Barry Welsh, Ph.D., U
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
For Immediate Release
FOR IMMEDIATE RELEASE ASTRONAUTS, EXPERTS, AND SPACE AGENCIES DISCUSS ASTEROIDS, OPPORTUNITIES, AND RISKS ON ASTEROID DAY, 30 JUNE LUXEMBOURG, 22 June 2020 /PRNewswire/ -- The Asteroid Foundation returns with Asteroid Day LIVE Digital from Luxembourg. This year, the event is a fully digital celebration of asteroid science and exploration. Panel discussions and one-on-one interviews with astronauts and world experts will be broadcast on 30 June 2020. Each year Asteroid Day presents the public with a snap-shot of cutting-edge asteroid research from the largest telescopes on Earth to some of the most ambitious space missions. Topics of discussion this year include the acceleration in the rate of our asteroid discoveries and why it is set to accelerate even faster, the imminent arrival of samples from asteroid Ryugu and Bennu, the exciting preparations for the joint US-Europe mission to binary asteroid Didymos, and much more. Asteroids are the leftover remnants of the birth of the planets in the Solar System, and many are the shattered fragments of these diminutive proto-planets that never made it to maturity. “Asteroid exploration missions tell us about the birth of our own planet and reveal how asteroids can serve astronauts as stepping stones to Mars,” says Tom Jones, PhD, veteran astronaut and planetary scientist, and Asteroid Day Expert Panel member. Each asteroid is an individual with its own story to tell. And that’s what Asteroid Day is all about: bringing those stories to the widest audience possible. “Space and science have been an endless source of inspiration for SES! This is one of the reasons why we and our partners continue to do extraordinary things in space to deliver amazing experiences everywhere on earth,” says Ruy Pinto, Chief Technology Officer at SES. -
Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A
Hastings International and Comparative Law Review Volume 42 Article 2 Number 1 Winter 2019 Winter 2019 Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law James A. Green Follow this and additional works at: https://repository.uchastings.edu/ hastings_international_comparative_law_review Part of the Comparative and Foreign Law Commons, and the International Law Commons Recommended Citation James A. Green, Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law, 42 Hastings Int'l & Comp.L. Rev. 1 (2019). Available at: https://repository.uchastings.edu/hastings_international_comparative_law_review/vol42/iss1/2 This Article is brought to you for free and open access by the Law Journals at UC Hastings Scholarship Repository. It has been accepted for inclusion in Hastings International and Comparative Law Review by an authorized editor of UC Hastings Scholarship Repository. Planetary Defense: Near-Earth Objects, Nuclear Weapons, and International Law BY JAMES A. GREEN ABSTRACT The risk of a large Near-Earth Object (NEO), such as an asteroid, colliding with the Earth is low, but the consequences of that risk manifesting could be catastrophic. Recent years have witnessed an unprecedented increase in global political will in relation to NEO preparedness, following the meteoroid impact in Chelyabinsk, Russia in 2013. There also has been an increased focus amongst states on the possibility of using nuclear detonation to divert or destroy a collision- course NEO—something that a majority of scientific opinion now appears to view as representing humanity’s best, or perhaps only, option in extreme cases. Concurrently, recent developments in nuclear disarmament and the de-militarization of space directly contradict the proposed “nuclear option” for planetary defense. -
Cometary Impactors on the TRAPPIST-1 Planets Can Destroy All Planetary Atmospheres and Rebuild Secondary Atmospheres on Planets F, G, H
Mon. Not. R. Astron. Soc. 000, 1{28 (2002) Printed 4 July 2018 (MN LATEX style file v2.2) Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, h Quentin Kral,1? Mark C. Wyatt,1 Amaury H.M.J. Triaud,1;2 Sebastian Marino, 1 Philippe Th´ebault, 3 Oliver Shorttle, 1;4 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 4Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Accepted 1928 December 15. Received 1928 December 14; in original form 1928 October 11 ABSTRACT The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would affect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e within 0.1au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: Planet scattering, the Kozai-Lidov mechanism and Galactic tides. -
Educator's Guide
educator’s guide Table of Contents INTRODUCTION . 3 ACTIVITY FOR GRADES 3-5 Introduction for Educator . 4 Asteroids in Orbit Student Activity . 5 ACTIVITIES FOR GRADES 6-8 Introduction for Educator . 7 What Are Asteroids? Instructions for Educator . 7 Making a Splash Instructions for Educator . 7 Working Together Instructions for Educator . 8 What Are Asteroids? Student Activity . 9 Making a Splash Student Activity . 11 Working Together Student Activity . 13 ACTIVITIES FOR GRADES 9-12 Introduction for Educator . 15 Tracing the Past Instructions for Educator . 15 Defending the Future Instructions for Educator . 16 Tracing the Past Student Activity . 17 Defending the Future Student Activity . 18 EDUCATIONAL STANDARDS ALIGNMENT . 19 ACKNOWLEDGEMENTS . 20 2 Introduction AN EXTRAORDINARY FIELD TRIP AND LEARNING EXPERIENCE! Dear Educator, Planetary defense is a relatively new science . Only a few decades ago did we become certain Earth’s history of asteroid impacts was sure to repeat itself . Could we save our world today from a cosmic threat? You bet we can . But to tend to this problem, we must first understand it . That’s where Asteroid Hunters comes in . Asteroid Hunters will take your students on an exciting field trip across the Solar System and to the dawn of time . They’ll watch how gravity spun gas and dust into our Solar System, how rocky debris gathered into worlds, and how the planet-building leftovers became asteroids . They’ll learn that these natural wonders of deep space brought water to planets, and the building blocks of life itself . They will also see how we possess the technological know-how to keep an asteroid from hitting our planet– unlike the doomed dinosaurs of 65 million years ago . -
Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710
Bachelor Thesis University of Groningen Kapteyn Astronomical Institute Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710 August 5, 2019 Author: Rens Juris Tesink Supervisors: Kateryna Frantseva and Nickolas Oberg Abstract Context: Our Sun is thought to have an Oort cloud, a spherically symmetric shell of roughly 1011 comets orbiting with semi major axes between ∼ 5 × 103 AU and 1 × 105 AU. It is thought to be possible that other stars also possess comet clouds. Gliese 710 is a star expected to have a close encounter with the Sun in 1.35 Myrs. Aims: To simulate the comet clouds around the Sun and Gliese 710 and investigate the effect of the close encounter. Method: Two REBOUND N-body simulations were used with the help of Gaia DR2 data. Simulation 1 had a total integration time of 4 Myr, a time-step of 1 yr, and 10,000 comets in each comet cloud. And Simulation 2 had a total integration time of 80,000 yr, a time-step of 0.01 yr, and 100,000 comets in each comet cloud. Results: Simulation 2 revealed a 1.7% increase in the semi-major axis at time of closest approach and a population loss of 0.019% - 0.117% for the Oort cloud. There was no statistically significant net change of the inclination of the comets during this encounter and a 0.14% increase in the eccentricity at the time of closest approach. Contents 1 Introduction 3 1.1 Comets . .3 1.2 New comets and the Oort cloud . .5 1.3 Structure of the Oort cloud . -
Week 5: January 26-February 1, 2020
5# Ice & Stone 2020 Week 5: January 26-February 1, 2020 Presented by The Earthrise Institute About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets. -
Planetary Defense Final Report I
Team Project - Planetary Defense Final Report i Team Project - Planetary Defense Final Report ii Team Project - Planetary Defense Cover designed by: Tihomir Dimitrov Images courtesy of: Earth Image - NASA US Geological Survey Detection Image - ESA's Optical Ground Station Laser Tags ISS Deflection Image - IEEE Space Based Lasers Collaboration Image - United Nations General Assembly Building Outreach Image - Dreamstime teacher with students in classroom Evacuation Image - Libyan City of Syrte destroyed in 2011 Shield Image - Silver metal shield PNG image The cover page was designed to include a visual representation of the roadmap for a robust Planetary Defense Program that includes five elements: detection, deflection, global collaboration, outreach, and evacuation. The shield represents the idea of defending our planet, giving confidence to the general public that the Planetary Defense elements are reliable. The orbit represents the comet threat and how it is handled by the shield, which represents the READI Project. The curved lines used in the background give a sense of flow representing the continuation and further development for Planetary Defense programs after this team project, as we would like for everyone to be involved and take action in this noble task of protecting Earth. The 2015 Space Studies Program of the International Space University was hosted by the Ohio University, Athens, Ohio, USA. While all care has been taken in the preparation of this report, ISU does not take any responsibility for the accuracy of its content. -
ASTEROID DAY 2017 WAS on JUNE 30 Asteroids Pose a Threat to Earth, but They Also Represent Untapped Resources
ASTEROID DAY 2017 WAS ON JUNE 30 Asteroids pose a threat to Earth, but they also represent untapped resources. The third annual International Asteroid Day was on June 30, 2017. According to its organizers, Asteroid Day is a global awareness campaign to help people learn about asteroids and about what we can do to protect our planet from asteroid impacts. Asteroid Day is held on the anniversary of the largest asteroid impact in Earth’s recent history – an event that took place in Siberia on June 30, 1908, known as the Tunguska explosion. (See below) As a small asteroid exploded over Tunguska, Siberia, it released the equivalent of 100 tons of TNT, devastating an area of about 2,000 square km, the size of a major metropolitan city. NASA’s portion of Asteroid Day 2017 started at 16:00 UTC on Friday, June 30. Its program featured information on how researchers find, track and characterize NEOs – Near Earth Objects, asteroids and comets that come within the vicinity of Earth’s orbit and could pose an impact hazard to Earth – and how NASA is working to get our nation prepared to respond to a potential impact threat. NASA Planetary Defence Officer Lindley Johnson said in a statement: At NASA, every day is an asteroid day, but we An object entered the atmosphere over the Urals early in the value the international collaboration for a morning of February 15, 2013. designated day to call attention to the importance of detecting and tracking hazardous asteroids. NASA put together 10 cool facts about asteroids: 1. -
Press Release Asteroid Foundation Luxemburg
ASTEROID DAY TO CELEBRATE FIFTH ANNIVERSARY WITH SPECIAL EVENTS IN LUXEMBOURG AND AROUND THE GLOBE, 24-30 JUNE, 2019 LUXEMBOURG (14 February 2019) -- Asteroid Day, the official United Nations’ day of global awareness and education about asteroids, will celebrate its fifth anniversary on 30 June. What began as two live stream broadcasts in 2014, now includes thousands of independent events organized by citizens around the world on all five continents. Asteroid Day global programs, including Asteroid Day LIVE, are programs of the Asteroid Foundation, a Luxembourg-based nonprofit organization. Asteroid Day was co-founded by astrophysicist and famed musician Dr. Brian May of the rock group QUEEN; Apollo 9 Astronaut Rusty Schweickart; Filmmaker Grig Richters; and B612 President Danica Remy, to promote awareness and provide knowledge to the general public about the importance of asteroids in the formation of our universe and the role they play in our solar system today. Events are scheduled during the week of 30 June, the date of the largest asteroid impact of Earth in recorded history (Tunguska). In just five years, Asteroid Day has evolved to include the participation of all major national space agencies, ESA, JAXA, Roscosmos, and NASA, and prominent scientists, astronomers, educators and media worldwide. In 2016, the United Nations declared Asteroid Day an official day of education, initiated in part by a need to better understand the role of asteroids, following the 15 February, 2013 meteor impact in Chelyabinsk, Russia. “Our goal is to dedicate one day each year to learn about asteroids, the origins of our universe, and to support the resources necessary to find asteroids,” explains Dr. -
An Exocomet in the Fomalhaut System: Simulating Gas and Dust Emission in a Debris Disk
EPSC Abstracts Vol. 13, EPSC-DPS2019-1649-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. An exocomet in the Fomalhaut system: simulating gas and dust emission in a debris disk Maria Teresa Capria (1), Diego Turrini (1) and Edoardo Rognini (1) (1) INAF-IAPS, Rome, Italy (mariateresa.capria @inaf.it) Abstract by the sublimation of the ices and undergo the drag exerted by the escaping gas. The model is being used A thermophysical model is being used to simulate the to compute the amount of gas and dust released from behaviour of a cometary nucleus following an orbit the nucleus along an orbit, both in presence and in the Fomlhaut debris disc. We study the amount of absence of gas from the circumstellar disc. The CO gas and dust released during a typical orbit, and chosen orbit has the aphelion at 170 au and the compare them with the ALMA observations. We also perihelion at 140 au. We are willing to study the evaluate the survival of the body on a very long time amount of CO gas and dust released during a typical span. orbit, and compare these emissions with the ALMA observations. We are also willing to derive the total mass lost by the exocomet during an orbit and study 1. Introduction its long-time activity of the comet, in order to A number of debris disks around main sequence stars evaluate the survival of the body on a very long time have are now been identified [1], and in some of span. -
Cloudy with a Chance of Near-Earth Asteroids
Cloudy with a chance of near-Earth asteroids KU LEUVEN - UGENT MASTER OF SPACE STUDIES 2018-2019 CORNEEL BOGAERT Space Sciences and Exploration Professor: C. Waelkens Table of contents Introduction ................................................................................................................................. 1 1. Asteroids .................................................................................................................................. 2 1.1 Near-Earth asteroids ..................................................................................................................... 3 2. Potentially hazardous asteroids ................................................................................................ 4 2.1 Remote sensing from Earth ........................................................................................................... 5 2.2 Missions in space ........................................................................................................................... 6 3. Exploration missions to NEAs .................................................................................................... 8 3.1 Asteroid flybys ............................................................................................................................... 8 3.2 NEAR Shoemaker ........................................................................................................................... 9 3.3 Hayabusa (MUSES-C) & Hayabusa2 ............................................................................................ -
NASA FDL Developing New Approaches to Asteroid, Comet and Solar Threats Using AI 3 July 2017
NASA FDL developing new approaches to asteroid, comet and solar threats using AI 3 July 2017 gaps in space science by pairing machine learning and deep learning expertise with planetary scientists and heliophysicists at the PhD level. Interdisciplinary teams address tightly defined problems and through rapid iteration and prototyping create outputs with meaningful application to the space program. What do astrophysicist Steven Hawking, Queen guitarist Brian May and the country of Luxembourg have in common? They're all key figures in Asteroid Day - a UN sanctioned day of education to raise awareness about protecting our planet Credit: SETI Institute from dangerous impacts from space. Asteroid Day is June 30th, the anniversary of the 1908 Tunguska impact, when a space rock, FDL features partnerships with Luxembourg Space approximately 120 ft wide detonated in the sky, the Resources and technology leaders in artificial largest impact in recent history. Asteroids and intelligence from the private sector and academia comets remain a threat to Earth. including IBM, Nvidia, Lockheed Martin, USC Mascale, Kx Systems, Miso Technologies and Intel. To assist in NASA's efforts to tackle the challenge Partners bring advanced GPU hardware, software of understanding space hazards and knowing what and cloud-based resources, and provide coaching to do about them, the Frontier Development Lab and support on cutting edge approaches. (FDL) has brought together a team of expert researchers and invited them to apply artificial Entering its second year, FDL strives to create intelligence to develop techniques to help protect research outcomes that support NASA goals, while our planet from space threats such as asteroids, simultaneously showcasing cutting-edge partner comets and solar storms.