Adriaan Blaauw, Stellar Populations and the Milky

Total Page:16

File Type:pdf, Size:1020Kb

Adriaan Blaauw, Stellar Populations and the Milky Adriaan Blaauw, Stellar Populations and the Milky Way Steven Majewski (University of Virginia) University of Chicago, Yerkes Observatory Blaauw @ 1947-8, ‘52, ‘53-57 (photo: November 1947) University of Chicago, Yerkes Observatory Blaauw @ 1947-8, ‘52, ‘53-57 (photo: November 1947) (back row, standing, from left) Daniel E. Harris, Guido Münch, Henry Chun, Su-Shu Huang, Douglas Duke, Mrs. Marshall H. Wrubel, Marshall H. Wrubel, Mr. Clearman, Arne Slettebak, William Bidelman, Roy Wickham, Irene Hansen, Frances H. Breen, Marjorie Hall Harrison, Gertrude Peterson, Robert H. Hardie, Arthur D. Code, K. N. Rao, Henry G. Horak, Marvin L. White, Frank N. Edmonds, Anne B. Underhill, Nancy G. Roman, Mr. Robinson, John Vosatka, Margaret Phillips, John G. Phillips, Mr. Sinha; (front row) Thornton L. Page, William W. Morgan, Charles Ridell, Yu-Che Chang, Adriaan Blaauw, Luise Oettinger Herzberg, Gerard P. Kuiper, Jan H. Oort, George Van Biesbroeck, William A. Hiltner, Otto Struve, Gerhard Herzberg, Marguerite Van Biesbroeck, Fred Pearson, Subrahmanyan Chandrasekhar. McCormick Observatory, University of Virginia • appointment with UVa Dept. of Astronomy from 1967-1969+ • visited about twice a year for about a month at a time • advised UVa Ph.D. thesis (Katy Garmany :“A Spectroscopic Study of the OB Association III Cepheus “) • responsible for bringing in one new faculty member (Tolbert) Early Stellar Populations Work (distinct from young stars, magnitude calibrations) • Blaauw (1939, BAN, VIII, 305; No. 315): “A determination of the longitude of the vertex and the ratio of the axes of the velocity-ellipsoid from the dispersions of the proper motions of faint stars measured at the Radcliffe Observatory” • Blaauw (1944, BAN, X, 19; No. 363): “On systematic errors in the proper motions of the General Catalogue and on the preference to be given either to this catalogue or the Dritter Fundamentalkatalog” • Hins & Blaauw* (1948, BAN, X, 365; No. 391): “Star-streaming among faint low-latitude stars investigated according to the dispersion method” (*A.B. completing work suggested by him to Dr. Hins but unfinished by Hins due to army service.) 1957 Vatican Conference • In 1957, invited to the Pontifical Academy of Sciences’ Semaine d’Etude on the Problem of Stellar Populations • “The Academy invites … illustrious scholars – comprising those who have especially studied a given question and have arrived at different conclusions -- to meet in Rome at its headquarters … so as to make a joint examination, free from all other preoccupations, of all data concerning the problem.” • “…the number of participants is strictly limited, in order to ensure freer and more intimate discussions.” 1957 Vatican Conference • In 1957, invited to the Pontifical Academy of Sciences’ Semaine d’Etude on the Problem of Stellar Populations Baade's 1944 definition of two primary stellar populations based on CMD type. Semaine d’Etude on the Problem of Stellar Populations of the Vatican Academy, May 1957 Semaine d’Etude on the Problem of Stellar Populations, May 1957 The 1957 Vatican Conference § A seminal event in the history of stellar populations studies. § Set modern context by defining principal Galactic populations. Blaauw at 1957 Vatican Conference § At age 42, Blaauw was among the younger participants (youngest of the “mid-career”). Blaauw at 1957 Vatican Conference § But as active a participant as other (more senior) participants. Blaauw at 1957 Vatican Conference § Among the participants who gave multiple presentations: • Session III: Young Population I Stars in the Spiral Arms of Our Galaxy: – “Stellar Associations” • Session VI: Stellar Populations in our Own Galaxy – “Kinematic Properties of the Strong and Weak-Line Stars” – A detailed analysis of “Miss Roman’s” data, focusing on planar kinematics Hins & Blaauw (1948, BAN, X, 365; No. 391): “Star-streaming among faint low-latitude stars investigated according to the dispersion method” • “The galactic longitude of the vertex direction is found to be 323°.5 ± 1°.8 (m.e.). This confirms the coincidence with the direction of the galactic center found in an earlier application of the method, • and indicates that the vertex deviation exhibited by bright stars is but a local phenomenon.” Revising Galactic Coordinates Blaauw et al. (1960, MNRAS, 121, 123) Blaauw et al. (1959, ApJ, 130, 702) Revising Galactic Coordinates Blaauw (1960, MNRAS, 121, 164) Revising Galactic Coordinates Blaauw (1960, MNRAS, 121, 164) Large variations by longitude due to local groupings like h and χ Persei. Negative values due to solar height above Galactic plane. Revising Galactic Coordinates Blaauw (1960, MNRAS, 121, 164) Farther objects more consistent, but still an overall tilt with respect to HI defined plane. Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Began with recap of Baade’s work, stressing primary focus on physical properties, spectral class and luminosity with location. Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Began with recap of Baade’s work, stressing primary focus on physical properties, spectral class and luminosity with location. • Pointed out the subsequent emphasis on adding kinematical trends (building on work of Jeans, Lindlbad, Oort, etc. previously showing MW = superposed “star streams” of different densities). Lindblad (1936) Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Began with recap of Baade’s work, stressing primary focus on physical properties, spectral class and luminosity with location. • Pointed out the subsequent emphasis on adding kinematical trends (building on work of Jeans, Lindlbad, Oort, etc. previously showing MW = superposed “star streams” of different densities • But that investigation of differences in chemical composition was in infancy (indeed, chemical uniformity seemed most impressive in work to date). Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Recalls Vatican Conference subdivision into additional, “intermediate” populations. • See also Blaauw’s retrospective on the Vatican Conference published in IAU Symp. 164 (1995) and reprinted in (1999, A&SS 267, 45). Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Recalls Vatican Conference subdivision into additional, “intermediate” populations. • Summarizes a top-down formation scenario resembling that described in Eggen, Lynden-Bell & Sandage (1962). • Early-formed stars metal-poor from outer halo on radial, plunging orbits. – Today have orbits to large radii and any orientation. – Metal poor, since formed before much of the ISM had cycled through generations of stars. • Late formed stars are metal-rich stars of disk and on circular orbits. – Formed from highly enriched gas after many generations of stars enriched ISM. Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Laments that 70% of mass is in “disk populations”, but their properties least well known, studies hampered by “prohibitively large interstellar absorption” and lack of high luminosity objects (like supergiants and Cepheids). • “The most promising objects for determining the large scale density distribution are the red giants, through the spectral classification in the near infrared.” Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Laments that 70% of mass is in “disk populations”, but their properties least well known, studies hampered by “prohibitively large interstellar absorption” and lack of high luminosity objects (like supergiants and Cepheids). • “The most promising objects for determining the large scale density distribution are the red giants, through the spectral classification in the near infrared.” • “These difficulties are also the reasons why the question of subdividing the disk population into categories with different degrees of central concen- tration formed a controversial subject at the Vatican Conference. We do not know how much larger the concentration toward the galactic center of the bright red giants is as compared to that of the weak-line stars.” • Anticipating the eventuality of a comprehensive, near infrared spectroscopic study like that just now being undertaken as the APOGEE project. The Concept of Galactic Chemical Enrichment Heavy elements created by nuclear fusion of lighter elements in stars. Burbidge et al. 1957 (B2FH) Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • Section 4: “Modern work on the relation between the kinematical and distributional properties and chemical parameters.” • Summarizes new emphasis to incorporate chemistry: • Spectral classification of globular clusters (Morgan, Mayall, Kinman) • Nancy Roman: kinematics of weak versus strong line stars • Photometric/spectrophotometric means: UVX, Stromgren m, ΔS ELS 1962 Wildey et al. 1962, Sandage 1969 Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • “Of great significance for the study of stellar populations is Wallerstein’s U,V velocity diagram…with discrimination according to … [Fe/H].” • “another significant way of discriminating stars with different kinematics… marking the stars…according to…the ratio of α-elements with respect to iron.” Wallerstein 1962 Stars and Stellar (1965) Chapter: “The Concept of Stellar Populations” • “Of great significance for the study of stellar populations is Wallerstein’s U,V velocity diagram…with discrimination according to … [Fe/H].” • “another significant way of discriminating stars with different kinematics… marking
Recommended publications
  • University of Groningen Kinematics and Stellar Populations of Dwarf
    University of Groningen Kinematics and stellar populations of dwarf elliptical galaxies Mentz, Jacobus Johannes IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2018 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Mentz, J. J. (2018). Kinematics and stellar populations of dwarf elliptical galaxies. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 09-10-2021 Kinematics and stellar populations of dwarf elliptical galaxies Proefschrift ter verkrijging van het doctoraat aan de Rijksuniversiteit Groningen op gezag van de rector magnificus prof.
    [Show full text]
  • A Radial Velocity Survey of the Carina Nebula's O-Type Stars
    A radial velocity survey of the Carina Nebula's O-type stars Item Type Article Authors Kiminki, Megan M; Smith, Nathan Citation Megan M Kiminki, Nathan Smith; A radial velocity survey of the Carina Nebula's O-type stars, Monthly Notices of the Royal Astronomical Society, Volume 477, Issue 2, 21 June 2018, Pages 2068–2086, https://doi.org/10.1093/mnras/sty748 DOI 10.1093/mnras/sty748 Publisher OXFORD UNIV PRESS Journal MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Rights © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. Download date 30/09/2021 21:29:15 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/628380 MNRAS 477, 2068–2086 (2018) doi:10.1093/mnras/sty748 Advance Access publication 2018 March 21 A radial velocity survey of the Carina Nebula’s O-type stars Megan M. Kiminki‹ and Nathan Smith Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721, USA Accepted 2018 March 14. Received 2018 March 11; in original form 2017 June 17 ABSTRACT We have obtained multi-epoch observations of 31 O-type stars in the Carina Nebula using the CHIRON spectrograph on the CTIO/SMARTS 1.5-m telescope. We measure their radial velocities to 1–2 km s−1 precision and present new or updated orbital solutions for the binary systems HD 92607, HD 93576, HDE 303312, and HDE 305536. We also compile radial velocities from the literature for 32 additional O-type and evolved massive stars in the region.
    [Show full text]
  • The Comet's Tale, and Therefore the Object As a Whole Would the Section Director Nick James Highlighted Have a Low Surface Brightness
    1 Diebold Schilling, Disaster in connection with two comets sighted in 1456, Lucerne Chronicle, 1513 (Wikimedia Commons) THE COMET’S TALE Comet Section – British Astronomical Association Journal – Number 38 2019 June britastro.org/comet Evolution of the comet C/2016 R2 (PANSTARRS) along a total of ten days on January 2018. Composition of pictures taken with a zoom lens from Teide Observatory in Canary Islands. J.J Chambó Bris 2 Table of Contents Contents Author Page 1 Director’s Welcome Nick James 3 Section Director 2 Melvyn Taylor’s Alex Pratt 6 Observations of Comet C/1995 01 (Hale-Bopp) 3 The Enigma of Neil Norman 9 Comet Encke 4 Setting up the David Swan 14 C*Hyperstar for Imaging Comets 5 Comet Software Owen Brazell 19 6 Pro-Am José Joaquín Chambó Bris 25 Astrophotography of Comets 7 Elizabeth Roemer: A Denis Buczynski 28 Consummate Comet Section Secretary Observer 8 Historical Cometary Amar A Sharma 37 Observations in India: Part 2 – Mughal Empire 16th and 17th Century 9 Dr Reginald Denis Buczynski 42 Waterfield and His Section Secretary Medals 10 Contacts 45 Picture Gallery Please note that copyright 46 of all images belongs with the Observer 3 1 From the Director – Nick James I hope you enjoy reading this issue of the We have had a couple of relatively bright Comet’s Tale. Many thanks to Janice but diffuse comets through the winter and McClean for editing this issue and to Denis there are plenty of images of Buczynski for soliciting contributions. 46P/Wirtanen and C/2018 Y1 (Iwamoto) Thanks also to the section committee for in our archive.
    [Show full text]
  • Stellar Dynamics and Stellar Phenomena Near a Massive Black Hole
    Stellar Dynamics and Stellar Phenomena Near A Massive Black Hole Tal Alexander Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl St, Rehovot, Israel 76100; email: [email protected] | Author's original version. To appear in Annual Review of Astronomy and Astrophysics. See final published version in ARA&A website: www.annualreviews.org/doi/10.1146/annurev-astro-091916-055306 Annu. Rev. Astron. Astrophys. 2017. Keywords 55:1{41 massive black holes, stellar kinematics, stellar dynamics, Galactic This article's doi: Center 10.1146/((please add article doi)) Copyright c 2017 by Annual Reviews. Abstract All rights reserved Most galactic nuclei harbor a massive black hole (MBH), whose birth and evolution are closely linked to those of its host galaxy. The unique conditions near the MBH: high velocity and density in the steep po- tential of a massive singular relativistic object, lead to unusual modes of stellar birth, evolution, dynamics and death. A complex network of dynamical mechanisms, operating on multiple timescales, deflect stars arXiv:1701.04762v1 [astro-ph.GA] 17 Jan 2017 to orbits that intercept the MBH. Such close encounters lead to ener- getic interactions with observable signatures and consequences for the evolution of the MBH and its stellar environment. Galactic nuclei are astrophysical laboratories that test and challenge our understanding of MBH formation, strong gravity, stellar dynamics, and stellar physics. I review from a theoretical perspective the wide range of stellar phe- nomena that occur near MBHs, focusing on the role of stellar dynamics near an isolated MBH in a relaxed stellar cusp.
    [Show full text]
  • Probabilistic Fundamental Stellar Parameters
    Solving some r-process issues in chemical evolution Ralph Schönrich (Oxford) Paul McMillan, Laurent Eyer, Walter Dehnen James Binney, Michael Aumer, Luca Casagrande Martin Asplund, David Weinberg Hokotezaka et al. (2018) Chemical evolution gas inflow/onflow IGM stars Chemical evolution gas Fe-rich inflow/onflow SNIa SNII+Ib,c IGM a-rich progenitors stars Chemical evolution gas Fe-rich inflow/onflow SNIa SNII+Ib,c IGM a-rich r-process progenitors outflow NM stars Hokotezaka et al. (2018) Some simple thoughts Assume constant loss fraction from yields What about the thick disc ridge? Neutron star mergers → r process later Doing a simple model Doing a simple model Chemical evolution gas Fe-rich inflow/onflow SNIa SNII+Ib,c IGM a-rich r-process progenitors outflow NM stars Trying to escape the usual links Hot air does not only make you fly, it can delay your evolution Short-lived isotopes in the early solar system Wasserburg et al. (2006) Chemical evolution gas condensation warm cool evaporation Fe-rich inflow/onflow direct enrichment SNIa SNII+Ib,c IGM a-rich r-process progenitors outflow NM stars Introducing the hot gas phase Introducing the hot gas phase Some simple thoughts Assume constant loss fraction from yields What about the thick disc ridge? Neutron star mergers → r process later Some simple thoughts Assume constant loss fraction from yields What about the thick disc ridge? Neutron star mergers → r process later Using the different factor Using the different factor Summary The hot vs. cold ISM is central for the evolution of „early“
    [Show full text]
  • Book of Abstracts
    KIAA / DoA 2019 Postdoc Science Days Book of Abstracts December 10th and 11th 2019 in the KIAA Auditorium Schedule Time Speaker Title Page k Tuesday December 10th 2019: 9:30 - 9:35 Gregory Herczeg Introduction Galaxy Formation and Evolution 9:35 - 9:55 Tomonari Michiyama (道山知成) Sub-mm observations of nearby merging galaxies 3 9:55 - 10:15 Bumhyun Lee (이범현) Deep Impact: molecular gas properties under strong ram pressure 3 10:15 - 10:35 Kexin Guo (郭可欣) The Roles of AGNs and Dynamical Process in Star Formation Quenching in Nearby 4 Disk Galaxies 10:35 - 10:55 Sonali Sachdeva Correlation of structure and stellar properties of galaxies 4 10:55 - 11:15 Min Du (杜敏) Intrinsic structures of disk galaxies identified in kinematics 5 Tea & Coffee Break Pulsars and Radio Sources 11:35 - 11:55 Xuhao Wu (武旭浩) How Can The Pulsar’s Maximum Mass Reach ∼3 M⊙ 5 11:55 - 12:15 Nicolas Caballero Pulsar-based timescales 5 12:15 - 12:35 Wei Hua Wang (汪卫华) The unique post-glitch behavior of the Crab pulsar as a possible signature of 6 superfluid PBF Lunch ISM, Star-Formation, and Supernovae 13:40 - 14:00 Toky Randriamampandry CALIFA bar pattern speed: toward a bar scaling relation 6 14:00 - 14:20 Moran Xia (夏默然) The Origin of The Stellar Mass-Stellar Metallicity Relation In the Milky Way 7 Satellites and Beyond 14:20 - 14:40 Juan Molina A spatially-resolved view of the gas kinematics in two star-forming galaxies at z~1.47 7 seen with ALMA and VLT-SINFONI 14:40 - 15:00 John Graham The Metallicity Distribution of Type II SNe Hosts 8 Tea & Coffee Break Active Galactic
    [Show full text]
  • Download the AAS 2011 Annual Report
    2011 ANNUAL REPORT AMERICAN ASTRONOMICAL SOCIETY aas mission and vision statement The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the universe. 1. The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public. 2. The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests. 3. The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science. 4. The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy. A 5. The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering. Adopted 7 June 2009 A S 2011 ANNUAL REPORT - CONTENTS 4 president’s message 5 executive officer’s message 6 financial report 8 press & media 9 education & outreach 10 membership 12 charitable donors 14 AAS/division meetings 15 divisions, committees & workingA groups 16 publishing 17 public policy A18 prize winners 19 member deaths 19 society highlights Established in 1899, the American Astronomical Society (AAS) is the major organization of professional astronomers in North America.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • The Galaxy in Context: Structural, Kinematic & Integrated Properties
    The Galaxy in Context: Structural, Kinematic & Integrated Properties Joss Bland-Hawthorn1, Ortwin Gerhard2 1Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006, Australia; email: [email protected] 2Max Planck Institute for extraterrestrial Physics, PO Box 1312, Giessenbachstr., 85741 Garching, Germany; email: [email protected] Annu. Rev. Astron. Astrophys. 2016. Keywords 54:529{596 Galaxy: Structural Components, Stellar Kinematics, Stellar This article's doi: 10.1146/annurev-astro-081915-023441 Populations, Dynamics, Evolution; Local Group; Cosmology Copyright c 2016 by Annual Reviews. Abstract All rights reserved Our Galaxy, the Milky Way, is a benchmark for understanding disk galaxies. It is the only galaxy whose formation history can be stud- ied using the full distribution of stars from faint dwarfs to supergiants. The oldest components provide us with unique insight into how galaxies form and evolve over billions of years. The Galaxy is a luminous (L?) barred spiral with a central box/peanut bulge, a dominant disk, and a diffuse stellar halo. Based on global properties, it falls in the sparsely populated \green valley" region of the galaxy colour-magnitude dia- arXiv:1602.07702v2 [astro-ph.GA] 5 Jan 2017 gram. Here we review the key integrated, structural and kinematic pa- rameters of the Galaxy, and point to uncertainties as well as directions for future progress. Galactic studies will continue to play a fundamen- tal role far into the future because there are measurements that can only be made in the near field and much of contemporary astrophysics depends on such observations. 529 Redshift (z) 20 10 5 2 1 0 1012 1011 ) ¯ 1010 M ( 9 r i 10 v 8 M 10 107 100 101 102 ) c p 1 k 10 ( r i v r 100 10-1 0.3 1 3 10 Time (Gyr) Figure 1 Left: The estimated growth of the Galaxy's virial mass (Mvir) and radius (rvir) from z = 20 to the present day, z = 0.
    [Show full text]
  • Biography of Horace Welcome Babcock
    NATIONAL ACADEMY OF SCIENCES H O R ACE W ELCOME B A B COC K 1 9 1 2 — 2 0 0 3 A Biographical Memoir by GEO R G E W . P R ESTON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2007 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph by Mount Wilson and Los Campanas Observatories HORACE WELCOME BABCOCK September 13, 1912−August 29, 2003 BY GEORGE W . P RESTON ORACE BABCOCK’S CAREER at the Mount Wilson and Palomar H(later, Hale) Observatories spanned more than three decades. During the first 18 years, from 1946 to 1964, he pioneered the measurement of magnetic fields in stars more massive than the sun, produced a famously successful model of the 22-year cycle of solar activity, and invented important instruments and techniques that are employed throughout the world to this day. Upon assuming the directorship of the observatories, he devoted his last 14 years to creating one of the world’s premier astronomical observatories at Las Campanas in the foothills of the Chilean Andes. CHILDHOOD AND EDUCATION Horace Babcock was born in Pasadena, California, the only child of Harold and Mary Babcock. Harold met Horace’s mother, Mary Henderson, in Berkeley during his student days at the College of Electrical Engineering, University of California. After brief appointments as a laboratory assis- tant at the National Bureau of Standards in 1906 and as a physics teacher at the University of California, Berkeley, in 1907, Horace’s father was invited by George Ellery Hale in 1908 to join the staff of the Mount Wilson Observatory (MWO), where he remained for the rest of his career.
    [Show full text]
  • Mass Models of NGC 6624 Without an Intermediate-Mass Black Hole
    MNRAS 473, 4832–4839 (2018) Preprint 30 November 2017 Compiled using MNRAS LATEX style file v3.0 Mass models of NGC 6624 without an intermediate-mass black hole Mark Gieles1?, Eduardo Balbinot1, Rashid I.S.M. Yaaqib1,Vincent Hénault-Brunet2, Alice Zocchi3;4, Miklos Peuten1, Peter G. Jonker2;5 1 Department of Physics, University of Surrey, Guildford, GU2 7XH, UK 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands 3 Dipartimento di Fisica e Astronomia, Università degli Studi di Bologna, viale Berti Pichat 6/2, I40127, Bologna, Italy 4 INAF - Osservatorio Astronomico di Bologna, Via Ranzani 1, I40127 Bologna, Italy 5 SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, NL-3584 CA Utrecht, The Netherlands Accepted 2017 October 11. Received 2017 11; in original form 2017 August 10 ABSTRACT An intermediate-mass black hole (IMBH) was recently reported to reside in the centre of the Galactic globular cluster (GC) NGC 6624, based on timing observations of a millisecond pul- sar (MSP) located near the cluster centre in projection. We present dynamical models with multiple mass components of NGC 6624 – without an IMBH – which successfully describe the surface brightness profile and proper motion kinematics from the Hubble Space Tele- scope (HST) and the stellar-mass function at different distances from the cluster centre. The maximum line-of-sight acceleration at the position of the MSP accommodates the inferred acceleration of the MSP, as derived from its first period derivative. With discrete realizations of the models we show that the higher-order period derivatives – which were previously used to derive the IMBH mass – are due to passing stars and stellar remnants, as previously shown analytically in literature.
    [Show full text]