New Methods for Estimating Fractal Dimensions of Coastlines

Total Page:16

File Type:pdf, Size:1020Kb

New Methods for Estimating Fractal Dimensions of Coastlines New Methods for Estimating Fractal Dimensions of Coastlines by Jonathan David Klotzbach A Thesis Submitted to the Faculty of The College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida May 1998 New Methods for Estimating Fractal Dimensions of Coastlines by Jonathan David Klotzbach This thesis was prepared under the direction of the candidate's thesis advisor, Dr. Richard Voss, Department of Mathematical Sciences, and has been approved by the members of his supervisory committee. It was submitted to the faculty of The College of Science and was accepted in partial fulfillment of the requirements for the degree of Master of Science. SUPERVISORY COMMITTEE: ~~~y;::ThesisAMo/ ~-= Mathematical Sciences Date 11 Acknowledgements I would like to thank my advisor, Dr. Richard Voss, for all of his help and insight into the world of fractals and in the world of computer programming. You have given me guidance and support during this process and without you, this never would have been completed. You have been an inspiration to me. I would also like to thank my committee members, Dr. Heinz- Otto Peitgen and Dr. Mingzhou Ding, for their help and support. Thanks to Rich Roberts, a graduate student in the Geography Department at Florida Atlantic University, for all of his help converting the data from the NOAA CD into a format which I could use in my analysis. Without his help, I would have been lost. Thanks to all of the faculty an? staff in the Math Department who made my stay here so enjoyable. I would especially like to thank Dr. Lee Klingler for all of the time and encouragement he has given me over the years. Thanks to Dr. Ron Mullin for his care and commitment to students and his availability to be of help whenever needed. r would like to thank my parents, David and Barbara Klotzbach, for their advice and encouragement throughout this entire process. I would also like to thank my new parents, Dan and Jean y ankovich, for their continued support. Most of all, I would like to thank my wife Danielle for the love, encouragement, and patience that she has shown during this time. I love you. Ill Abstract Author: Jonathan David Klotzbach Title: New Methods for Estimating Fractal Dimensions of Coastlines Institution: Florida Atlantic University Thesis Advisor: Dr. Richard Voss Degree: Master of Science Year: 1998 A coastline is an example of a statistically self-similar fractal. A standard characterization walks a ruler of fixed size along the coast and estimates fractal dimension from the power-law relationship between length and ruler size. Multiple intersection can lead to ambiguity in choosing the next step. The standard method always chooses the fitst intersection along the curve. Variations Were developed to choose intersections which highlight geographic properties. The land method measures accessibility to the coast from land at each size while the water method probes water access. Measurements on sections of the East and West Coasts of the United States typically showed the land length exceeding water. Jumps in water length as step size decreased were often caused by narrow rivers or bays which have few corresponding land features. Simple recursive constructions were inadequate to model this asymmetry. iv Contents 1 Introduction .......................................................................... 1 1.1 Overview. 1 2 Fractal Geometry and Fractal Dimension .................................... 4 2.1 What is a fractal?.. ..... .... ................. ......... ................ ..... 4 2.2 Topological Dimension... .... ... ........................................ 7 2.3 Hausdorff Dimension...................... ............................... 8 2.4 Self-Similarity Dimension...... ... .. ........................ ............ 10 2.5 Divider Dimension.......... ... ... ...... ...... .... .. .............. ........ 12 2.6 Box-Counting Dimension............................... ....... .. ........ 13 3 Fractals Applied to Coastlines .................................................. 15 3.1 History.. .. ................ ..................... ..... .......... ............. 15 3.2 Mathematics and Coastlines. ............... ............. ............. ... 15 3.3 Criticisms. ... .. ..... .. ......... ............ ...................... .... ....... 17 3.3.1 Last Partial Step Problem.......... ................... .. ....... 18 3.3.2 Starting Point Problem.......................... ... ... ........... 20 3.3.3 Non-linearity in Log-Log Plots............................ ..... 20 3.3.4 Limited Range of Measurement....... ... ....................... 21 v 4 A New Approach to Fractal Coastline Characterization................... 22 4.1 Introduction............................ ................................. ... 22 4.2 The Four Methods................ ............. ... ........... ....... ... .... 23 4.3 The Data.......... ......... ......... .... ..... ............. ... ............... 25 4.4 Land vs. Water Results... ....... ............ ............. .............. .. 28 5 Modeling Coastlines by Fractal Methods...................................... 42 6 Future Research.................................................................... 48 7 Conclusion............................................................................ 50 Bibliography......................................................................... 51 VI List of Dlustrations Figure 2-1 Koch Curve................................................................ ... 5 Figure 2-2 Modified Koch Curve...................................................... 6 Figure 3-1 San Francisco Bay......................................................... .. 17 Figure 3-2 Example of Large Partial Step Error................. ..................... 19 Figure 3-3 Four methods for the New England Coast............. ................... 21 Figure 4-1 Analysis of the four methods............................................... 23 Figure 4-2 Land & Water methods on the New England Coast..................... 24 Figure 4-3 First & Last methods on the New England Coast....................... 25 Figure 4-4 East and West Coast section breakdown..... ........... ................. 26 Figure 4-5 The six different coastlines...................................... ........... 26 Figure 4-6 Log-log plots for the various coastlines................................... 29 Figure 4-7 Land and water methods for Oregon & northern California........... 31 Figure 4-8 Water method in San Francisco Bay (2000 m.).. .. ... ... .. .. ... ... 32 Figure 4-9 Water method in San Francisco Bay (700 m.).. ... .. ... .. .. .... .. .. .... 33 Figure 4-10 Water method in Washington state (walking north to south).......... 34 Figure 4-11 · Water method in Admiralty Inlet, WA............. ... ........................ 34 Figure 4-12 Data from water method in Washington (north to south)............... 35 Figure 4-13 Water method in Washington state (walking north to south).. ... ..... 36 Figure 4-14 Data from water method in Washington (south to north) .... ........... 36 Figure 4-15 Water method in Puget Sound, W A........................................ 36 Figure 4-16 Data from water method on West Coast.................................. 37 Figure 4-17 San Francisco Bay........................................................... 39 Figure 4-18 Land vs. Water Difference .................................................. 41 Figure 5-1 Coastline formed by random Koch generator .......... ... .............. 43 Figure 5-2 Coastlines using Koch generators of length 0.3 & 0.4 .................. 44 Figure 5-3 Best attempt using Koch generators (overlap at small scales) ........ 45 Figure 5-4 Zig-zag fractal. ............................................................... 46 Figure 5-5 Best attempt using zig-zag generator (overlap at small scales) ....... 47 vii Chapter 1 Introduction 1.1 Overview Coastlines, the boundary between land and water, and other natural boundaries have long been a subject of human fascination. For centuries, their irregularity and variation over time have defied attempts at characterization using simple methods based on Euclidean geometry. Many nations throughout history established their borders by using natural features such as mountain ranges and rivers. These boundaries were easily observed, simplifying the determination of a nation's territory. However, attempts at measuring these natural objects often led to frustration because of their irregular shape. Coastlines have also defied such quantification attempts. Early cartographers attempted to capture the shapes and lengths of various coastlines around the world by drawing maps to represent their observations. With the use of satellite imaging and computers, more detailed data has been gathered on coastlines. Some maps are able to locate a position to within a few meters of its true location. Thus, with this abundance of technology and data at our disposal, it would appear to be a simple task to measure the length of a coastline. One of the difficulties in measuring lengths of natural objects is that our intuition based on Euclidean shapes fails when applied to objects like coastlines. Measuring the length of smooth curves is a simple process of successive approximations by line segments. In order to obtain more accurate measurements, smaller segments can be used. As the segment size approaches 0, the sum of the lengths of the segments will approach the length of the curve. However, 1
Recommended publications
  • Using Fractal Dimension for Target Detection in Clutter
    KIM T. CONSTANTIKES USING FRACTAL DIMENSION FOR TARGET DETECTION IN CLUTTER The detection of targets in natural backgrounds requires that we be able to compute some characteristic of target that is distinct from background clutter. We assume that natural objects are fractals and that the irregularity or roughness of the natural objects can be characterized with fractal dimension estimates. Since man-made objects such as aircraft or ships are comparatively regular and smooth in shape, fractal dimension estimates may be used to distinguish natural from man-made objects. INTRODUCTION Image processing associated with weapons systems is fractal. Falconer1 defines fractals as objects with some or often concerned with methods to distinguish natural ob­ all of the following properties: fine structure (i.e., detail jects from man-made objects. Infrared seekers in clut­ on arbitrarily small scales) too irregular to be described tered environments need to distinguish the clutter of with Euclidean geometry; self-similar structure, with clouds or solar sea glint from the signature of the intend­ fractal dimension greater than its topological dimension; ed target of the weapon. The discrimination of target and recursively defined. This definition extends fractal from clutter falls into a category of methods generally into a more physical and intuitive domain than the orig­ called segmentation, which derives localized parameters inal Mandelbrot definition whereby a fractal was a set (e.g.,texture) from the observed image intensity in order whose "Hausdorff-Besicovitch dimension strictly exceeds to discriminate objects from background. Essentially, one its topological dimension.,,2 The fine, irregular, and self­ wants these parameters to be insensitive, or invariant, to similar structure of fractals can be experienced firsthand the kinds of variation that the objects and background by looking at the Mandelbrot set at several locations and might naturally undergo because of changes in how they magnifications.
    [Show full text]
  • The Fractal Dimension of Islamic and Persian Four-Folding Gardens
    Edinburgh Research Explorer The fractal dimension of Islamic and Persian four-folding gardens Citation for published version: Patuano, A & Lima, MF 2021, 'The fractal dimension of Islamic and Persian four-folding gardens', Humanities and Social Sciences Communications, vol. 8, 86. https://doi.org/10.1057/s41599-021-00766-1 Digital Object Identifier (DOI): 10.1057/s41599-021-00766-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Humanities and Social Sciences Communications General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 ARTICLE https://doi.org/10.1057/s41599-021-00766-1 OPEN The fractal dimension of Islamic and Persian four- folding gardens ✉ Agnès Patuano 1 & M. Francisca Lima 2 Since Benoit Mandelbrot (1924–2010) coined the term “fractal” in 1975, mathematical the- ories of fractal geometry have deeply influenced the fields of landscape perception, archi- tecture, and technology. Indeed, their ability to describe complex forms nested within each fi 1234567890():,; other, and repeated towards in nity, has allowed the modeling of chaotic phenomena such as weather patterns or plant growth.
    [Show full text]
  • The Implications of Fractal Fluency for Biophilic Architecture
    JBU Manuscript TEMPLATE The Implications of Fractal Fluency for Biophilic Architecture a b b a c b R.P. Taylor, A.W. Juliani, A. J. Bies, C. Boydston, B. Spehar and M.E. Sereno aDepartment of Physics, University of Oregon, Eugene, OR 97403, USA bDepartment of Psychology, University of Oregon, Eugene, OR 97403, USA cSchool of Psychology, UNSW Australia, Sydney, NSW, 2052, Australia Abstract Fractals are prevalent throughout natural scenery. Examples include trees, clouds and coastlines. Their repetition of patterns at different size scales generates a rich visual complexity. Fractals with mid-range complexity are particularly prevalent. Consequently, the ‘fractal fluency’ model of the human visual system states that it has adapted to these mid-range fractals through exposure and can process their visual characteristics with relative ease. We first review examples of fractal art and architecture. Then we review fractal fluency and its optimization of observers’ capabilities, focusing on our recent experiments which have important practical consequences for architectural design. We describe how people can navigate easily through environments featuring mid-range fractals. Viewing these patterns also generates an aesthetic experience accompanied by a reduction in the observer’s physiological stress-levels. These two favorable responses to fractals can be exploited by incorporating these natural patterns into buildings, representing a highly practical example of biophilic design Keywords: Fractals, biophilia, architecture, stress-reduction,
    [Show full text]
  • Fractal Curves and Complexity
    Perception & Psychophysics 1987, 42 (4), 365-370 Fractal curves and complexity JAMES E. CUTI'ING and JEFFREY J. GARVIN Cornell University, Ithaca, New York Fractal curves were generated on square initiators and rated in terms of complexity by eight viewers. The stimuli differed in fractional dimension, recursion, and number of segments in their generators. Across six stimulus sets, recursion accounted for most of the variance in complexity judgments, but among stimuli with the most recursive depth, fractal dimension was a respect­ able predictor. Six variables from previous psychophysical literature known to effect complexity judgments were compared with these fractal variables: symmetry, moments of spatial distribu­ tion, angular variance, number of sides, P2/A, and Leeuwenberg codes. The latter three provided reliable predictive value and were highly correlated with recursive depth, fractal dimension, and number of segments in the generator, respectively. Thus, the measures from the previous litera­ ture and those of fractal parameters provide equal predictive value in judgments of these stimuli. Fractals are mathematicalobjectsthat have recently cap­ determine the fractional dimension by dividing the loga­ tured the imaginations of artists, computer graphics en­ rithm of the number of unit lengths in the generator by gineers, and psychologists. Synthesized and popularized the logarithm of the number of unit lengths across the ini­ by Mandelbrot (1977, 1983), with ever-widening appeal tiator. Since there are five segments in this generator and (e.g., Peitgen & Richter, 1986), fractals have many curi­ three unit lengths across the initiator, the fractionaldimen­ ous and fascinating properties. Consider four. sion is log(5)/log(3), or about 1.47.
    [Show full text]
  • Dimension and Dimensional Reduction in Quantum Gravity
    May 2017 Dimension and Dimensional Reduction in Quantum Gravity S. Carlip∗ Department of Physics University of California Davis, CA 95616 USA Abstract , A number of very different approaches to quantum gravity contain a common thread, a hint that spacetime at very short distances becomes effectively two dimensional. I review this evidence, starting with a discussion of the physical meaning of “dimension” and concluding with some speculative ideas of what dimensional reduction might mean for physics. arXiv:1705.05417v2 [gr-qc] 29 May 2017 ∗email: [email protected] 1 Why Dimensional Reduction? What is the dimension of spacetime? For most of physics, the answer is straightforward and uncontroversial: we know from everyday experience that we live in a universe with three dimensions of space and one of time. For a condensed matter physicist, say, or an astronomer, this is simply a given. There are a few exceptions—surface states in condensed matter that act two-dimensional, string theory in ten dimensions—but for the most part dimension is simply a fixed, and known, external parameter. Over the past few years, though, hints have emerged from quantum gravity suggesting that the dimension of spacetime is dynamical and scale-dependent, and shrinks to d 2 at very small ∼ distances or high energies. The purpose of this review is to summarize this evidence and to discuss some possible implications for physics. 1.1 Dimensional reduction and quantum gravity As early as 1916, Einstein pointed out that it would probably be necessary to combine the newly formulated general theory of relativity with the emerging ideas of quantum mechanics [1].
    [Show full text]
  • Harmonic and Fractal Image Analysis (2001), Pp. 3 - 5 3
    O. Zmeskal et al. / HarFA - Harmonic and Fractal Image Analysis (2001), pp. 3 - 5 3 Fractal Analysis of Image Structures Oldřich Zmeškal, Michal Veselý, Martin Nežádal, Miroslav Buchníček Institute of Physical and Applied Chemistry, Brno University of Technology Purkynova 118, 612 00 Brno, Czech Republic [email protected] Introduction of terms Fractals − Fractals are of rough or fragmented geometric shape that can be subdivided in parts, each of which is (at least approximately) a reduced copy of the whole. − They are crinkly objects that defy conventional measures, such as length and are most often characterised by their fractal dimension − They are mathematical sets with a high degree of geometrical complexity that can model many natural phenomena. Almost all natural objects can be observed as fractals (coastlines, trees, mountains, and clouds). − Their fractal dimension strictly exceeds topological dimension Fractal dimension − The number, very often non-integer, often the only one measure of fractals − It measures the degree of fractal boundary fragmentation or irregularity over multiple scales − It determines how fractal differs from Euclidean objects (point, line, plane, circle etc.) Monofractals / Multifractals − Just a small group of fractals have one certain fractal dimension, which is scale invariant. These fractals are monofractals − The most of natural fractals have different fractal dimensions depending on the scale. They are composed of many fractals with the different fractal dimension. They are called „multifractals“ − To characterise set of multifractals (e.g. set of the different coastlines) we do not have to establish all their fractal dimensions, it is enough to evaluate their fractal dimension at the same scale Self-similarity/ Semi-self similarity − Fractal is strictly self-similar if it can be expressed as a union of sets, each of which is an exactly reduced copy (is geometrically similar to) of the full set (Sierpinski triangle, Koch flake).
    [Show full text]
  • The Small Inductive Dimension Can Be Raised by the Adjunction of a Single Point
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MATHEMATICS THE SMALL INDUCTIVE DIMENSION CAN BE RAISED BY THE ADJUNCTION OF A SINGLE POINT BY ERIC K. VAN DOUWEN (Communicated by Prof. R. TIBXMAN at the meeting of June 30, 1973) Unless otherwise indicated, all spaces are metrizable. 1. INTRODUCTION In this note we construct a metrizable space P containing a point p such that ind P\@} = 0 and yet ind P = 1, thus showing that the small inductive dimension of a metrizable space can be raised by the adjunction of a single point. (Without the metrizsbility condition such on example has already been constructed by Dowker [3, p. 258, exercise Cl). So the behavior of the small inductive dimension is in contrast with that of the dimension functions Ind and dim, which, as is well known, cannot be raised by the edjunction of a single point [3, p. 274, exercises B and C]. The construction of our example stems from the proof of the equality of ind and Ind on the class of separable metrizable spaces, as given in [lo, p. 1781. We make use of the fact that there exists a metrizable space D with ind D = 0 and Ind D = 1 [ 141. This space is completely metrizable. Hence our main example, and the two related examples, also are com- pletely metrizable. Following [7, p, 208, example 3.3.31 the example is used to show that there is no finite closed sum theorem for the small inductive dimension, even on the class of metrizable spaces.
    [Show full text]
  • Metrizable Spaces Where the Inductive Dimensions Disagree
    TRANSACTIONS OF THE AMERICAN MATHEMATICALSOCIETY Volume 318, Number 2, April 1990 METRIZABLE SPACES WHERE THE INDUCTIVE DIMENSIONS DISAGREE JOHN KULESZA Abstract. A method for constructing zero-dimensional metrizable spaces is given. Using generalizations of Roy's technique, these spaces can often be shown to have positive large inductive dimension. Examples of N-compact, complete metrizable spaces with ind = 0 and Ind = 1 are provided, answering questions of Mrowka and Roy. An example with weight c and positive Ind such that subspaces with smaller weight have Ind = 0 is produced in ZFC. Assuming an additional axiom, for each cardinal X a space of positive Ind with all subspaces with weight less than A strongly zero-dimensional is constructed. I. Introduction There are three classical notions of dimension for a normal topological space X. The small inductive dimension, denoted ind(^T), is defined by ind(X) = -1 if X is empty, ind(X) < n if each p G X has a neighborhood base of open sets whose boundaries have ind < n - 1, and ind(X) = n if ind(X) < n and n is as small as possible. The large inductive dimension, denoted Ind(Jf), is defined by Ind(X) = -1 if X is empty, \t\c\(X) < n if each closed C c X has a neighborhood base of open sets whose boundaries have Ind < n — 1, and Ind(X) = n if Ind(X) < n and n is as small as possible. The covering dimension, denoted by dim(X), is defined by dim(A') = -1 if X is empty, dim(A') < n if for each finite open cover of X there is a finite open refining cover such that no point is in more than n + 1 of the sets in the refining cover and, dim(A") = n if dim(X) < n and n is as small as possible.
    [Show full text]
  • Analyse D'un Modèle De Représentations En N Dimensions De
    Analyse d’un modèle de représentations en n dimensions de l’ensemble de Mandelbrot, exploration de formes fractales particulières en architecture. Jean-Baptiste Hardy 1 Département d’architecture de l’INSA Strasbourg ont contribués à la réalisation de ce mémoire Pierre Pellegrino Directeur de mémoire Emmanuelle P. Jeanneret Docteur en architecture Francis Le Guen Fractaliste, journaliste, explorateur Serge Salat Directeur du laboratoire des morphologies urbaines Novembre 2013 2 Sommaire Avant-propos .................................................................................................. 4 Introduction .................................................................................................... 5 1 Introduction aux fractales : .................................................... 6 1-1 Présentation des fractales �������������������������������������������������������������������� 6 1-1-1 Les fractales en architecture ������������������������������������������������������������� 7 1-1-2 Les fractales déterministes ................................................................ 8 1-2 Benoit Mandelbrot .................................................................................. 8 1-2-1 L’ensemble de Mandelbrot ................................................................ 8 1-2-2 Mandelbrot en architecture .............................................................. 9 Illustrations ................................................................................................... 10 2 Un modèle en n dimensions :
    [Show full text]
  • Fractal Dimension of Self-Affine Sets: Some Examples
    FRACTAL DIMENSION OF SELF-AFFINE SETS: SOME EXAMPLES G. A. EDGAR One of the most common mathematical ways to construct a fractal is as a \self-similar" set. A similarity in Rd is a function f : Rd ! Rd satisfying kf(x) − f(y)k = r kx − yk for some constant r. We call r the ratio of the map f. If f1; f2; ··· ; fn is a finite list of similarities, then the invariant set or attractor of the iterated function system is the compact nonempty set K satisfying K = f1[K] [ f2[K] [···[ fn[K]: The set K obtained in this way is said to be self-similar. If fi has ratio ri < 1, then there is a unique attractor K. The similarity dimension of the attractor K is the solution s of the equation n X s (1) ri = 1: i=1 This theory is due to Hausdorff [13], Moran [16], and Hutchinson [14]. The similarity dimension defined by (1) is the Hausdorff dimension of K, provided there is not \too much" overlap, as specified by Moran's open set condition. See [14], [6], [10]. REPRINT From: Measure Theory, Oberwolfach 1990, in Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II, numero 28, anno 1992, pp. 341{358. This research was supported in part by National Science Foundation grant DMS 87-01120. Typeset by AMS-TEX. G. A. EDGAR I will be interested here in a generalization of self-similar sets, called self-affine sets. In particular, I will be interested in the computation of the Hausdorff dimension of such sets.
    [Show full text]
  • Fractal Geometry and Applications in Forest Science
    ACKNOWLEDGMENTS Egolfs V. Bakuzis, Professor Emeritus at the University of Minnesota, College of Natural Resources, collected most of the information upon which this review is based. We express our sincere appreciation for his investment of time and energy in collecting these articles and books, in organizing the diverse material collected, and in sacrificing his personal research time to have weekly meetings with one of us (N.L.) to discuss the relevance and importance of each refer- enced paper and many not included here. Besides his interdisciplinary ap- proach to the scientific literature, his extensive knowledge of forest ecosystems and his early interest in nonlinear dynamics have helped us greatly. We express appreciation to Kevin Nimerfro for generating Diagrams 1, 3, 4, 5, and the cover using the programming package Mathematica. Craig Loehle and Boris Zeide provided review comments that significantly improved the paper. Funded by cooperative agreement #23-91-21, USDA Forest Service, North Central Forest Experiment Station, St. Paul, Minnesota. Yg._. t NAVE A THREE--PART QUE_.gTION,, F_-ACHPARToF:WHICH HA# "THREEPAP,T_.<.,EACFi PART" Of:: F_.AC.HPART oF wHIct4 HA.5 __ "1t4REE MORE PARTS... t_! c_4a EL o. EP-.ACTAL G EOPAgTI_YCoh_FERENCE I G;:_.4-A.-Ti_E AT THB Reprinted courtesy of Omni magazine, June 1994. VoL 16, No. 9. CONTENTS i_ Introduction ....................................................................................................... I 2° Description of Fractals ....................................................................................
    [Show full text]
  • An Investigation of Fractals and Fractal Dimension
    An Investigation of Fractals and Fractal Dimension Student: Ian Friesen Advisor: Dr. Andrew J. Dean April 10, 2018 Contents 1 Introduction 2 1.1 Fractals in Nature . 2 1.2 Mathematically Constructed Fractals . 2 1.3 Motivation and Method . 3 2 Basic Topology 5 2.1 Metric Spaces . 5 2.2 String Spaces . 7 2.3 Hausdorff Metric . 8 3 Topological Dimension 9 3.1 Refinement . 9 3.2 Zero-dimensional Spaces . 9 3.3 Covering Dimension . 10 4 Measure Theory 12 4.1 Outer/Inner Lebesgue Measure . 12 4.2 Carath´eodory Measurability . 13 4.3 Two dimensional Lebesgue Measure . 14 5 Self-similarity 14 5.1 Ratios . 14 5.2 Examples and Calculations . 15 5.3 Chaos Game . 17 6 Fractal Dimension 18 6.1 Hausdorff Measure . 18 6.2 Packing Measure . 21 6.3 Fractal Definition . 24 7 Fractals and the Complex Plane 25 7.1 Julia Sets . 25 7.2 Mandelbrot Set . 26 8 Conclusion 27 1 1 Introduction 1.1 Fractals in Nature There are many fractals in nature. Most of these have some level of self-similarity, and are called self-similar objects. Basic examples of these include the surface of cauliflower, the pat- tern of a fern, or the edge of a snowflake. Benoit Mandelbrot (considered to be the father of frac- tals) thought to measure the coastline of Britain and concluded that using smaller units of mea- surement led to larger perimeter measurements. Mathematically, as the unit of measurement de- creases in length and becomes more precise, the perimeter increases in length.
    [Show full text]