Oumuamua (A/2017U1) – a Confirmation of Links Between Galactic Planetary Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
KAREN J. MEECH February 7, 2019 Astronomer
BIOGRAPHICAL SKETCH – KAREN J. MEECH February 7, 2019 Astronomer Institute for Astronomy Tel: 1-808-956-6828 2680 Woodlawn Drive Fax: 1-808-956-4532 Honolulu, HI 96822-1839 [email protected] PROFESSIONAL PREPARATION Rice University Space Physics B.A. 1981 Massachusetts Institute of Tech. Planetary Astronomy Ph.D. 1987 APPOINTMENTS 2018 – present Graduate Chair 2000 – present Astronomer, Institute for Astronomy, University of Hawaii 1992-2000 Associate Astronomer, Institute for Astronomy, University of Hawaii 1987-1992 Assistant Astronomer, Institute for Astronomy, University of Hawaii 1982-1987 Graduate Research & Teaching Assistant, Massachusetts Inst. Tech. 1981-1982 Research Specialist, AAVSO and Massachusetts Institute of Technology AWARDS 2018 ARCs Scientist of the Year 2015 University of Hawai’i Regent’s Medal for Research Excellence 2013 Director’s Research Excellence Award 2011 NASA Group Achievement Award for the EPOXI Project Team 2011 NASA Group Achievement Award for EPOXI & Stardust-NExT Missions 2009 William Tylor Olcott Distinguished Service Award of the American Association of Variable Star Observers 2006-8 National Academy of Science/Kavli Foundation Fellow 2005 NASA Group Achievement Award for the Stardust Flight Team 1996 Asteroid 4367 named Meech 1994 American Astronomical Society / DPS Harold C. Urey Prize 1988 Annie Jump Cannon Award 1981 Heaps Physics Prize RESEARCH FIELD AND ACTIVITIES • Developed a Discovery mission concept to explore the origin of Earth’s water. • Co-Investigator on the Deep Impact, Stardust-NeXT and EPOXI missions, leading the Earth-based observing campaigns for all three. • Leads the UH Astrobiology Research interdisciplinary program, overseeing ~30 postdocs and coordinating the research with ~20 local faculty and international partners. -
ALPO COMET NEWS for APRIL 2020 a Publication of the Comet Section of the Association of Lunar and Planetary Observers by Carl Hergenrother - 2020-April-1
ALPO COMET NEWS FOR APRIL 2020 A Publication of the Comet Section of the Association of Lunar and Planetary Observers By Carl Hergenrother - 2020-April-1 The monthly ALPO Comet News PDF can be found on the ALPO Comet Section website (http://www.alpo-astronomy.org/cometblog/). A shorter version of this report is posted on a dedicated Cloudy Nights forum (https://www.cloudynights.com/topic/700215-alpo-comet-news- for-april-2020/). All are encourageD to join the discussion over at Cloudy Nights. The ALPO Comet Section welcomes all comet related observations, whether textual descriptions, images, drawings, magnitude estimates, or spectra. You do not have to be a member of ALPO to submit material, though membership is encouraged. To learn more about the ALPO, please visit us @ http://www.alpo-astronomy.org. A lot has changed since over the past month, not only with the state of the world, but with comets. C/2019 Y4 (ATLAS) has asserted itself as the comet of the moment. Currently between 7th and 8th magnitude as April begins, the comet may become a borderline naked eye object under dark skies by the end of the month. It will be interesting to watch how it develops. C/2019 Y4 isn’t the only object of interest. Both C/2017 T2 (PANSTARRS) and C/2019 Y1 (ATLAS) are brighter than 10th magnitude and CCD and large aperture visual observers are encouraged to watch fainter comets 88P/Howell, 210P/Christensen, 249P/LINEAR, and C/2019 U6 (Lemmon). Bright Comets (magnitude < 10.0) C/2019 Y4 (ATLAS) – The Great Comet of 2020, a Great Disappointment, or something in between? For the first time since 2013, a comet has the potential to become something special. -
Isotopic Ratios in Outbursting Comet C/2015 ER61
Astronomy & Astrophysics manuscript no. draft_Dec_07 c ESO 2018 September 10, 2018 Isotopic ratios in outbursting comet C/2015 ER61 Bin Yang1; 2, Damien Hutsemékers3, Yoshiharu Shinnaka4, Cyrielle Opitom1, Jean Manfroid3, Emmanuël Jehin3, Karen J. Meech5, Olivier R. Hainaut1, Jacqueline V. Keane5, and Michaël Gillon3 (Affiliations can be found after the references) September 10, 2018 ABSTRACT Isotopic ratios in comets are critical to understanding the origin of cometary material and the physical and chemical conditions in the early solar nebula. Comet C/2015 ER61 (PANSTARRS) underwent an outburst with a total brightness increase of 2 magnitudes on the night of 2017 April 4. The sharp increase in brightness offered a rare opportunity to measure the isotopic ratios of the light elements in the coma of this comet. We obtained two high-resolution spectra of C/2015 ER61 with UVES/VLT on the nights of 2017 April 13 and 17. At the time of our observations, the comet was fading gradually following the outburst. We measured the nitrogen and carbon isotopic ratios from the CN violet (0,0) band and found that 12C/13C=100 ± 15, 14N/15N=130 ± 15. 14 15 14 15 In addition, we determined the N/ N ratio from four pairs of NH2 isotopolog lines and measured N/ N=140 ± 28. The measured isotopic ratios of C/2015 ER61 do not deviate significantly from those of other comets. Key words. comets: general - comets: individual (C/2015 ER61) - methods: observational 1. Introduction Understanding how planetary systems form from proto- planetary disks remains one of the great challenges in as- tronomy. -
Cometary Impactors on the TRAPPIST-1 Planets Can Destroy All Planetary Atmospheres and Rebuild Secondary Atmospheres on Planets F, G, H
Mon. Not. R. Astron. Soc. 000, 1{28 (2002) Printed 4 July 2018 (MN LATEX style file v2.2) Cometary impactors on the TRAPPIST-1 planets can destroy all planetary atmospheres and rebuild secondary atmospheres on planets f, g, h Quentin Kral,1? Mark C. Wyatt,1 Amaury H.M.J. Triaud,1;2 Sebastian Marino, 1 Philippe Th´ebault, 3 Oliver Shorttle, 1;4 1Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 2School of Physics & Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3LESIA-Observatoire de Paris, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 4Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK Accepted 1928 December 15. Received 1928 December 14; in original form 1928 October 11 ABSTRACT The TRAPPIST-1 system is unique in that it has a chain of seven terrestrial Earth-like planets located close to or in its habitable zone. In this paper, we study the effect of potential cometary impacts on the TRAPPIST-1 planets and how they would affect the primordial atmospheres of these planets. We consider both atmospheric mass loss and volatile delivery with a view to assessing whether any sort of life has a chance to develop. We ran N-body simulations to investigate the orbital evolution of potential impacting comets, to determine which planets are more likely to be impacted and the distributions of impact velocities. We consider three scenarios that could potentially throw comets into the inner region (i.e within 0.1au where the seven planets are located) from an (as yet undetected) outer belt similar to the Kuiper belt or an Oort cloud: Planet scattering, the Kozai-Lidov mechanism and Galactic tides. -
Project Pan-STARRS and the Outer Solar System
Project Pan-STARRS and the Outer Solar System David Jewitt Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 ABSTRACT Pan-STARRS, a funded project to repeatedly survey the entire visible sky to faint limiting magnitudes (mR ∼ 24), will have a substantial impact on the study of the Kuiper Belt and outer solar system. We briefly review the Pan- STARRS design philosophy and sketch some of the planetary science areas in which we expect this facility to make its mark. Pan-STARRS will find ∼20,000 Kuiper Belt Objects within the first year of operation and will obtain accurate astrometry for all of them on a weekly or faster cycle. We expect that it will revolutionise our knowledge of the contents and dynamical structure of the outer solar system. Subject headings: Surveys, Kuiper Belt, comets 1. Introduction to Pan-STARRS Project Pan-STARRS (short for Panoramic Survey Telescope and Rapid Response Sys- tem) is a collaboration between the University of Hawaii's Institute for Astronomy, the MIT Lincoln Laboratory, the Maui High Performance Computer Center, and Science Ap- plications International Corporation. The Principal Investigator for the project, for which funding started in the fall of 2002, is Nick Kaiser of the Institute for Astronomy. Operations should begin by 2007. The science objectives of Pan-STARRS span the full range from planetary to cosmolog- ical. The instrument will conduct a survey of the solar system that is staggering in power compared to anything yet attempted. A useful measure of the raw survey power, SP , of a telescope is given by AΩ SP = (1) θ2 where A [m2] is the collecting area of the telescope primary, Ω [deg2] is the solid angle that is imaged and θ [arcsec] is the full-width at half maximum (FWHM) of the images { 2 { produced by the telescope. -
Ice & Stone 2020
Ice & Stone 2020 WEEK 17: APRIL 19-25, 2020 Presented by The Earthrise Institute # 17 Authored by Alan Hale This week in history APRIL 19 20 21 22 23 24 25 APRIL 20, 1910: Comet 1P/Halley passes through perihelion at a heliocentric distance of 0.587 AU. Halley’s 1910 return, which is described in a previous “Special Topics” presentation, was quite favorable, with a close approach to Earth (0.15 AU) and the exhibiting of the longest cometary tail ever recorded. APRIL 20, 2025: NASA’s Lucy mission is scheduled to pass by the main belt asteroid (52246) Donaldjohanson. Lucy is discussed in a previous “Special Topics” presentation. APRIL 19 20 21 22 23 24 25 APRIL 21, 2024: Comet 12P/Pons-Brooks is predicted to pass through perihelion at a heliocentric distance of 0.781 AU. This comet, with a discussion of its viewing prospects for 2024, is a previous “Comet of the Week.” APRIL 19 20 21 22 23 24 25 APRIL 22, 2020: The annual Lyrid meteor shower should be at its peak. Normally this shower is fairly weak, with a peak rate of not much more than 10 meteors per hour, but has been known to exhibit significantly stronger activity on occasion. The moon is at its “new” phase on April 23 this year and thus the viewing circumstances are very good. COVER IMAGE CREDIT: Front and back cover: This artist’s conception shows how families of asteroids are created. Over the history of our solar system, catastrophic collisions between asteroids located in the belt between Mars and Jupiter have formed families of objects on similar orbits around the sun. -
Spectroscopy and Thermal Modelling of the First Interstellar Object 1I/2017 U1 'Oumuamua
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen's University Research Portal Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 'Oumuamua Fitzsimmons, A., Snodgrass, C., Rozitis, B., Yang, B., Hyland, M., Seccull, T., ... Lacerda, P. (2018). Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 'Oumuamua. DOI: 10.1038/s41550-017-0361-4 Published in: Nature Astronomy Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:09. Sep. 2018 Spectroscopy and thermal modelling of the first interstel- lar object 1I/2017 U1 ‘Oumuamua Alan Fitzsimmons1, Colin Snodgrass2, Ben Rozitis2, Bin Yang3, Meabh´ Hyland1, Tom Seccull1, Michele T. -
Automated Trajectory Design for Impulsive and Low Thrust Interplanetary Mission Analysis Samuel Arthur Wagner Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Automated trajectory design for impulsive and low thrust interplanetary mission analysis Samuel Arthur Wagner Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Aerospace Engineering Commons, and the Applied Mathematics Commons Recommended Citation Wagner, Samuel Arthur, "Automated trajectory design for impulsive and low thrust interplanetary mission analysis" (2014). Graduate Theses and Dissertations. 14238. https://lib.dr.iastate.edu/etd/14238 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Automated trajectory design for impulsive and low thrust interplanetary mission analysis by Samuel Arthur Wagner A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Aerospace Engineering Program of Study Committee: Bong Wie, Major Professor John Basart Ran Dai Ping Lu Ambar Mitra Iowa State University Ames, Iowa 2014 Copyright © Samuel Arthur Wagner, 2014. All rights reserved. ii DEDICATION I would like to thank my parents and all my family and friends who have helped me through- out my time as a student. Without their support I wouldn't have been able to make it. iii TABLE OF CONTENTS DEDICATION . ii LIST OF TABLES . vii LIST OF FIGURES . x ACKNOWLEDGEMENTS . xiii CHAPTER 1. -
A Possible Naked-Eye Comet in March 9 February 2013, by Dr
A possible naked-eye comet in March 9 February 2013, by Dr. Tony Phillips the Big Dipper. "But" says Karl Battams of the Naval Research Lab, "prepare to be surprised. A new comet from the Oort Cloud is always an unknown quantity equally capable of spectacular displays or dismal failures." The Oort cloud is named after the 20th-century Dutch astronomer Jan Oort, who argued that such a cloud must exist to account for all the "fresh" comets that fall through the inner solar system. Unaltered by warmth and sunlight, the distant comets of the Oort cloud are like time capsules, harboring frozen gases and primitive, dusty material drawn from the original solar nebula 4.5 billion years ago. When these comets occasionally fall toward the sun, they bring their virgin ices with them. An artist's concept of the Oort cloud. Credit: NASA Because this is Comet Pan-STARRS first visit, it has never been tested by the fierce heat and gravitational pull of the sun. "Almost anything could Far beyond the orbits of Neptune and Pluto, where happen," says Battams. On one hand, the comet the sun is a pinprick of light not much brighter than could fall apart—a fizzling disappointment. On the other stars, a vast swarm of icy bodies circles the other hand, fresh veins of frozen material could solar system. Astronomers call it the "Oort Cloud," open up to spew garish jets of gas and dust into the and it is the source of some of history's finest night sky. comets. "Because of its small distance from the sun, Pan- One of them could be heading our way now. -
Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710
Bachelor Thesis University of Groningen Kapteyn Astronomical Institute Perturbation of the Oort Cloud by Close Stellar Encounter with Gliese 710 August 5, 2019 Author: Rens Juris Tesink Supervisors: Kateryna Frantseva and Nickolas Oberg Abstract Context: Our Sun is thought to have an Oort cloud, a spherically symmetric shell of roughly 1011 comets orbiting with semi major axes between ∼ 5 × 103 AU and 1 × 105 AU. It is thought to be possible that other stars also possess comet clouds. Gliese 710 is a star expected to have a close encounter with the Sun in 1.35 Myrs. Aims: To simulate the comet clouds around the Sun and Gliese 710 and investigate the effect of the close encounter. Method: Two REBOUND N-body simulations were used with the help of Gaia DR2 data. Simulation 1 had a total integration time of 4 Myr, a time-step of 1 yr, and 10,000 comets in each comet cloud. And Simulation 2 had a total integration time of 80,000 yr, a time-step of 0.01 yr, and 100,000 comets in each comet cloud. Results: Simulation 2 revealed a 1.7% increase in the semi-major axis at time of closest approach and a population loss of 0.019% - 0.117% for the Oort cloud. There was no statistically significant net change of the inclination of the comets during this encounter and a 0.14% increase in the eccentricity at the time of closest approach. Contents 1 Introduction 3 1.1 Comets . .3 1.2 New comets and the Oort cloud . .5 1.3 Structure of the Oort cloud . -
Week 5: January 26-February 1, 2020
5# Ice & Stone 2020 Week 5: January 26-February 1, 2020 Presented by The Earthrise Institute About Ice And Stone 2020 It is my pleasure to welcome all educators, students, topics include: main-belt asteroids, near-Earth asteroids, and anybody else who might be interested, to Ice and “Great Comets,” spacecraft visits (both past and Stone 2020. This is an educational package I have put future), meteorites, and “small bodies” in popular together to cover the so-called “small bodies” of the literature and music. solar system, which in general means asteroids and comets, although this also includes the small moons of Throughout 2020 there will be various comets that are the various planets as well as meteors, meteorites, and visible in our skies and various asteroids passing by Earth interplanetary dust. Although these objects may be -- some of which are already known, some of which “small” compared to the planets of our solar system, will be discovered “in the act” -- and there will also be they are nevertheless of high interest and importance various asteroids of the main asteroid belt that are visible for several reasons, including: as well as “occultations” of stars by various asteroids visible from certain locations on Earth’s surface. Ice a) they are believed to be the “leftovers” from the and Stone 2020 will make note of these occasions and formation of the solar system, so studying them provides appearances as they take place. The “Comet Resource valuable insights into our origins, including Earth and of Center” at the Earthrise web site contains information life on Earth, including ourselves; about the brighter comets that are visible in the sky at any given time and, for those who are interested, I will b) we have learned that this process isn’t over yet, and also occasionally share information about the goings-on that there are still objects out there that can impact in my life as I observe these comets. -
The Orbit and Size-Frequency Distribution of Long Period Comets Observed by Pan-STARRS1
The Orbit and Size-Frequency Distribution of Long Period Comets Observed by Pan-STARRS1 Benjamin Boea, Robert Jedickea, Karen J. Meecha, Paul Wiegertb, Robert J. Weryka, K. C. Chambersa, L. Denneaua, N. Kaiserd, R.-P. Kudritzkia,c, E. A. Magniera, R. J. Wainscoata, C. Watersa aInstitute for Astronomy, University of Hawai`i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA bThe University of Western Ontario, London, Ontario, Canada cMunich University Observatory, Munich, Germany dEcole´ Normale Sup´erieure, Paris, France. Abstract We introduce a new technique to estimate the comet nuclear size frequency distribution (SFD) that combines a cometary activity model with a survey simulation and apply it to 150 long period comets (LPC) detected by the Pan-STARRS1 near-Earth object survey. The debiased LPC size-frequency distribution is in agreement with previous estimates for large comets with nuclear diameter & 1 km but we measure a significant drop in the SFD slope for small objects with diameters < 1 km and approaching only 100 m diameter. Large objects have a slope αbig = 0:72 ± 0:09(stat:) ± 0:15(sys:) while small objects behave as αsmall = αHN 0:07 ± 0:03(stat:) ± 0:09(sys:) where the SFD is / 10 and HN represents the cometary nuclear absolute magnitude. The total number of LPCs that are > 1 km diameter and have perihelia q < 10 au is 0:46 ± 0:15 × 109 while there are only 2:4 ± 0:5(stat:) ± 2(sys:) × 109 objects with diameters > 100 m due to the shallow slope of the SFD for diameters < 1 km. We estimate that the total number of `potentially active' objects with diameters ≥ 1 km in the Oort cloud, objects that would be defined as LPCs if their perihelia evolved to < 10 au, is 12 (1:5±1)×10 with a combined mass of 1:3±0:9 M⊕.