ho¨o¨g,4 Catharina Larsson,3 and Todd G. Kroll1 Departments of 1Pathology and 2Surgery, University of Chicago Medical Center, Chicago, Illinois; Departments of 3Molecular Medicine and Surgery and 4Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; and 5Department of Pathology, Emory University School of Medicine, Atlanta, Georgia Abstract cancer in patients; and (c) the implementation of effective molecular-targeted chemotherapies that have relatively few side The discovery of gene fusion mutations, particularly in effects. The discovery of fusion mutations is therefore important, leukemia, has consistently identified new cancer pathways particularly in carcinoma, the most common cancer group in and led to molecular diagnostic assays and molecular-targeted which few gene fusions have been identified (1). The recent chemotherapies for cancer patients. Here, we report our discoveries of ERG (2) and ALK (3) gene fusions in prostate and discovery of a novel CREB3L2-PPARg fusion mutation in lung carcinoma, respectively, increase the prospect that new thyroid carcinoma with t(3;7)(p25;q34), showing that a family diagnostic and therapeutic strategies based on gene fusions will of somatic PPARg fusion mutations exist in thyroid cancer. The be applicable to common epithelial cancers. CREB3L2-PPARg fusion encodes a CREB3L2-PPAR; fusion Families of gene fusions tend to characterize specific cancer protein that is composed of the transactivation domain of types.
    [Show full text]
  • Lenvatinib in Advanced, Radioactive Iodine– Refractory, Differentiated Thyroid Carcinoma Kay T
    Published OnlineFirst October 20, 2015; DOI: 10.1158/1078-0432.CCR-15-0923 CCR Drug Updates Clinical Cancer Research Lenvatinib in Advanced, Radioactive Iodine– Refractory, Differentiated Thyroid Carcinoma Kay T. Yeung1 and Ezra E.W. Cohen2 Abstract Management options are limited for patients with radioactive therapy for these patients. Median PFS of 18.3 months in the iodine refractory, locally advanced, or metastatic differentiated lenvatinib group was significantly improved from 3.6 months in thyroid carcinoma. Prior to 2015, sorafenib, a multitargeted the placebo group, with an HR of 0.21 (95% confidence interval, tyrosine kinase inhibitor, was the only approved treatment and 0.4–0.31; P < 0.0001). ORR was also significantly increased in the was associated with a median progression-free survival (PFS) of lenvatinib arm (64.7%) compared with placebo (1.5%). In this 11 months and overall response rate (ORR) of 12% in a phase III article, we will review the molecular mechanisms of lenvatinib, trial. Lenvatinib, a multikinase inhibitor with high potency the data from preclinical studies to the recent phase III clinical against VEGFR and FGFR demonstrated encouraging results in trial, and the biomarkers being studied to further guide patient phase II trials. Recently, the pivotal SELECT trial provided the selection and predict treatment response. Clin Cancer Res; 21(24); basis for the FDA approval of lenvatinib as a second targeted 5420–6. Ó2015 AACR. Introduction PI3K–mTOR pathways (reviewed in ref. 3). The signals ultimately converge in the nucleus, influencing transcription of oncogenic Thyroid carcinoma is the most common endocrine malignan- proteins including, but not limited to, NF-kB), hypoxia-induced cy, with an estimated incidence rate of 13.5 per 100,000 people factor 1 alpha unit (HIF1a), TGFb, VEGF, and FGF.
    [Show full text]
  • Dual Targeting of HER2-Positive Cancer with Trastuzumab Emtansine and Pertuzumab: Critical Role for Neuregulin Blockade in Antitumor Response to Combination Therapy
    Published OnlineFirst October 4, 2013; DOI: 10.1158/1078-0432.CCR-13-0358 Clinical Cancer Cancer Therapy: Clinical Research See related article by Gwin and Spector, p. 278 Dual Targeting of HER2-Positive Cancer with Trastuzumab Emtansine and Pertuzumab: Critical Role for Neuregulin Blockade in Antitumor Response to Combination Therapy Gail D. Lewis Phillips1, Carter T. Fields1, Guangmin Li1, Donald Dowbenko1, Gabriele Schaefer1, Kathy Miller5, Fabrice Andre6, Howard A. Burris III8, Kathy S. Albain9, Nadia Harbeck10, Veronique Dieras7, Diana Crivellari11, Liang Fang2, Ellie Guardino3, Steven R. Olsen3, Lisa M. Crocker4, and Mark X. Sliwkowski1 Abstract Purpose: Targeting HER2 with multiple HER2-directed therapies represents a promising area of treatment for HER2-positive cancers. We investigated combining the HER2-directed antibody–drug con- jugate trastuzumab emtansine (T-DM1) with the HER2 dimerization inhibitor pertuzumab (Perjeta). Experimental Design: Drug combination studies with T-DM1 and pertuzumab were performed on cultured tumor cells and in mouse xenograft models of HER2-amplified cancer. In patients with HER2- positive locally advanced or metastatic breast cancer (mBC), T-DM1 was dose-escalated with a fixed standard pertuzumab dose in a 3þ3 phase Ib/II study design. Results: Treatment of HER2-overexpressing tumor cells in vitro with T-DM1 plus pertuzumab resulted in synergistic inhibition of cell proliferation and induction of apoptotic cell death. The presence of the HER3 ligand, heregulin (NRG-1b), reduced the cytotoxic activity of T-DM1 in a subset of breast cancer lines; this effect was reversed by the addition of pertuzumab. Results from mouse xenograft models showed enhanced antitumor efficacy with T-DM1 and pertuzumab resulting from the unique antitumor activities of each agent.
    [Show full text]
  • MEK1/2 Inhibitor Selumetinib (AZD6244) Inhibits Growth of Ovarian Clear Cell Carcinoma in a PEA-15–Dependent Manner in a Mouse Xenograft Model
    Published OnlineFirst December 5, 2011; DOI: 10.1158/1535-7163.MCT-11-0400 Molecular Cancer Preclinical Development Therapeutics MEK1/2 Inhibitor Selumetinib (AZD6244) Inhibits Growth of Ovarian Clear Cell Carcinoma in a PEA-15–Dependent Manner in a Mouse Xenograft Model Chandra Bartholomeusz1,2, Tetsuro Oishi1,2,6, Hitomi Saso1,2, Ugur Akar1,2, Ping Liu3, Kimie Kondo1,2, Anna Kazansky1,2, Savitri Krishnamurthy4, Jangsoon Lee1,2, Francisco J. Esteva1,2, Junzo Kigawa6, and Naoto T. Ueno1,2,5 Abstract Clear cell carcinoma (CCC) of the ovary tends to show resistance to standard chemotherapy, which results in poor survival for patients with CCC. Developing a novel therapeutic strategy is imperative to improve patient prognosis. Epidermal growth factor receptor (EGFR) is frequently expressed in epithelial ovarian cancer. One of the major downstream targets of the EGFR signaling cascade is extracellular signal–related kinase (ERK). PEA-15, a 15-kDa phosphoprotein, can sequester ERK in the cytoplasm. MEK1/2 plays a central role in integrating mitogenic signals into the ERK pathway. We tested the hypothesis that inhibition of the EGFR–ERK pathway suppresses tumorigenicity in CCC, and we investigated the role of PEA-15 in ERK-targeted therapy in CCC. We screened a panel of 4 CCC cell lines (RMG-I, SMOV-2, OVTOKO, and KOC-7c) and observed that the EGFR tyrosine kinase inhibitor erlotinib inhibited cell proliferation of EGFR-overexpressing CCC cell lines through partial dependence on the MEK/ERK pathway. Furthermore, erlotinib-sensitive cell lines were also sensitive to the MEK inhibitor selumetinib (AZD6244), which is under clinical development.
    [Show full text]
  • Combinatorial Efficacy of Entospletinib and Chemotherapy in Patient-Derived Xenograft Models of Infant Acute Lymphoblastic Leukemia
    Acute Lymphoblastic Leukemia SUPPLEMENTARY APPENDIX Combinatorial efficacy of entospletinib and chemotherapy in patient-derived xenograft models of infant acute lymphoblastic leukemia Joseph P. Loftus, 1* Anella Yahiaoui, 2* Patrick A Brown, 3 Lisa M. Niswander, 1 Asen Bagashev, 1 Min Wang, 2 Allyson Shauf, 2 Stacey Tannheimer 2 and Sarah K. Tasian 1,4 1Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA; 2Gilead Sci - ences, Foster City, CA; 3Department of Pediatrics, Division of Pediatric Hematology/Oncology, Johns Hopkins University and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD and 4Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA *JPL and AY contributed equally as co-first authors. ©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2019.241729 Received: October 28, 2019. Accepted: May 8, 2020. Pre-published: May 15, 2020. Correspondence: SARAH K. TASIAN - [email protected] SUPPLEMENTAL DATA SUPPLEMENTAL METHODS Cell Titer Glo viability assays The human B-acute lymphoblastic leukemia (B-ALL) cell lines NALM-6 (non-KMT2A- rearranged) and HB11;19, KOPN-8, and HB11;19 (all KMT2A-rearranged) were obtained from the German Collection of Microorganisms and Cell Cultures GmbH (Deutsche Sammlung von Mikroorganismen und Zellkulturen; DSMZ), validated by short tandem repeat identity testing, and confirmed to be Mycoplasma-free. ALL cells were incubated in vitro with dimethyl sulfoxide or increasing concentrations of entospletinib (Gilead Sciences), fostamatinib (Selleckchem), dasatinib (LC Labs), selumetinib (LC Labs), and/or dexamethasone as indicated in Supplemental Figure 1 for 72 hours, then assessed for cell viability via Cell Titer Glo luminescent assays (Promega) according to manufacturer’s instructions using an IVIS Spectrum bioluminescent imaging instrument and Living Image software (PerkinElmer) (1, 2).
    [Show full text]