Charlotte Harbor NEP Special Issue of Florida Scientist A

Total Page:16

File Type:pdf, Size:1020Kb

Charlotte Harbor NEP Special Issue of Florida Scientist A ISSN: 0098-4590 Monitoring Colonial Nesting Birds in Estero Bay Aquatic Preserve ................. Cheryl P. Clark and Raymond E. Leary 216 Salinity Regression Modeling: Novel Flow Weighting and Use for Biological Evaluations in the Myakka River ................................................................ L. K. Dixon 229 A Water Clarity Evaluation and Tracking Tool for the Estuarine Waters of Lemon Bay, Charlotte Harbor and Estero Bay, Florida .............................. Michael R. Wessel, Lisa Beever, Judy Ott, and Anthony Janicki 241 Quadrat vs. Video Assessment of Macroalgae Cover: A Methods Comparison Keleigh Provost, A. J. Martignette, Eric Milbrandt, and J. Siwicke 249 Effectiveness of Anti-Fouling Coatings in Southwest Florida’s Estuarine and Marine Waters, with Emphasis on Real-Time Observing Systems ............ N. Martin, L. Coen, A. J. Martignette, E. Milbrandt, J. Siwicke, and M. Thompson 259 Volume 76 Spring, 2013 Number 2 Grassed Swale Drainage Provides Significant Reductions in Stormwater Pollutant Loads ........................................................................................... Charlotte Harbor NEP Special Issue of Florida Scientist A. Willis, B. Cunningham, and J. Ryan 275 “The State of Our Watersheds and Estuaries” Using a Collaborative Partnership to Monitor Stormwater Best Management Practice Effectiveness: A Process and Project Summary ........................... Dedication and Acknowldgments ...................................................................... i Michael Lohr, Kim Arnold, David W. Ceilley, Tim Denison, 2011 Watershed Summit: The State of Our Watershed and Estuaries ............... Edwin M. Everham, III, Kim Fikoski, and Eric Livingston 283 Lisa B. Beever 81 A Watershed Analysis of Permitted Coastal Wetland Impacts and Mitigation Results of the Florida Department of Environmental Protection, Charlotte Harbor Assessment Methods within the Charlotte Harbor National Estuary Aquatic Preserves’ Seagrass Monitoring Program from 1999–2009 ............ Program ...................................................................................................... M. Brown, R. Leary, N. Langenberg, M. McMurray, and H. Stafford 92 James W. Beever, III, Whitney Gray, Daniel Cobb, and Tim Walker 310 Seagrass in the Caloosahatchee River Estuary: The Effect of Annual Rainfall Retrospective Analysis and Sea Level Rise Modeling of Coastal Habitat Change Patterns ....................................................................................................... in Charlotte Harbor to Identify Restoration and Adaption Priorities .......... Beth A. Orlando, Peter H. Doering, and Robert H. Chamberlain 107 L. Geselbracht, K. Freeman, E. Kelly, D. Gordon, and A. Birch 328 Description of the Benthic Macroinvertebrate Communities of Four Tidal Creeks Along the Eastern Shore of Charlotte Harbor ................................. Albert S. Walton, Jennifer L. Nelson, Christopher J. Nappi, Renee M. Duffey, and Erin C. Rasnake 121 Ten Years of the Southwest Florida Frog Monitoring Network: Natural Variation and Human-Driven Changes ....................................................................... Edwin M. Everham, III, David W. Ceilley, Dean A. Croshaw, Joan Firth, Charles Gunnels, Deb Dorsett Hanson, Sylvie Mariolan, Rebecca J. Spear, Brenda Thomas, Daniel E. VanNorman, Benjamin M. Whitmore, and John R. Cassani 138 Freshwater Fish Communities and Habitat Use in the Peace River, Florida...... Marvin E. Call, Dawn R. Sechler, Steven Canter, and Philip W. Stevens 150 Comparative Ecology of Euryhaline and Freshwater Predators in a Subtropical Floodplain River ......................................................................................... David A. Blewett, Philip W. Stevens, and Marvin E. Call 166 The Effects of Environmental Disturbance on the Abundance of Two Recreationally-Important Fishes in a Subtropical Floodplain River ........ David A. Blewett and Philip W. Stevens 191 Fish Community Structure of Streams and Canals at Babcock Ranch, Charlotte and Lee Counties, Florida ........................................................................... David W. Ceilley, Laura Brady-Herrero, Kendra Niemec, Kory M. Ross, John A. Ferlita, and Edwin M. Everham, III 198 (Continued on the Back Cover) FLORIDA SCIENTIST INSTRUCTION TO AUTHORS QUARTERLY JOURNAL OF THE FLORIDA ACADEMY OF SCIENCES Copyright © by the Florida Academy of Sciences, Inc. 2013 This information is available at a web site: Editor: Dr. James D. Austin FAS site: http://www.floridaacademyofsciences.org (select “Florida Scientist”). The Florida Academy of Sciences Web page, indicated above, allows interested persons to join the Florida Acad- Department of Wildlife Ecology & Conservation, emy of Sciences and pay dues. Institute of Food & Agricultural Sciences, University of Florida P.O. Box 110430, Gainesville, Florida 32611 FLORIDA ACADEMY OF SCIENCES Phone: (352) 846-0646, e-mail: [email protected] Editors Emeriti: Professor Dean Martin and Mrs. Barbara Martin SPONSORS Chemistry Department, University of South Florida HDR Engineering, Inc., Tampa Business Manager: Dr. Richard L. Turner Membership applications, subscriptions, renewals, and changes of address should be addressed to Florida Department of Biological Sciences, Florida Institute of Technology, Academy of Sciences, Orlando Science Center, 777 East Princeton St., Orlando, FL 32803. Phone: (407) 514- 2079 150 West University Boulevard, Melbourne, Florida 32901-6975 Send purchase orders, payments for reprints and publication charges, orders for back issues and other jour- Phone: (321) 674-8196, e-mail: [email protected] nal business matters to the Business Manager, Dr. Richard L. Turner, Department of Biological Sciences, FIT, http://www.floridaacademyofsciences.org 150 W. University Blvd., Melbourne, FL 32901-6975 Phone: (321) 674-8196, e-mail: [email protected] Florida Scientist is included in the following Abstracting and Indexing sources (active, electronic) Ageline The Florida Scientist is published quarterly by the Florida Academy of Sciences, Inc., a Agricola (Agricultural OnLine Access) non-profit scientific and educational association. Membership is open to individuals or institu- Animal Behavior Abstracts tions interested in supporting science in its broadest sense. Applications may be obtained from Aquatic Sciences & Fisheries Abstracts the website. Biodiversity Heritage Library Biological Abstracts Original articles containing new knowledge, or new interpretations of knowledge, are Biology Digest welcomed in any field of science as represented by the sections of the Academy, viz., Bio- BIOSIS Previews logical Sciences, Conservation, Earth and Planetary Sciences, Medical Sciences, Physical Sci- C S A Sustainability Science Abstracts (Cambridge Scientific Abstracts) ences, Science Teaching, and Social Sciences. Also, contributions will be considered which Chemical Abstracts present new applications of scientific knowledge to practical problems within fields of interest EBSCO host (full text) Ecology Abstracts (Bethesda) to the Academy. Articles must not duplicate in any substantial way material that is published Entomology Abstracts elsewhere. Contributions are accepted only from members of the Academy and so papers sub- Environmental Engineering Abstracts (Online Edition) mitted by non-members will be accepted only after the authors join the Academy. Instructions Environmental Sciences and Pollution Management for preparations of manuscripts are inside the back cover. FISHLIT (Grahamstown, South Africa) GeoRef Oceanic Abstracts Officers for 2013–2014 Pollution Abstracts FLORIDA ACADEMY OF SCIENCES ProQuest (full text) Referativnyi Zhurnal Founded 1936 Speleological Abstracts President: Dr. Sanjay Sesodia Secretary: Dr. Jeremy Montague Water Resources Abstracts (Online, Bethesda) Wildlife Review Abstracts Barry University Department of Natural and Health Sciences Zoological Record School of Graduate Medical Sciences Barry University 11300 NE 2nd Ave. Miami Shores, FL 33161 Miami Shores, FL 33161 Treasurer: Dr. Stephen E. Dunham President-Elect: Dr. Mark Chiappone 5711 Tuscany Terrace Department of Arts & Sciences Tamarac, FL 33321 Miami-Dade College, Homestead Campus 500 College Terrace Executive Director: Edward A. Haddad Homestead, FL 33030 e-mail: [email protected] Past-President: Dr. David Karlen Program Chair: Ms. Kelli A. Zargiel Environmental Protection Commission Department of Marine & Environmental Systems Hillsborough County Florida Institute of Technology 3629 Queen Palm Dr. 150 West University Boulevard Tampa, FL 33619 Melbourne, FL 32901-6975 Published by The Florida Academy of Sciences, Inc. Printing by Allen Press, Inc., Lawrence, Kansas Florida Scientist QUARTERLY JOURNAL OF THE FLORIDA ACADEMY OF SCIENCES JAMES AUSTIN, Editor DONNA L. GOSNELL, Co-Editor Volume 76 Spring, 2013 Number 2 GUEST EDITORS PETER H. DOERING,SOUTH FLORIDA WATER MANAGEMENT DISTRICT JUDITH A. OTT,CHARLOTTE HARBOR NATIONAL ESTUARY PROGRAM, LEAD GUEST EDITOR PHILIP W. STEVENS,FLORIDA FISH AND WILDLIFE CONSERVATION COMMISSION S. GREGORY TOLLEY,FLORIDA GULF COAT UNIVERSITY DEDICATION—This issue is dedicated to the thousands of individual partners of the Charlotte Harbor National Estuary Program who share their knowledge, efforts and enthusiasm to collectively protect and restore the exceptional natural resources found throughout our watershed. ACKNOWLEDGMENTS—It is with sincere gratitude that the Charlotte Harbor National Estuary Program (CHNEP) and Lead
Recommended publications
  • A Herpetofaunal Survey of the Santee National Wildlife Refuge Submitted
    A Herpetofaunal Survey of the Santee National Wildlife Refuge Submitted to the U.S. Fish and Wildlife Service October 5, 2012 Prepared by: Stephen H. Bennett Wade Kalinowsky South Carolina Department of Natural Resources Introduction The lack of baseline inventory data of herpetofauna on the Santee National Wildlife Refuge, in general and the Dingle Pond Unit specifically has proven problematic in trying to assess priority species of concern and direct overall management needs in this system. Dingle Pond is a Carolina Bay which potentially provides unique habitat for many priority reptiles and amphibians including the federally threatened flatwoods salamander, the state endangered gopher frog, state threatened dwarf siren and spotted turtle and several species of conservation concern including the tiger salamander, upland chorus frog (coastal plain populations only), northern cricket frog (coastal plain populations only), many-lined salamander, glossy crayfish snake and black swamp snake. The presence or abundance of these and other priority species in this large Carolina Bay is not known. This project will provide for funds for South Carolina DNR to conduct baseline surveys to census and assess the status of the herpetofauna in and adjacent to the Dingle Pond Carolina Bay. Surveys will involve a variety of sampling techniques including funnel traps, hoop traps, cover boards, netting and call count surveys to identify herpetofauna diversity and abundance. Herpetofauna are particularly vulnerable to habitat changes including climate change and human development activities. Many unique species are endemic to Carolina Bays, a priority habitat that has been greatly diminished across the coastal plain of South Carolina. These species can serve as indicator species of habitat quality and climate changes and baseline data is critical at both the local and regional level.
    [Show full text]
  • FAMILY Poeciliidae Bonaparte 1831
    FAMILY Poeciliidae Bonaparte 1831 - viviparous toothcarps, livebearers SUBFAMILY Poeciliinae Bonaparte 1831 - viviparous toothcarps [=Unipupillati, Paecilini, Belonesocini, Cyprinodontidae limnophagae, Gambusiinae, Tomeurinae, Poeciliopsinae, Heterandriini, Guirardinini, Cnesterodontini, Pamphoriini, Xiphophorini, Alfarini, Quintanini, Xenodexiinae, Dicerophallini, Scolichthyinae, Priapellini, Brachyrhaphini, Priapichthyini] GENUS Alfaro Meek, 1912 - livebearers [=Furcipenis, Petalosoma, Petalurichthys] Species Alfaro cultratus (Regan, 1908) - Regan's alfaro [=acutiventralis, amazonum] Species Alfaro huberi (Fowler, 1923) - Fowler's alfaro GENUS Belonesox Kner, 1860 - pike topminnows Species Belonesox belizanus Kner, 1860 - pike topminnow [=maxillosus] GENUS Brachyrhaphis Regan, 1913 - viviparous toothcarps [=Plectrophallus, Trigonophallus] Species Brachyrhaphis cascajalensis (Meek & Hildebrand, 1913) - Río Cascajal toothcarp Species Brachyrhaphis episcopi (Steindachner, 1878) - Obispo toothcarp [=latipunctata] Species Brachyrhaphis hartwegi Rosen & Bailey, 1963 - Soconusco gambusia Species Brachyrhaphis hessfeldi Meyer & Etzel, 2001 - Palenque toothcarp Species Brachyrhaphis holdridgei Bussing, 1967 - Tronadora toothcarp Species Brachyrhaphis olomina (Meek, 1914) - Orotina toothcarp Species Brachyrhaphis parismina (Meek, 1912) - Parismina toothcarp Species Brachyrhaphis punctifer (Hubbs, 1926) - Quibari Creek toothcarp Species Brachyrhaphis rhabdophora (Regan, 1908) - Río Grande de Terraba toothcarp [=tristani] Species Brachyrhaphis roseni
    [Show full text]
  • Gambusia Forum 2011
    Gambusia Forum 2011 Crowne Plaza Hotel, Melbourne Wednesday 1st – Thursday 2nd June 2011 Edited by: Dr Peter Jackson and Heleena Bamford Small fish… …big problem! Published by Murray–Darling Basin Authority Postal Address GPO Box 1801, Canberra ACT 2601 Office location Level 4, 51 Allara Street, Canberra City Australian Capital Territory Telephone (02) 6279 0100 international + 61 2 6279 0100 Facsimile (02) 6248 8053 international + 61 2 6248 8053 E-Mail [email protected] Internet http://www.mdba.gov.au For further information contact the Murray–Darling Basin Authority office on (02) 6279 0100 This report may be cited as: Gambusia Forum 2011: Small fish.....big problem! MDBA Publication No. 154/11 ISBN (on-line) 978-1-921914-21-8 ISBN (print) 978-1-921914-22-5 © Copyright Murray–Darling Basin Authority (MDBA), on behalf of the Commonwealth of Australia 2011. This work is copyright. With the exception of photographs, any logo or emblem, and any trademarks, the work may be stored, retrieved and reproduced in whole or in part, provided that it is not sold or used in any way for commercial benefit, and that the source and author of any material used is acknowledged. Apart from any use permitted under the Copyright Act 1968 or above, no part of this work may be reproduced by any process without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca.
    [Show full text]
  • Jacksonville, Florida 1998 Odmds Benthic Community Assessment
    JACKSONVILLE, FLORIDA 1998 ODMDS BENTHIC COMMUNITY ASSESSMENT Submitted to U.S. Environmental Protection Agency, Region 4 61 Forsyth St. Atlanta, Georgia 30303 Prepared by Barry A. Vittor & Associates, Inc. 8060 Cottage Hill Rd. Mobile, Alabama 36695 (334) 633-6100 November 1999 TABLE OF CONTENTS LIST OF TABLES ………………………………………….……………………………3 LIST OF FIGURES ……………………..………………………………………………..4 1.0 INTRODUCTION ………..…………………………………………………………..5 2.0 METHODS ………..…………………………………………………………………..5 2.1 Sample Collection And Handling ………………………………………………5 2.2 Macroinfaunal Sample Analysis ……………………………………………….6 3.0 DATA ANALYSIS METHODS ……..………………………………………………6 3.1 Assemblage Analyses ..…………………………………………………………6 3.2 Faunal Similarities ……………………………………………………….…….8 4.0 HABITAT CHARACTERISTICS ……………………………………………….…8 5.0 BENTHIC COMMUNITY CHARACTERIZATION ……………………………..9 5.1 Faunal Composition, Abundance, And Community Structure …………………9 5.2 Numerical Classification Analysis …………………………………………….10 5.3 Taxa Assemblages …………………………………………………………….11 6.0 1995 vs 1998 COMPARISONS ……………………………………………………..11 7.0 SUMMARY ………………………………………………………………………….13 8.0 LITERATURE CITED ……………………………………………………………..16 2 LIST OF TABLES Table 1. Station locations for the Jacksonville, Florida ODMDS, June 1998. Table 2. Sediment data for the Jacksonville, Florida ODMDS, June 1998. Table 3. Summary of abundance of major taxonomic groups for the Jacksonville, Florida ODMDS, June 1998. Table 4. Abundance and distribution of major taxonomic groups at each station for the Jacksonville, Florida ODMDS, June 1998. Table 5. Abundance and distribution of taxa for the Jacksonville, Florida ODMDS, June 1998. Table 6. Percent abundance of dominant taxa (> 5% of the total assemblage) for the Jacksonville, Florida ODMDS, June 1998. Table 7. Summary of assemblage parameters for the Jacksonville, Florida ODMDS stations, June 1998. Table 8. Analysis of variance table for density differences between stations for the Jacksonville, Florida ODMDS stations, June 1998.
    [Show full text]
  • Charlotte Harbor Preserve State Park Unit Management Plan
    CHARLOTTE HARBOR PRESERVE STATE PARK UNIT MANAGEMENT PLAN APPROVED PLAN STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION Division of Recreation and Parks June 15, 2007 Charlie Crist Florida Department of Governor Environmental Protection Jeff Kottkamp Marjory Stoneman Douglas Building Lt. Governor 3900 Commonwealth Boulevard Tallahassee, Florida 32399-3000 Michael W. Sole Secretary June 18, 2007 Ms. BryAnne White Office of Park Planning Division of Recreation and Parks 3900 Commonwealth Blvd.; M.S. 525 Tallahassee, Florida 32399 Re: Charlotte Harbor Preserve State Park Lease # 4085 and # 4143 Dear Ms. White: On June 15, 2007, the Acquisition and Restoration Council recommended approval of the Charlotte Harbor Preserve State Park management plan. Therefore, the Office of Environmental Services, acting as agent for the Board of Trustees of the Internal Improvement Trust Fund, approved the management plan for the Charlotte Harbor Preserve State Park. Pursuant to Sections 253.034 and 259.032, Florida Statutes, and Chapter 18-2, Florida Administrative Code this plan’s ten-year update will be due on June 15, 2017. Approval of this land management plan does not waive the authority or jurisdiction of any governmental entity that may have an interest in this project. Implementation of any upland activities proposed by this management plan may require a permit or other authorization from federal and state agencies having regulatory jurisdiction over those particular activities. Pursuant to the conditions of your lease, please forward copies
    [Show full text]
  • Okbehlh LER Voshell, Jr., Ch Rman [Ik MSE Lol
    ECOLOGY OF BENTHIC MACROINVERTEBRATES IN EXPERIMENTAL PONDS by Van D. Christman Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Entomology APPROVED: Okbehlh LER Voshell, Jr., Ch rman [ik MSE LoL. ~ AL Buikema, Jy. RL. Pienkowski Sd. Weshe D0 Oder L. A. Helfrich D.G. Cochran September 1991 Blacksburg, Virginia Zw 5655V8 5 1IG/ CE ECOLOGY OF BENTHIC MACROINVERTEBRATES IN EXPERIMENTAL PONDS by Van D. Christman Committee Chairman: J. Reese Voshell, Jr. Entomology ( ABSTRACT) I studied life history parameters of 5 taxa of aquatic insects in the orders Ephemeroptera and Odonata, successional patterns over 2 years of pond development, and precision of 15 biological metrics ina series of 6 replicate experimental ponds from March 1989 to April 1990. I determined voltinism, emergence patterns, larval growth rates and annual production for Caenis amica (Ephemeroptera: Caenidae), Callibaetis floridanus (Ephemeroptera: Baetidae), Anax junius (Odonata: Aeshnidae), Gomphus exilis (Odonata: Gomphidae), and Enallagma civile (Odonata: Coenagrionidae). Growth rates ranged from 0.011 to 0.025 mg DW/d for Ephemeroptera and from 0.012 to 0.061 mg DW/d for Odonata. Annual production ranged from 5 to 11 mg DW/sampler/yr for Ephemeroptera and from 10 to 673 mg DW/sampler/yr for Odonata. Comparison of the benthic macroinvertebrate community at the end of year 1 to the benthic macroinvertebrate community at the end of year 2 showed no significant differences for community summary measures (total density, taxa richness, diversity, Bray-Curtis similarity index); however, some individual taxa densities were significantly lower at the end of year 2.
    [Show full text]
  • Hemichromis Bimaculatus (African Jewelfish)
    African Jewelfish (Hemichromis bimaculatus) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2018 Web Version, 2/14/2019 Photo: Zhyla. Licensed under CC BY-SA 3.0. Available: https://commons.wikimedia.org/wiki/File:Hemichromis_bimaculatus1.jpg. (September 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Africa: widely distributed in West Africa, where it is known from most hydrographic basins [Teugels and Thys van den Audenaerde 2003], associated with forested biotopes [Daget and Teugels 1991, Lamboj 2004]. Also reported from coastal basins of Cameroon, Democratic Republic of the Congo and Nile basin [Teugels and Thys van den Audenaerde 1992], but at least its presence in Cameroon is unconfirmed in [Stiassny et al. 2008]. [Lamboj 2004] limits this species to Guinea, Sierra Leone and Liberia.” 1 From Azeroual and Lalèyè (2010): “This species is widely distributed throughout western Africa, but has also been recorded from Algeria to Egypt.” “Northern Africa: Within this region this species is very rare. It used to be caught from the coastal lagoons, especially Lake Mariut (Egypt) and Algeria. Its [sic] found in Tunisia in the wadis of Kebili in the south of Tunisia and in wadis near Chott Melrhir in eastern Algeria (Kraiem, pers. comm.), and Egypt (Wadi El Rayan Lakes).” “Western Africa: It is known from most hydrographic basins in western Africa.” Status in the United States It is not certain if this species is present in the United States, or if records pertain to H. letourneuxi. From NatureServe (2018): “Introduced and established in Dade County, Florida, […] (Nelson 1983).” From Nico et al.
    [Show full text]
  • The Effects of Environment on Arctica Islandica Shell Formation and Architecture
    Biogeosciences, 14, 1577–1591, 2017 www.biogeosciences.net/14/1577/2017/ doi:10.5194/bg-14-1577-2017 © Author(s) 2017. CC Attribution 3.0 License. The effects of environment on Arctica islandica shell formation and architecture Stefania Milano1, Gernot Nehrke2, Alan D. Wanamaker Jr.3, Irene Ballesta-Artero4,5, Thomas Brey2, and Bernd R. Schöne1 1Institute of Geosciences, University of Mainz, Joh.-J.-Becherweg 21, 55128 Mainz, Germany 2Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany 3Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa 50011-3212, USA 4Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands 5Department of Animal Ecology, VU University Amsterdam, Amsterdam, the Netherlands Correspondence to: Stefania Milano ([email protected]) Received: 27 October 2016 – Discussion started: 7 December 2016 Revised: 1 March 2017 – Accepted: 4 March 2017 – Published: 27 March 2017 Abstract. Mollusks record valuable information in their hard tribution, and (2) scanning electron microscopy (SEM) was parts that reflect ambient environmental conditions. For this used to detect changes in microstructural organization. Our reason, shells can serve as excellent archives to reconstruct results indicate that A. islandica microstructure is not sen- past climate and environmental variability. However, animal sitive to changes in the food source and, likely, shell pig- physiology and biomineralization, which are often poorly un- ment are not altered by diet. However, seawater temperature derstood, can make the decoding of environmental signals had a statistically significant effect on the orientation of the a challenging task.
    [Show full text]
  • Juvenile Sphaeroma Quadridentatum Invading Female-Oœspring Groups of Sphaeroma Terebrans
    Journal of Natural History, 2000, 34, 737–745 Juvenile Sphaeroma quadridentatum invading female-oŒspring groups of Sphaeroma terebrans MARTIN THIEL1 Smithsonian Marine Station, 5612 Old Dixie Highway, Fort Pierce, Fla 34946, USA (Accepted: 6 April 1999) Female isopods Sphaeroma terebrans Bate 1866 are known to host their oŒspring in family burrows in aerial roots of the red mangrove Rhizophora mangle. During a study on the reproductive biology of S. terebrans in the Indian River Lagoon, Florida, USA, juvenile S. quadridentatum were found in family burrows of S. terebrans. Between September 1997 and August 1998, each month at least one female S. terebrans was found with juvenile S. quadridentatum in its burrow. The percentage of S. terebrans family burrows that contained juvenile S. quadridenta- tum was high during fall 1997, decreased during the winter, and reached high values again in late spring/early summer 1998, corresponding with the percentage of parental female S. terebrans (i.e. hosting their own juveniles). Most juvenile S. quadridentatum were found with parental female S. terebrans, but a few were also found with reproductive females that were not hosting their own oŒspring. Non-reproductive S. terebrans (single males, subadults, non-reproductivefemales) were never found with S. quadridentatum in their burrows. The numbers of S. quadridentatum found in burrows of S. terebrans ranged between one and eight individuals per burrow. No signi® cant correlation between the number of juvenile S. quadridentatum and the numbers of juvenile S. terebrans in a family burrow existed. However, burrows with high numbers of juvenile S. quadridentatum often contained relatively few juvenile S.
    [Show full text]
  • 345D344e875a63b5be2a8cfa75
    Knowledge and Management of Aquatic Ecosystems (2014) 414, 09 http://www.kmae-journal.org c ONEMA, 2014 DOI: 10.1051/kmae/2014021 Community structure and decadal changes in macrozoobenthic assemblages in Lake Poyang, the largest freshwater lake in China Y. J . C a i (1),(2),Y.J.Lu(2),Z.S.Wu(1),Y.W.Chen(1),L.Zhang(1),Y.Lu(2) Received February 19, 2014 Revised May 19, 2014 Accepted June 10, 2014 ABSTRACT Key-words: Lake Poyang is the largest freshwater lake in China and contains unique Yangtze River, and diverse biota within the Yangtze floodplain ecosystem. However, floodplain lake, knowledge of its macrozoobenthic assemblages remains inadequate. To macrozoobenthos, characterize the current community structure of these assemblages and community to portray their decadal changes, quarterly investigations were conducted structure, at 15 sites from February to November 2012. A total of 42 taxa were sand mining recorded, and Corbicula fluminea, Limnoperna fortunei, Gammaridae sp., Nephtys polybranchia, Polypedilum scalaenum and Branchiura sowerbyi were found to dominate the community in terms of abundance. The bivalves Corbicula fluminea, Lamprotula rochechouarti, Arconaia lance- olata and Lamprotula caveata dominated the community in biomass due to their large body size. The mean abundance of the total macro- zoobenthos varied from 48 to 920 ind·m−2, the mean biomass ranged from 28 to 428 g·m−2. The substrate type affected strongly the abun- dance, biomass, and diversity of the macrozoobenthos, with muddy sand substrates showing the highest values. Compared with historical data, remarkable changes were observed in the abundance of macrozooben- thos and the identity of the dominant species.
    [Show full text]
  • (Peracarida: Isopoda) Inferred from 18S Rdna and 16S Rdna Genes
    76 (1): 1 – 30 14.5.2018 © Senckenberg Gesellschaft für Naturforschung, 2018. Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes Regina Wetzer *, 1, Niel L. Bruce 2 & Marcos Pérez-Losada 3, 4, 5 1 Research and Collections, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007 USA; Regina Wetzer * [[email protected]] — 2 Museum of Tropical Queensland, 70–102 Flinders Street, Townsville, 4810 Australia; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Niel L. Bruce [[email protected]] — 3 Computation Biology Institute, Milken Institute School of Public Health, The George Washington University, Ashburn, VA 20148, USA; Marcos Pérez-Losada [mlosada @gwu.edu] — 4 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal — 5 Department of Invertebrate Zoology, US National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA — * Corresponding author Accepted 13.x.2017. Published online at www.senckenberg.de/arthropod-systematics on 30.iv.2018. Editors in charge: Stefan Richter & Klaus-Dieter Klass Abstract. The Sphaeromatidae has 100 genera and close to 700 species with a worldwide distribution. Most are abundant primarily in shallow (< 200 m) marine communities, but extend to 1.400 m, and are occasionally present in permanent freshwater habitats. They play an important role as prey for epibenthic fishes and are commensals and scavengers. Sphaeromatids’ impressive exploitation of diverse habitats, in combination with diversity in female life history strategies and elaborate male combat structures, has resulted in extraordinary levels of homoplasy.
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]