HIDING in PLAIN SIGHT How Long Is the Coast of Singapore? Almost Infinite, According to Fractal Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pictures of Julia and Mandelbrot Sets
Pictures of Julia and Mandelbrot Sets Wikibooks.org January 12, 2014 On the 28th of April 2012 the contents of the English as well as German Wikibooks and Wikipedia projects were licensed under Cre- ative Commons Attribution-ShareAlike 3.0 Unported license. An URI to this license is given in the list of figures on page 143. If this document is a derived work from the contents of one of these projects and the content was still licensed by the project under this license at the time of derivation this document has to be licensed under the same, a similar or a compatible license, as stated in section 4b of the license. The list of contributors is included in chapter Contributors on page 141. The licenses GPL, LGPL and GFDL are included in chapter Licenses on page 151, since this book and/or parts of it may or may not be licensed under one or more of these licenses, and thus require inclusion of these licenses. The licenses of the figures are given in the list of figures on page 143. This PDF was generated by the LATEX typesetting software. The LATEX source code is included as an attachment (source.7z.txt) in this PDF file. To extract the source from the PDF file, we recommend the use of http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/ utility or clicking the paper clip attachment symbol on the lower left of your PDF Viewer, selecting Save Attachment. After ex- tracting it from the PDF file you have to rename it to source.7z. -
The Fractal Dimension of Islamic and Persian Four-Folding Gardens
Edinburgh Research Explorer The fractal dimension of Islamic and Persian four-folding gardens Citation for published version: Patuano, A & Lima, MF 2021, 'The fractal dimension of Islamic and Persian four-folding gardens', Humanities and Social Sciences Communications, vol. 8, 86. https://doi.org/10.1057/s41599-021-00766-1 Digital Object Identifier (DOI): 10.1057/s41599-021-00766-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Humanities and Social Sciences Communications General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 ARTICLE https://doi.org/10.1057/s41599-021-00766-1 OPEN The fractal dimension of Islamic and Persian four- folding gardens ✉ Agnès Patuano 1 & M. Francisca Lima 2 Since Benoit Mandelbrot (1924–2010) coined the term “fractal” in 1975, mathematical the- ories of fractal geometry have deeply influenced the fields of landscape perception, archi- tecture, and technology. Indeed, their ability to describe complex forms nested within each fi 1234567890():,; other, and repeated towards in nity, has allowed the modeling of chaotic phenomena such as weather patterns or plant growth. -
4.3 Discovering Fractal Geometry in CAAD
4.3 Discovering Fractal Geometry in CAAD Francisco Garcia, Angel Fernandez*, Javier Barrallo* Facultad de Informatica. Universidad de Deusto Bilbao. SPAIN E.T.S. de Arquitectura. Universidad del Pais Vasco. San Sebastian. SPAIN * Fractal geometry provides a powerful tool to explore the world of non-integer dimensions. Very short programs, easily comprehensible, can generate an extensive range of shapes and colors that can help us to understand the world we are living. This shapes are specially interesting in the simulation of plants, mountains, clouds and any kind of landscape, from deserts to rain-forests. The environment design, aleatory or conditioned, is one of the most important contributions of fractal geometry to CAAD. On a small scale, the design of fractal textures makes possible the simulation, in a very concise way, of wood, vegetation, water, minerals and a long list of materials very useful in photorealistic modeling. Introduction Fractal Geometry constitutes today one of the most fertile areas of investigation nowadays. Practically all the branches of scientific knowledge, like biology, mathematics, geology, chemistry, engineering, medicine, etc. have applied fractals to simulate and explain behaviors difficult to understand through traditional methods. Also in the world of computer aided design, fractal sets have shown up with strength, with numerous software applications using design tools based on fractal techniques. These techniques basically allow the effective and realistic reproduction of any kind of forms and textures that appear in nature: trees and plants, rocks and minerals, clouds, water, etc. For modern computer graphics, the access to these techniques, combined with ray tracing allow to create incredible landscapes and effects. -
The Implications of Fractal Fluency for Biophilic Architecture
JBU Manuscript TEMPLATE The Implications of Fractal Fluency for Biophilic Architecture a b b a c b R.P. Taylor, A.W. Juliani, A. J. Bies, C. Boydston, B. Spehar and M.E. Sereno aDepartment of Physics, University of Oregon, Eugene, OR 97403, USA bDepartment of Psychology, University of Oregon, Eugene, OR 97403, USA cSchool of Psychology, UNSW Australia, Sydney, NSW, 2052, Australia Abstract Fractals are prevalent throughout natural scenery. Examples include trees, clouds and coastlines. Their repetition of patterns at different size scales generates a rich visual complexity. Fractals with mid-range complexity are particularly prevalent. Consequently, the ‘fractal fluency’ model of the human visual system states that it has adapted to these mid-range fractals through exposure and can process their visual characteristics with relative ease. We first review examples of fractal art and architecture. Then we review fractal fluency and its optimization of observers’ capabilities, focusing on our recent experiments which have important practical consequences for architectural design. We describe how people can navigate easily through environments featuring mid-range fractals. Viewing these patterns also generates an aesthetic experience accompanied by a reduction in the observer’s physiological stress-levels. These two favorable responses to fractals can be exploited by incorporating these natural patterns into buildings, representing a highly practical example of biophilic design Keywords: Fractals, biophilia, architecture, stress-reduction, -
Rendering Hypercomplex Fractals Anthony Atella [email protected]
Rhode Island College Digital Commons @ RIC Honors Projects Overview Honors Projects 2018 Rendering Hypercomplex Fractals Anthony Atella [email protected] Follow this and additional works at: https://digitalcommons.ric.edu/honors_projects Part of the Computer Sciences Commons, and the Other Mathematics Commons Recommended Citation Atella, Anthony, "Rendering Hypercomplex Fractals" (2018). Honors Projects Overview. 136. https://digitalcommons.ric.edu/honors_projects/136 This Honors is brought to you for free and open access by the Honors Projects at Digital Commons @ RIC. It has been accepted for inclusion in Honors Projects Overview by an authorized administrator of Digital Commons @ RIC. For more information, please contact [email protected]. Rendering Hypercomplex Fractals by Anthony Atella An Honors Project Submitted in Partial Fulfillment of the Requirements for Honors in The Department of Mathematics and Computer Science The School of Arts and Sciences Rhode Island College 2018 Abstract Fractal mathematics and geometry are useful for applications in science, engineering, and art, but acquiring the tools to explore and graph fractals can be frustrating. Tools available online have limited fractals, rendering methods, and shaders. They often fail to abstract these concepts in a reusable way. This means that multiple programs and interfaces must be learned and used to fully explore the topic. Chaos is an abstract fractal geometry rendering program created to solve this problem. This application builds off previous work done by myself and others [1] to create an extensible, abstract solution to rendering fractals. This paper covers what fractals are, how they are rendered and colored, implementation, issues that were encountered, and finally planned future improvements. -
Harmonic and Fractal Image Analysis (2001), Pp. 3 - 5 3
O. Zmeskal et al. / HarFA - Harmonic and Fractal Image Analysis (2001), pp. 3 - 5 3 Fractal Analysis of Image Structures Oldřich Zmeškal, Michal Veselý, Martin Nežádal, Miroslav Buchníček Institute of Physical and Applied Chemistry, Brno University of Technology Purkynova 118, 612 00 Brno, Czech Republic [email protected] Introduction of terms Fractals − Fractals are of rough or fragmented geometric shape that can be subdivided in parts, each of which is (at least approximately) a reduced copy of the whole. − They are crinkly objects that defy conventional measures, such as length and are most often characterised by their fractal dimension − They are mathematical sets with a high degree of geometrical complexity that can model many natural phenomena. Almost all natural objects can be observed as fractals (coastlines, trees, mountains, and clouds). − Their fractal dimension strictly exceeds topological dimension Fractal dimension − The number, very often non-integer, often the only one measure of fractals − It measures the degree of fractal boundary fragmentation or irregularity over multiple scales − It determines how fractal differs from Euclidean objects (point, line, plane, circle etc.) Monofractals / Multifractals − Just a small group of fractals have one certain fractal dimension, which is scale invariant. These fractals are monofractals − The most of natural fractals have different fractal dimensions depending on the scale. They are composed of many fractals with the different fractal dimension. They are called „multifractals“ − To characterise set of multifractals (e.g. set of the different coastlines) we do not have to establish all their fractal dimensions, it is enough to evaluate their fractal dimension at the same scale Self-similarity/ Semi-self similarity − Fractal is strictly self-similar if it can be expressed as a union of sets, each of which is an exactly reduced copy (is geometrically similar to) of the full set (Sierpinski triangle, Koch flake). -
Synthesis of the Advance in and Application of Fractal Characteristics of Traffic Flow
Synthesis of the Advance in and Application of Fractal Characteristics of Traffic Flow Final Report Contract No. BDK80 977‐25 July 2013 Prepared by: Lehman Center for Transportation Research Florida International University Prepared for: Research Center Florida Department of Transportation Final Report Contract No. BDK80 977-25 Synthesis of the Advance in and Application of Fractal Characteristics of Traffic Flow Prepared by: Kirolos Haleem, Ph.D., P.E., Research Associate Priyanka Alluri, Ph.D., Research Associate Albert Gan, Ph.D., Professor Lehman Center for Transportation Research Department of Civil and Environmental Engineering Florida International University 10555 West Flagler Street, EC 3680 Miami, FL 33174 Phone: (305) 348-3116 Fax: (305) 348-2802 and Hongtai Li, Graduate Research Assistant Tao Li, Ph.D., Associate Professor School of Computer Science Florida International University 11200 SW 8th Street Miami, FL 33199 Phone: (305) 348-6036 Fax: (305) 348-3549 Prepared for: Research Center State of Florida Department of Transportation 605 Suwannee Street, M.S. 30 Tallahassee, FL 32399-0450 July 2013 DISCLAIMER The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the State of Florida Department of Transportation. iii METRIC CONVERSION CHART SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL LENGTH in inches 25.4 millimeters mm ft feet 0.305 meters m yd yards 0.914 meters m mi miles 1.61 kilometers km mm millimeters 0.039 inches in m meters 3.28 feet ft m meters -
오늘의 천체사진(APOD) 번역집 2013-4 Bigcrunch 소개글
오늘의 천체사진(APOD) 번역집 2013-4 BigCrunch 소개글 NASA에서 운영하는 오늘의 천체사진(Astronomy Picture of the Day, 이하 APOD)사이트는 1995년 6월 16일 첫번째 천체사진을 발표한 이래, 지금까지 하루도 빠짐없이 천체관련 사진 또는 동영상을 발표하고 있습니다. 본 블로그 북은 2013년 APOD를 통해 발표된 천체사진의 번역 모음집 두번째 편으로서 2013년 11월 1일부터 12월 31일까지 총 51개의 APOD 번역내역이 담겨 있습니다. 참고 : 2013년 발표 천체사진 중 과거에 이미 발표된 내용이 반복 게재된 경우, 그리고 동영상이 게재되어 본 블로그북 형식으로 담아낼 수 없는 경우는 제외되었으니 이점 참고하여 주십시오. 목차 1 목성의 삼중 일식 6 2 하이브리드 일식 9 3 뉴욕 상공의 일식 13 4 노르웨이 상공의 오로라 16 5 1만 3천미터 상공의 일식 20 6 우간다 상공의 일식 23 7 러브조이 혜성과 M44 26 8 불꽃놀이와 번개 사이의 혜성 30 9 개기일식 동안 촬영된 왕성한 활동력의 태양 33 10 토성의 그림자 속에서 바라본 토성 36 11 NGC 1097 39 12 태양의 스펙트럼 42 13 아이손 혜성 45 14 맥너트 혜성의 웅장한 꼬리 48 15 아이슬란드 상공의 오로라와 멋진 구름 51 16 4U1630-47 의 블랙홀 제트 54 17 미노타우르스 미사일의 궤적 57 18 캘리포니아 성운과 플레아데스 성단 60 19 스테레오 위성이 포착한 아이손 혜성 63 20 인디안 코브 상공의 헤일-밥 혜성 66 21 NGC 4921 69 22 시에라 네바다 산맥 위의 모자 구름 72 23 NGC 1999 75 24 태양 주위를 통과하기 전과 후의 아이손 혜성 79 25 은하 중심을 향해 발사되고 있는 레이저 82 26 M63 앞을 지나는 러브조이 혜성 86 27 로 오피유키(Rho Ophiuchi)의 찬란한 구름들 89 28 러브조이 혜성(C/2013 R1) 92 29 Abell 7 95 30 감마선을 내뿜는 지구와 하늘 98 31 구제프 크레이터 전경 - 에베레스트 파노라마(the Everest panorama) 102 32 풍차 위의 러브조이 혜성 105 33 세이퍼트의 6중 은하(Seyfert's Sextet) 108 34 지구에서 가장 추운 곳 111 35 알니탁, 알니렘, 민타카 114 36 다샨바오 습지 상공의 쌍동이 자리 유성우 118 37 NGC 7635 121 38 유로파 124 39 달에 내려선 탐사로봇 위투(Yutu) 127 40 테이드 화산 위의 유성우 130 41 핀란드에서 촬영된 빛기둥 133 42 다채로운 색깔의 달 136 43 호수의 세계 타이탄 140 44 태양활동관측위성이 다파장으로 바라본 태양 144 45 칠레에서 촬영된 쌍동이자리 유성우 148 46 Sharpless 2-308 151 47 M33의 수소구름 154 48 하트 성운 중심의 Melotte 15 159 49 알라스카의 오로라 162 50 환상적인 프렉탈의 풍경 165 51 말머리 성운 169 01 목성의 삼중 일식 목성의 삼중 일식 2013.11.16 22:02 세계표준시 10월 12일 새벽 5시 28분에 벨기에에서 촬영된 이 사진은 천체망원경에 웹카메라를 이용하여 촬영한 것으로서 목성의 달이 목성 상공을 지나면서 그 그림자를 목성 대기에 드리우고 있는 모습을 보여주고 있다. -
Analyse D'un Modèle De Représentations En N Dimensions De
Analyse d’un modèle de représentations en n dimensions de l’ensemble de Mandelbrot, exploration de formes fractales particulières en architecture. Jean-Baptiste Hardy 1 Département d’architecture de l’INSA Strasbourg ont contribués à la réalisation de ce mémoire Pierre Pellegrino Directeur de mémoire Emmanuelle P. Jeanneret Docteur en architecture Francis Le Guen Fractaliste, journaliste, explorateur Serge Salat Directeur du laboratoire des morphologies urbaines Novembre 2013 2 Sommaire Avant-propos .................................................................................................. 4 Introduction .................................................................................................... 5 1 Introduction aux fractales : .................................................... 6 1-1 Présentation des fractales �������������������������������������������������������������������� 6 1-1-1 Les fractales en architecture ������������������������������������������������������������� 7 1-1-2 Les fractales déterministes ................................................................ 8 1-2 Benoit Mandelbrot .................................................................................. 8 1-2-1 L’ensemble de Mandelbrot ................................................................ 8 1-2-2 Mandelbrot en architecture .............................................................. 9 Illustrations ................................................................................................... 10 2 Un modèle en n dimensions : -
Fractal Analysis of the Vascular Tree in the Human Retina
3 Jun 2004 22:39 AR AR220-BE06-17.tex AR220-BE06-17.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.bioeng.6.040803.140100 Annu. Rev. Biomed. Eng. 2004. 6:427–52 doi: 10.1146/annurev.bioeng.6.040803.140100 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on April 13, 2004 FRACTAL ANALYSIS OF THE VASCULAR TREE IN THE HUMAN RETINA BarryR.Masters Formerly, Gast Professor, Department of Ophthalmology, University of Bern, 3010 Bern, Switzerland; email: [email protected] Key Words fractals, fractal structures, eye, bronchial tree, retinal circulation, retinal blood vessel patterns, Murray Principle, optimal vascular tree, human lung, human bronchial tree I Abstract The retinal circulation of the normal human retinal vasculature is statis- tically self-similar and fractal. Studies from several groups present strong evidence that the fractal dimension of the blood vessels in the normal human retina is approximately 1.7. This is the same fractal dimension that is found for a diffusion-limited growth process, and it may have implications for the embryological development of the retinal vascular system. The methods of determining the fractal dimension for branching trees are reviewed together with proposed models for the optimal formation (Murray Princi- ple) of the branching vascular tree in the human retina and the branching pattern of the human bronchial tree. The limitations of fractal analysis of branching biological struc- tures are evaluated. Understanding the design principles of branching vascular systems and the human bronchial tree may find applications in tissue and organ engineering, i.e., bioartificial organs for both liver and kidney. -
Math Morphing Proximate and Evolutionary Mechanisms
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2009 Volume V: Evolutionary Medicine Math Morphing Proximate and Evolutionary Mechanisms Curriculum Unit 09.05.09 by Kenneth William Spinka Introduction Background Essential Questions Lesson Plans Website Student Resources Glossary Of Terms Bibliography Appendix Introduction An important theoretical development was Nikolaas Tinbergen's distinction made originally in ethology between evolutionary and proximate mechanisms; Randolph M. Nesse and George C. Williams summarize its relevance to medicine: All biological traits need two kinds of explanation: proximate and evolutionary. The proximate explanation for a disease describes what is wrong in the bodily mechanism of individuals affected Curriculum Unit 09.05.09 1 of 27 by it. An evolutionary explanation is completely different. Instead of explaining why people are different, it explains why we are all the same in ways that leave us vulnerable to disease. Why do we all have wisdom teeth, an appendix, and cells that if triggered can rampantly multiply out of control? [1] A fractal is generally "a rough or fragmented geometric shape that can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole," a property called self-similarity. The term was coined by Beno?t Mandelbrot in 1975 and was derived from the Latin fractus meaning "broken" or "fractured." A mathematical fractal is based on an equation that undergoes iteration, a form of feedback based on recursion. http://www.kwsi.com/ynhti2009/image01.html A fractal often has the following features: 1. It has a fine structure at arbitrarily small scales. -
Winning Financial Trading with Equilibrium Fractal Wave
Winning Financial Trading with Equilibrium Fractal Wave Subtitle: Introduction to Equilibrium Fractal Wave Trading Author: Young Ho Seo Finance Engineer and Quantitative Trader Book Version: 2.2 (16 October 2018) Publication Date: 13 February 2017 Total Pages counted in MS-Word: 121 Total Words counted in MS-Word: 14,500 [email protected] www.algotrading-investment.com About the book This book will introduce you the brand new concept called “Equilibrium fractal wave” for the financial trading. This powerful concept can guide and improve your practical trading. The concept taught here can also help the strategist to create new trading strategies for Stock and Forex market. Please note that this book was designed to introduce the equilibrium fractal wave concept mostly. If you are looking for more trading strategy oriented guidelines, then please read “Financial Trading with Five Regularities of Nature” instead of this book. You can find the Book “Financial Trading with Five Regularities of Nature”: Scientific Guide to Price Action and Pattern Trading (Seo, 2017) in both from amazon.com and algotrading-investment.com. 2 Risk Disclaimer The information in this book is for educational purposes only. Leveraged trading carries a high level of risk and is not suitable for all market participants. The leverage associated with trading can result in losses, which may exceed your initial investment. Consider your objectives and level of experience carefully before trading. If necessary, seek advice from a financial advisor. Important warning: If you find the figures and table numberings are mismatched in this book, please report it to: [email protected] 3 Table of Contents About the book ..................................................................................................................................