The Implications of Fractal Fluency for Biophilic Architecture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fractal 3D Magic Free
FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction. -
The Fractal Dimension of Islamic and Persian Four-Folding Gardens
Edinburgh Research Explorer The fractal dimension of Islamic and Persian four-folding gardens Citation for published version: Patuano, A & Lima, MF 2021, 'The fractal dimension of Islamic and Persian four-folding gardens', Humanities and Social Sciences Communications, vol. 8, 86. https://doi.org/10.1057/s41599-021-00766-1 Digital Object Identifier (DOI): 10.1057/s41599-021-00766-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Humanities and Social Sciences Communications General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 ARTICLE https://doi.org/10.1057/s41599-021-00766-1 OPEN The fractal dimension of Islamic and Persian four- folding gardens ✉ Agnès Patuano 1 & M. Francisca Lima 2 Since Benoit Mandelbrot (1924–2010) coined the term “fractal” in 1975, mathematical the- ories of fractal geometry have deeply influenced the fields of landscape perception, archi- tecture, and technology. Indeed, their ability to describe complex forms nested within each fi 1234567890():,; other, and repeated towards in nity, has allowed the modeling of chaotic phenomena such as weather patterns or plant growth. -
Fractal Expressionism—Where Art Meets Science
Santa Fe Institute. February 14, 2002 9:04 a.m. Taylor page 1 Fractal Expressionism—Where Art Meets Science Richard Taylor 1 INTRODUCTION If the Jackson Pollock story (1912–1956) hadn’t happened, Hollywood would have invented it any way! In a drunken, suicidal state on a stormy night in March 1952, the notorious Abstract Expressionist painter laid down the foundations of his masterpiece Blue Poles: Number 11, 1952 by rolling a large canvas across the oor of his windswept barn and dripping household paint from an old can with a wooden stick. The event represented the climax of a remarkable decade for Pollock, during which he generated a vast body of distinct art work commonly referred to as the “drip and splash” technique. In contrast to the broken lines painted by conventional brush contact with the canvas surface, Pollock poured a constant stream of paint onto his horizontal canvases to produce uniquely contin- uous trajectories. These deceptively simple acts fuelled unprecedented controversy and polarized public opinion around the world. Was this primitive painting style driven by raw genius or was he simply a drunk who mocked artistic traditions? Twenty years later, the Australian government rekindled the controversy by pur- chasing the painting for a spectacular two million (U.S.) dollars. In the history of Western art, only works by Rembrandt, Velazquez, and da Vinci had com- manded more “respect” in the art market. Today, Pollock’s brash and energetic works continue to grab attention, as witnessed by the success of the recent retro- spectives during 1998–1999 (at New York’s Museum of Modern Art and London’s Tate Gallery) where prices of forty million dollars were discussed for Blue Poles: Number 11, 1952. -
Transformations in Sirigu Wall Painting and Fractal Art
TRANSFORMATIONS IN SIRIGU WALL PAINTING AND FRACTAL ART SIMULATIONS By Michael Nyarkoh, BFA, MFA (Painting) A Thesis Submitted to the School of Graduate Studies, Kwame Nkrumah University of Science and Technology in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Faculty of Fine Art, College of Art and Social Sciences © September 2009, Department of Painting and Sculpture DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text. Michael Nyarkoh (PG9130006) .................................... .......................... (Student’s Name and ID Number) Signature Date Certified by: Dr. Prof. Richmond Teye Ackam ................................. .......................... (Supervisor’s Name) Signature Date Certified by: K. B. Kissiedu .............................. ........................ (Head of Department) Signature Date CHAPTER ONE INTRODUCTION Background to the study Traditional wall painting is an old art practiced in many different parts of the world. This art form has existed since pre-historic times according to (Skira, 1950) and (Kissick, 1993). In Africa, cave paintings exist in many countries such as “Egypt, Algeria, Libya, Zimbabwe and South Africa”, (Wilcox, 1984). Traditional wall painting mostly by women can be found in many parts of Africa including Ghana, Southern Africa and Nigeria. These paintings are done mostly to enhance the appearance of the buildings and also serve other purposes as well. “Wall painting has been practiced in Northern Ghana for centuries after the collapse of the Songhai Empire,” (Ross and Cole, 1977). -
Catalog INTERNATIONAL
اﻟﻤﺆﺗﻤﺮ اﻟﻌﺎﻟﻤﻲ اﻟﻌﺸﺮون ﻟﺪﻋﻢ اﻻﺑﺘﻜﺎر ﻓﻲ ﻣﺠﺎل اﻟﻔﻨﻮن واﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎ The 20th International Symposium on Electronic Art Ras al-Khaimah 25.7833° North 55.9500° East Umm al-Quwain 25.9864° North 55.9400° East Ajman 25.4167° North 55.5000° East Sharjah 25.4333 ° North 55.3833 ° East Fujairah 25.2667° North 56.3333° East Dubai 24.9500° North 55.3333° East Abu Dhabi 24.4667° North 54.3667° East SE ISEA2014 Catalog INTERNATIONAL Under the Patronage of H.E. Sheikha Lubna Bint Khalid Al Qasimi Minister of International Cooperation and Development, President of Zayed University 30 October — 8 November, 2014 SE INTERNATIONAL ISEA2014, where Art, Science, and Technology Come Together vi Richard Wheeler - Dubai On land and in the sea, our forefathers lived and survived in this environment. They were able to do so only because they recognized the need to conserve it, to take from it only what they needed to live, and to preserve it for succeeding generations. Late Sheikh Zayed bin Sultan Al Nahyan viii ZAYED UNIVERSITY Ed unt optur, tet pla dessi dis molore optatiist vendae pro eaqui que doluptae. Num am dis magnimus deliti od estem quam qui si di re aut qui offic tem facca- tiur alicatia veliqui conet labo. Andae expeliam ima doluptatem. Estis sandaepti dolor a quodite mporempe doluptatus. Ustiis et ium haritatur ad quaectaes autemoluptas reiundae endae explaboriae at. Simenis elliquide repe nestotae sincipitat etur sum niminctur molupta tisimpor mossusa piendem ulparch illupicat fugiaep edipsam, conecum eos dio corese- qui sitat et, autatum enimolu ptatur aut autenecus eaqui aut volupiet quas quid qui sandaeptatem sum il in cum sitam re dolupti onsent raeceperion re dolorum inis si consequ assequi quiatur sa nos natat etusam fuga. -
Beauty Visible and Divine
BEAUTY VISIBLE AND DIVINE Robert Augros Contemporary artists have, in great measure, abandoned the quest for beauty. Critic Anthony O'Hear points out that the arts today "are aiming at other things ... which, by and large, are incompatible with beauty." 1 Some artists contend it is the duty of art to proclaim the alienation, nihilism, despair, and meaninglessness of modern life. They see cultivation of beauty as hypocritical, preferring to shock and disgust the pub lic with scatological, pornographic, or blasphemous works. Others have politicized their art to such an extent that they no longer concern themselves with beauty or excellence but only with propagandizing the cause. Others consider most important in a work not what is perceptible by the audience but the abstract theory it represents. This yields, among other things, the unrelieved dissonance of atonal music, never pop ular with concert-goers, and the ugliness of much of modern architecture. Virgil Aldrich asserts that the "beautiful has, for good reasons, been discarded by careful critics."2 Reflecting on the motives for eliminating beauty in recent art, Arthur Robert M. Augros has a Ph.D. in philosophy from Universite Laval. He is currently a tenured full professor in his thirty-fourth year at Saint Ansehn College, Manchester, N.H. Dr. Augros has written numerous articles for professional journals and has co-authored two books: The New Story of Sdence and The New Biology (Principle Source Publisher, 2004). 1 Anthony O'Hear, "Prospects for Beauty" in The Journal of the Royal Institute of Philosophy 2001; 48 (Supp.), 176. 2 Virgil C. -
Harmonic and Fractal Image Analysis (2001), Pp. 3 - 5 3
O. Zmeskal et al. / HarFA - Harmonic and Fractal Image Analysis (2001), pp. 3 - 5 3 Fractal Analysis of Image Structures Oldřich Zmeškal, Michal Veselý, Martin Nežádal, Miroslav Buchníček Institute of Physical and Applied Chemistry, Brno University of Technology Purkynova 118, 612 00 Brno, Czech Republic [email protected] Introduction of terms Fractals − Fractals are of rough or fragmented geometric shape that can be subdivided in parts, each of which is (at least approximately) a reduced copy of the whole. − They are crinkly objects that defy conventional measures, such as length and are most often characterised by their fractal dimension − They are mathematical sets with a high degree of geometrical complexity that can model many natural phenomena. Almost all natural objects can be observed as fractals (coastlines, trees, mountains, and clouds). − Their fractal dimension strictly exceeds topological dimension Fractal dimension − The number, very often non-integer, often the only one measure of fractals − It measures the degree of fractal boundary fragmentation or irregularity over multiple scales − It determines how fractal differs from Euclidean objects (point, line, plane, circle etc.) Monofractals / Multifractals − Just a small group of fractals have one certain fractal dimension, which is scale invariant. These fractals are monofractals − The most of natural fractals have different fractal dimensions depending on the scale. They are composed of many fractals with the different fractal dimension. They are called „multifractals“ − To characterise set of multifractals (e.g. set of the different coastlines) we do not have to establish all their fractal dimensions, it is enough to evaluate their fractal dimension at the same scale Self-similarity/ Semi-self similarity − Fractal is strictly self-similar if it can be expressed as a union of sets, each of which is an exactly reduced copy (is geometrically similar to) of the full set (Sierpinski triangle, Koch flake). -
LOCKDOWN Maths Inspired Art No Longer an Etching but a Multi Medium Artwork A3 Size
LOCKDOWN Maths Inspired Art No Longer an Etching but a Multi Medium Artwork A3 size Gr11 /// PMM /// Term 2 /// 2020 Term 2’s theme has been inspired by the http://www.mathart.co.za/ competition initiated by the education department. We want to explore the link between making art and understanding maths principles. Each learner is to find a connection between a visual composition and being able to explain this using a mathematical explanation. Patterns, tessellations, fractals, proportion and perspective are all themes one could explore in this term 2 project. I suggest learners keep their final compositions simple and clean. Simple black line work as we are producing hard ground etchings in class. Due to the lockdown situation I would like each learner to produce their final practical at home. We will stick to the same theme as you have all done much work in your SB. What I would like is a final artwork, No smaller than A3 in whatever and whichever materials you have in your space at home. Please don't forget that stationary shops including art shops are open. I understand money is tight however pens, pencils, food colouring, coffee we should be able to work with easier. You will take your final composition and produce a final artwork with your ideas and creativity around “Maths in Art”. Suggestions for paper - cardboard boxes, old cereal boxes, collaging paper together. Please explore the format of the canvas - square, rectangular, oval are all options. [Each learn has already been given a brass etching plate and therefore has the size (39com x18cm) of the final composition. -
Analyse D'un Modèle De Représentations En N Dimensions De
Analyse d’un modèle de représentations en n dimensions de l’ensemble de Mandelbrot, exploration de formes fractales particulières en architecture. Jean-Baptiste Hardy 1 Département d’architecture de l’INSA Strasbourg ont contribués à la réalisation de ce mémoire Pierre Pellegrino Directeur de mémoire Emmanuelle P. Jeanneret Docteur en architecture Francis Le Guen Fractaliste, journaliste, explorateur Serge Salat Directeur du laboratoire des morphologies urbaines Novembre 2013 2 Sommaire Avant-propos .................................................................................................. 4 Introduction .................................................................................................... 5 1 Introduction aux fractales : .................................................... 6 1-1 Présentation des fractales �������������������������������������������������������������������� 6 1-1-1 Les fractales en architecture ������������������������������������������������������������� 7 1-1-2 Les fractales déterministes ................................................................ 8 1-2 Benoit Mandelbrot .................................................................................. 8 1-2-1 L’ensemble de Mandelbrot ................................................................ 8 1-2-2 Mandelbrot en architecture .............................................................. 9 Illustrations ................................................................................................... 10 2 Un modèle en n dimensions : -
M. C. Escher's Association with Scientists
BRIDGES Mathematical Connections in Art, Music, and Science M. C. Escher's Association with Scientists J. Taylor Hollist Department of Mathematical Sciences State University of New York Oneonta, NY 13820-4015 E-mail: [email protected] Abstract Mathematicians, crystallographers, engineers, chemists, and physicists were among the first admirers of Escher's graphic art. Escher felt closer to people in the physical sciences than he did to his fellow artists because of the praise he received from them. Some of Escher's artwork was done more like an engineering project using ruler and comPass than in a free spirit mode. Mathematicians continue to promote his work, and they continue to use his periodic patterns of animal figures as clever illustrations of symmetry. Introduction For more than 40 years, scientists have been impressed with the graphic art of M. C. Escher, recognizing with fascination the laws of physics contained within his work. Psychologists use his optical illusions and distorted views of life as enchanting examples in the study of vision. Mathematicians continue to use his periodic patterns of animal figures as clever illustrations of translation, rotation and reflection symmetry. Escher's visual images relate directly to many scientific and mathematical principles. Some of his drawings give visual examples of the infinite process. Many scientists see in his work visual metaphors of their scientific theories. My interest in Escher stems from my many years of teaching geometry and the fact that some of Escher's work gives excellent examples of translation. symmetry, rotational symmetry, glide reflection symmetry, and line reflection symmetry. Also, some of his work relates to models in non-Euclidean geometry. -
HONR229P: Mathematics and Art
HONR229P: Mathematics and Art Fall 2004 Professor: Niranjan Ramachandran 4115 Mathematics Building, 5-5080, [email protected] Office Hours: Tuesdays 2pm - 4pm. Class meets Tuesdays and Thursdays 12:30pm-1:45pm in Math Building 0401. Course page: www.math.umd.edu/~atma/Doc1.htm Course description: The aim of this course is to introduce students to the interactions, interrelations, and analogies between mathematics and art. Mathematicians (and scientists, in general) are in search of ideas, truth and beauty, not too different from artists. Our task will be to see the parallels between the viewpoints, the inspirations, the goals of (and the works produced by) artists and scientists. We shall begin with examples from history of art (such as the theory of perspective due to Leonardo da Vinci), works of art (such as Durer's Melancholia, Escher’s Waterfall), architecture (Parthenon, Le Corbusier) to illustrate the impact of mathematics on art. Of special interest to us will be the period of the Italian Renaissance and also the early part of the 20th century (the new viewpoint on space-time). The affinity of music with mathematics will also be explored (as in the music of Bach, or the foundations of tone, the role of harmony). We shall then talk about beauty in mathematics; this will be amply illustrated with examples from the history of mathematics. Emphasis will be put on the aesthetic aspect of things. We will even see how truth and beauty come together in a beautiful proof. All through the semester, we will be comparing and contrasting the two subjects. -
Fractal Analysis of the Vascular Tree in the Human Retina
3 Jun 2004 22:39 AR AR220-BE06-17.tex AR220-BE06-17.sgm LaTeX2e(2002/01/18) P1: IKH 10.1146/annurev.bioeng.6.040803.140100 Annu. Rev. Biomed. Eng. 2004. 6:427–52 doi: 10.1146/annurev.bioeng.6.040803.140100 Copyright c 2004 by Annual Reviews. All rights reserved First published online as a Review in Advance on April 13, 2004 FRACTAL ANALYSIS OF THE VASCULAR TREE IN THE HUMAN RETINA BarryR.Masters Formerly, Gast Professor, Department of Ophthalmology, University of Bern, 3010 Bern, Switzerland; email: [email protected] Key Words fractals, fractal structures, eye, bronchial tree, retinal circulation, retinal blood vessel patterns, Murray Principle, optimal vascular tree, human lung, human bronchial tree I Abstract The retinal circulation of the normal human retinal vasculature is statis- tically self-similar and fractal. Studies from several groups present strong evidence that the fractal dimension of the blood vessels in the normal human retina is approximately 1.7. This is the same fractal dimension that is found for a diffusion-limited growth process, and it may have implications for the embryological development of the retinal vascular system. The methods of determining the fractal dimension for branching trees are reviewed together with proposed models for the optimal formation (Murray Princi- ple) of the branching vascular tree in the human retina and the branching pattern of the human bronchial tree. The limitations of fractal analysis of branching biological struc- tures are evaluated. Understanding the design principles of branching vascular systems and the human bronchial tree may find applications in tissue and organ engineering, i.e., bioartificial organs for both liver and kidney.