Geometry of the Inverted Cretaceous Chañarcillo Basin Based on 2-D Gravity and field Data – an Approach to the Structure of the Western Central Andes of Northern Chile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Integrated Analysis of the March 2015 Atacama Floods
PUBLICATIONS Geophysical Research Letters RESEARCH LETTER An integrated analysis of the March 2015 10.1002/2016GL069751 Atacama floods Key Points: Andrew C. Wilcox1, Cristian Escauriaza2,3, Roberto Agredano2,3,EmmanuelMignot2,4, Vicente Zuazo2,3, • Unique atmospheric, hydrologic, and 2,3,5 2,3,6 2,3,7,8 2,3 9 geomorphic factors generated the Sebastián Otárola ,LinaCastro , Jorge Gironás , Rodrigo Cienfuegos , and Luca Mao fl largest ood ever recorded in the 1 2 Atacama Desert Department of Geosciences, University of Montana, Missoula, Montana, USA, Departamento de Ingeniería Hidráulica y 3 • The sediment-rich nature of the flood Ambiental, Pontificia Universidad Católica de Chile, Santiago, Chile, Centro de Investigación para la Gestión Integrada de resulted from valley-fill erosion rather Desastres Naturales (CIGIDEN), Santiago, Chile, 4University of Lyon, INSA Lyon, CNRS, LMFA UMR5509, Villeurbanne, France, than hillslope unraveling 5Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA, 6Escuela de • Anthropogenic factors increased the fi 7 consequences of the flood and Ingeniería Civil, Ponti cia Universidad Católica de Valparaíso, Valparaíso, Chile, Centro de Desarrollo Urbano Sustentable 8 highlight the need for early-warning (CEDEUS), Santiago, Chile, Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Santiago, systems Chile, 9Departamento de Ecosistemas y Medio Ambiente, Pontificia Universidad Católica de Chile, Santiago, Chile Supporting Information: Abstract In March 2015 unusual ocean and atmospheric conditions produced many years’ worth of • Supporting Information S1 rainfall in a ~48 h period over northern Chile’s Atacama Desert, one of Earth’s driest regions, resulting in Correspondence to: catastrophic flooding. -
Basement Composition and Basin Geometry Controls on Upper-Crustal Deformation in the Southern Central Andes (30–36° S)
Geol. Mag.: page 1 of 17 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000364 Basement composition and basin geometry controls on upper-crustal deformation in the Southern Central Andes (30–36° S) ∗ ∗ ∗ JOSÉ F. MESCUA †, LAURA GIAMBIAGI , MATÍAS BARRIONUEVO , ∗ ∗ ANDRÉS TASSARA‡, DIEGO MARDONEZ , MANUELA MAZZITELLI ∗ & ANA LOSSADA ∗ Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Centro Científico Tecnológico Mendoza, CONICET. Av. Ruiz leal s/n Parque General San Martín, Mendoza (5500) Argentina ‡Departamento de Ciencias de la Tierra, Universidad de Concepción, Victor Lamas 1290, Barrio Universitario, Concepción, Casilla 160-C, Chile (Received 13 December 2015; accepted 5 April 2016) Abstract – Deformation and uplift in the Andes are a result of the subduction of the Nazca plate below South America. The deformation shows variations in structural style and shortening along and across the strike of the orogen, as a result of the dynamics of the subduction system and the features of the upper plate. In this work, we analyse the development of thin-skinned and thick-skinned fold and thrust belts in the Southern Central Andes (30–36° S). The pre-Andean history of the area determined the formation of different basement domains with distinct lithological compositions, as a result of terrane accretions during Palaeozoic time, the development of a widespread Permo-Triassic magmatic province and long-lasting arc activity. Basin development during Palaeozoic and Mesozoic times produced thick sedimentary successions in different parts of the study area. Based on estimations of strength for the different basement and sedimentary rocks, calculated using geophysical estimates of rock physical properties, we propose that the contrast in strength between basement and cover is the main control on structural style (thin- v. -
Detrital Zircon Record of Phanerozoic Magmatism in the Southern Central Andes GEOSPHERE, V
Research Paper GEOSPHERE Detrital zircon record of Phanerozoic magmatism in the southern Central Andes GEOSPHERE, v. 17, no. 3 T.N. Capaldi1,*, N.R. McKenzie2, B.K. Horton1,3, C. Mackaman-Lofland1, C.L. Colleps2, and D.F. Stockli1 1Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA https://doi.org/10.1130/GES02346.1 2Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Hong Kong, China 3Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, USA 11 figures; 1 table; 1 set of supplemental files CORRESPONDENCE: [email protected] ABSTRACT arc width reflects shallower slab dip. Comparisons geodynamic processes, upper-plate deformation, among slab dip calculations with time-averaged and subduction- related magmatism. CITATION: Capaldi, T.N., McKenzie, N.R., Horton, B.K., Mackaman-Lofland, C., Colleps, C.L., and Stockli, D.F., The spatial and temporal distribution of arc εHf and Th/U zircon results exhibit a clear trend of The South American plate at 28°S –33°S is com- 2021, Detrital zircon record of Phanerozoic magmatism magmatism and associated isotopic variations decreasing (enriched) magma compositions with posed of numerous north-south–trending terranes in the southern Central Andes: Geosphere, v. 17, no. 3, provide insights into the Phanerozoic history increasing arc width and decreasing slab dip. Col- of variable composition that may have induced a p. 876– 897, https://doi.org/10.1130 /GES02346.1. of the western margin of South America during lectively, these data sets demonstrate the influence spatial control on the geochemical signatures of Science Editor: Shanaka de Silva major shifts in Andean and pre-Andean plate inter- of subduction angle on the position of upper-plate subsequent Andean tectono-magmatic regimes Associate Editor: Christopher J. -
Submarine Tailings in Chile—A Review
metals Review Submarine Tailings in Chile—A Review Freddy Rodríguez 1, Carlos Moraga 2,*, Jonathan Castillo 3 , Edelmira Gálvez 4, Pedro Robles 5 and Norman Toro 1,* 1 Faculty of Engineering and Architecture, Universidad Arturo Prat, Almirante Juan José Latorre 2901, Antofagasta 1244260, Chile; [email protected] 2 Escuela de Ingeniería Civil de Minas, Facultad de Ingeniería, Universidad de Talca, Curicó 3340000, Chile 3 Departamento de Ingeniería en Metalurgia, Universidad de Atacama, Av. Copayapu 485, Copiapó 1531772, Chile; [email protected] 4 Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte, Antofagasta 1270709, Chile; [email protected] 5 Escuela De Ingeniería Química, Pontificia Universidad Católica De Valparaíso, Valparaíso 2340000, Chile; [email protected] * Correspondence: [email protected] (C.M.); [email protected] (N.T.); Tel.: +56-552651021 (N.T.) Abstract: This review aims to understand the environmental impact that tailings produce on the land and marine ecosystem. Issues related to flora, fauna, and the environment are revised. In the first instance, the origin of the treatment and disposal of marine mining waste in Chile and other countries is studied. The importance of tailings’ valuable elements is analyzed through mineralogy, chemical composition, and oceanographic interactions. Several tailings’ treatments seek to recover valuable minerals and mitigate environmental impacts through leaching, bioleaching, and flotation methods. The analysis was complemented with the particular legislative framework for every country, highlighting those with formal regulations for the disposal of tailings in a marine environment. The available registry on flora and fauna affected by the discharge of toxic metals is explored. As a study Citation: Rodríguez, F.; Moraga, C.; case, the “Playa Verde” project is detailed, which recovers copper from marine tailings, and uses Castillo, J.; Gálvez, E.; Robles, P.; Toro, phytoremediation to neutralize toxic metals. -
Groundwater Origin and Recharge in the Hyperarid Cordillera De La Costa, Atacama Desert, Northern Chile
Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Christian Herrera1,2, Carolina Gamboa1,2, Emilio Custodio3, Teresa Jordan4, Linda Godfrey5, Jorge Jódar6, José A. Luque1,2, Jimmy Vargas7, Alberto Sáez8 1 Departmento de Ciencias Geológicas , Universidad Católica del Norte, Antofagasta, Chile 2 CEITSAZA‐Research and Technological Center of Water in the Desert, Northern Catholic University, Antofagasta, Chile 3 Groundwater Hydrology Group, Dept. Civil and Environmental Eng., Technical University of Catalonia (UPC). Royal Academy of Sciences of Spain 4 Department of Earth & Atmospheric Sciences and Atkinson Center for a Sustainable Future, Snee Hall, Cornell University, Ithaca, NY 14853‐1504, USA 5 Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA. 6 Groundwater Hydrology Group, Dept. Civil and Environmental Eng., Technical University of Catalonia (UPC), Hydromodel Host S.L. and Aquageo Proyectos S.L., Spain 7 Mining Company Los Pelambres, Av. Apoquindo 4001 Piso 18, Las Condes, Santiago, Chile 8 Department of Earth and Ocean Dynamics, University of Barcelona, C. Martí i Franqués s/n, 08028 Barcelona, Spain GRAPHICAL ABSTRACT 1 Highlights ‐Small springs have been recognized in the hyper‐arid coastal zone of the Atacama Desert ‐The δ18O and δ2H values of spring waters are similar to coastal region rainfall ‐The average residence time of the waters from springs varies between 1 and 2 hyr, up to 5 hyr ‐Waters from the deep wells are isotopically much heavier than those of springs ‐Turnover time for deep waters varies between 7 and 13 hyr, which overlaps the CAPE events ABSTRACT The Cordillera de la Costa is located along the coastline of northern Chile, in the hyperarid Atacama Desert area. -
Downloaded 10/10/21 07:22 PM UTC Projects, but Has Also Built up a Public Meteorologi- Cal Database Over Previ- Ously Data-Void Regions
WIND ENERGY EXPLORATION OVER THE ATACAMA DESERT A Numerical Model–Guided Observational Program RICARDO C. MUÑOZ, MARK J. FALVEY, MARIO ARANCIBIA, VALENTINA I. ASTUDILLO, JAVIER ELGUETA, MARCELO IBARRA, CHRISTIAN SANTANA, AND CAMILA VÁSQUEZ A Chilean program explores winds over the Atacama Desert region and is producing a public model and observational database in support of the development of wind energy projects. enewable energy, especially wind and solar, is an and execute measurement programs, and for the increasingly important field in applied meteorol- modeling of resource variability. Renewable energy Rogy and climate science. From the initial studies poses special challenges compared to more traditional that explore the availability of these energy resources meteorological applications (Emeis 2013). In the case in a given area, to the forecasting models required of wind power, for example, most phenomena of inter- to optimize the operation of wind or solar power est occur within the atmospheric boundary layer over plants, meteorological expertise is needed to design horizontal scales ranging from the microscale to the mesoscale. Moreover, the viability of many renew- able energy projects depends on the accuracy of the AFFILIATIONS: MUÑOZ AND ASTUDILLO—Department of Geophys- ics, University of Chile, Santiago, Chile; FALVEY AND IBARRA—De- meteorological variables measured and modeled, with partment of Geophysics, University of Chile, and Meteodata Ltd., even small errors having large financial implications. Santiago, Chile; ARANCIBIA AND ELGUETA—Department of Geophysics, On the other hand, the emergence of the renewable University of Chile, and Airtec Ltd., Santiago, Chile; SANTANA AND energy industry has led to a significant increase in the VÁSQUEZ—Ministerio de Energía, Santiago, Chile number of measuring sites being deployed worldwide, CORRESPONDING AUTHOR: Ricardo C. -
Huemul Portfolio – Chile
Environmental and Social Review Summary (ESRS) Huemul Portfolio – Chile Original language of the document: English Revision’s cut-off date: March 2020 1. General Information and Overview of Scope of IDB Invest’s Review Mainstream Renewable Power (“The Sponsor” or “MRP”), through Huemul Energía Spa (“The Client”, “The Special Purpose Vehicle” or the “SPV”), is planning to develop the Huemul Renewable Energy Portfolio (“The Project”). The latter comprehends two Photovoltaic Power Plants (Pampa Tigre, located at Antofagasta region, and Valle Escondido, located at Atacama region), and three Wind Farm Plants (Ckani and Llanos del Viento, both located at Antofagasta region, and Puelche Sur located at Los Lagos region), hereafter “The Subprojects”. Each Subproject was subject to an environment evaluation1 under Chilean legislation, which concludes with a Resolution of Environment Qualification (the “RCA”), which is, in fact, an environmental license. Any modification or new work that might be needed after the RCA has been granted, can be evaluated through a Pertinence Consulting (“CP”), if such works do not impose new impacts; or through an environment assessment declaration (“DIA”) or an environmental impact assessment (“EIA”), depending in the magnitude and intensity of such impacts. Pampa Tigre Photovoltaic Power Plant (“Pampa Tigre”), evaluated through a DIA, includes: i) the installation of 430,920 photovoltaic modules with a gross installed capacity of 100 megawatt alternating current (“MWac”); ii) a booster substation; iii) a switch substation; iv) and a 9.6 km long, 220 kilo-volt (“kV”) transmission line (“TL”). Valle Escondido Photovoltaic Power Plant (“Valle Escondido”), evaluated through a DIA, includes: i) the installation of 382,000 photovoltaic modules that total a gross installed capacity of 105 MWac; and ii) a booster substation which will transfer the energy produced by the Project to the Sistema Eléctrico Nacional (“SEN”). -
The Atacama Fault System in the Huasco Province, Southern Atacama Desert, Chile
U N I V E R S I D A D D E C O N C E P C I Ó N DEPARTAMENTO DE CIENCIAS DE LA TIERRA 10° CONGRESO GEOLÓGICO CHILENO 2003 THE ATACAMA FAULT SYSTEM IN THE HUASCO PROVINCE, SOUTHERN ATACAMA DESERT, CHILE ARÉVALO, C.1, GROCOTT, J. 2 and WELKNER, D. 1 1Servicio Nacional de Geología y Minería, Avenida Santa María 0104, Providencia. 2 Centre for Earth and Environmental Science Research, School of Earth Sciences and Geography, Kingston University, Kingston-upon-Thames, Surrey KT1 2EE, UK [email protected]; [email protected]; [email protected] INTRODUCTION The Atacama Fault System (AFS) is a continental scale, trench-parallel strike-slip fault system that transects mainly Mesozoic plutonic and volcanic magmatic arc rocks along the axis of the Coastal Cordillera of Northern Chile (Brown et al., 1993). From north to south, the AFS has been subdivided into three major segments of brittle and ductile faults: the Salar del Carmen, the Paposo and the El Salado segments (Naranjo, 1987). In the last 10 years systematic studies of the northern-most segments have produced considerable progress on the understanding of the chronology and flow regime of the displacements associated with the activity of the AFS (Brown et al., 1993; Dallmeyer et al., 1996, Wilson and Grocott, 1999; Bonson, 1998). In particular, in the El Salado segment it has been shown that the AFS was initiated about 130 Ma ago as a left- transtensional strike-slip system and was active as a synplutonic fault to at least 106 Ma (Dallmeyer et al., 1996). -
Covid-19 Global Port Restrictions Chile
COVID-19 GLOBAL PORT RESTRICTIONS CHILE Chile General Information 931.939 accumulated confirmed cases have been registered in Chile so far, where there are 37.958 active cases of coronavirus, and 22.279. (Coronavirus arrived in Chile on the 3rd of March 2020). The nationwide nighttime curfew is maintained from 23:00 to 5:00 Chilean Local Time. The Ministry of Health has announced updates regarding the Step-by-Step plan, which comes into effect on the 20th of March, at 06:00 hrs LT: • The following areas are bacK to Transition phase: Diego de Almagro and Vallenar (Atacama region); Combarbalá (CoQuimbo region); Olmué (Valparaíso region); Graneros (O’Higgins region); Santa Juana (Biobío region); Pucón and Gorbea (Araucanía region). • The following areas are moving bacK to Quarantine phase: Iquique and Alto Hospicio (Tarapacá region); Concón, Quilpué, Villa Alemana, Nogales and Viña del Mar (Valparaíso region); Curacaví, María Pinto, Buin, Calera de Tango, La Cisterna, Talagante, Santiago and San Ramón (Metropolitan region); Chépica and Chimbarongo (O’Higgins region); San Ignacio (Ñuble region); Florida and Los Álamos (Biobío region); Curarrehue, Curacautín and Lautaro (La Araucanía region); Río Negro (Los Lagos region). • Interregional travel is authorized between zones that are in stages 3, 4, 5. The permit for interregional travel can be reQuested as many times as reQuired and must be reQuested 24 hours before. Case Types And COVID-19 Contact Confirmed Case: Any person who meets the definition of SUSPECTED CASE in which the specific test for SARS-CoV2 was "positive" (RT-PCR). In addition, there is the ASYMPTOMATIC CONFIRMED CASE: any person without symptoms, identified through an active search strategy that the SARS-CoV2 test was "positive" (RT-PCR) Medical Certificate: The treating doctor must issue a medical license for 11 days, with code CIE10 U0.1 (confirmed cases of Coronavirus), which can be extended remotely in the case of electronic medical license, without the presence of the employee. -
MESOZOIC TECTONIC INVERSION in the NEUQUÉN BASIN of WEST-CENTRAL ARGENTINA a Dissertation by GABRIEL ORLANDO GRIMALDI CASTRO Su
MESOZOIC TECTONIC INVERSION IN THE NEUQUÉN BASIN OF WEST-CENTRAL ARGENTINA A Dissertation by GABRIEL ORLANDO GRIMALDI CASTRO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Geology MESOZOIC TECTONIC INVERSION IN THE NEUQUÉN BASIN OF WEST-CENTRAL ARGENTINA A Dissertation by GABRIEL ORLANDO GRIMALDI CASTRO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Steven L. Dorobek Committee Members, Philip D. Rabinowitz Niall C. Slowey Brian J. Willis David V. Wiltschko Head of Department, Richard L. Carlson December 2005 Major Subject: Geology iii ABSTRACT Mesozoic Tectonic Inversion in the Neuquén Basin of West-Central Argentina. (December 2005) Gabriel Orlando Grimaldi Castro, B.S., Universidad Nacional de Córdoba, Argentina; M.S., Texas A&M University Chair of Advisory Committee: Dr. Steven L. Dorobek Mesozoic tectonic inversion in the Neuquén Basin of west-central Argentina produced two main fault systems: (1) deep faults that affected basement and syn-rift strata where preexisting faults were selectively reactivated during inversion based on their length and (2) shallow faults that affected post-rift and syn-inversion strata. Normal faults formed at high angle to the reactivated half-graben bounding fault as a result of hangingwall expansion and internal deformation as it accommodated to the shape of the curved footwall during oblique inversion. Contraction during inversion was initially accommodated by folding and internal deformation of syn-rift sedimentary wedges, followed by displacement along half-graben bounding faults. -
Telepresence-Enabled Exploration of The
! ! ! ! 2014 WORKSHOP TELEPRESENCE-ENABLED EXPLORATION OF THE !EASTERN PACIFIC OCEAN WHITE PAPER SUBMISSIONS ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! TABLE OF CONTENTS ! ! NORTHERN PACIFIC! Deep Hawaiian Slopes 7 Amy Baco-Taylor (Florida State University) USS Stickleback (SS-415) 9 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Sunken Battlefield of Midway 10 Alexis Catsambis (Naval History and Heritage Command's Underwater Archaeology Branch) Systematic Mapping of the California Continental Borderland from the Northern Channel Islands to Ensenada, Mexico 11 Jason Chaytor (USGS) Southern California Borderland 16 Marie-Helene Cormier (University of Rhode Island) Expanded Exploration of Approaches to Pearl Harbor and Seabed Impacts Off Oahu, Hawaii 20 James Delgado (NOAA ONMS Maritime Heritage Program) Gulf of the Farallones NMS Shipwrecks and Submerged Prehistoric Landscape 22 James Delgado (NOAA ONMS Maritime Heritage Program) USS Independence 24 James Delgado (NOAA ONMS Maritime Heritage Program) Battle of Midway Survey and Characterization of USS Yorktown 26 James Delgado (NOAA ONMS Maritime Heritage Program) Deep Oases: Seamounts and Food-Falls (Monterey Bay National Marine Sanctuary) 28 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Lost Shipping Containers in the Deep: Trash, Time Capsules, Artificial Reefs, or Stepping Stones for Invasive Species? 31 Andrew DeVogelaere (Monterey Bay National Marine Sanctuary) Channel Islands Early Sites and Unmapped Wrecks 33 Lynn Dodd (University of Southern -
Along-Strike Variation in Structural Styles and Hydrocarbon Occurrences, Subandean Fold-And-Thrust Belt and Inner Foreland, Colombia to Argentina
The Geological Society of America Memoir 212 2015 Along-strike variation in structural styles and hydrocarbon occurrences, Subandean fold-and-thrust belt and inner foreland, Colombia to Argentina Michael F. McGroder Richard O. Lease* David M. Pearson† ExxonMobil Upstream Research Company, Houston, Texas 77252, USA ABSTRACT The approximately N-S–trending Andean retroarc fold-and-thrust belt is the locus of up to 300 km of Cenozoic shortening at the convergent plate boundary where the Nazca plate subducts beneath South America. Inherited pre-Cenozoic differences in the overriding plate are largely responsible for the highly segmented distribution of hydrocarbon resources in the fold-and-thrust belt. We use an ~7500-km-long, orogen- parallel (“strike”) structural cross section drawn near the eastern terminus of the fold belt between the Colombia-Venezuela border and the south end of the Neuquén Basin, Argentina, to illustrate the control these inherited crustal elements have on structural styles and the distribution of petroleum resources. Three pre-Andean tectonic events are chiefl y responsible for segmentation of sub- basins along the trend. First, the Late Ordovician “Ocloyic” tectonic event, recording terrane accretion from the southwest onto the margin of South America (present-day northern Argentina and Chile), resulted in the formation of a NNW-trending crustal welt oriented obliquely to the modern-day Andes. This paleohigh infl uenced the dis- tribution of multiple petroleum system elements in post-Ordovician time. Second, the mid-Carboniferous “Chañic” event was a less profound event that created mod- est structural relief. Basin segmentation and localized structural collapse during this period set the stage for deposition of important Carboniferous and Permian source rocks in the Madre de Dios and Ucayali Basins in Peru.