Compressed Air Purification

Total Page:16

File Type:pdf, Size:1020Kb

Compressed Air Purification The Magazine for ENERGY EFFICIENCY in Compressed Air Systems Compressed November 2017 Air Purification 12 The ANSI/ISA Instrument Air Standard and Adsorption Type Dryers 18 Great Plains and Air Capital Equipment Monitor Great Savings 26 Compressed Air Purification Fundamentals – the Compressor’s Job MEAT PROCESSOR AUDIT 34 SOLVES PROBLEMS COMPRESSED AIR WITH A VAST PORTFOLIO Powering You With Extraordinary Solutions Whether the compressed air you need is for machining, fabrication, material handling or finishing, we can help you save money while increasing your productivity. That’s a promise. www.atlascopco.us – 866-688-9611 Atlas Ad 8.375 x 10.875 - CABP.indd 1 9/1/15 11:20 AM COLUMNS NOVEMBER 2017 | VOLUME 12, NO. 10 | SUSTAINABLE MANUFACTURING FEATURES 12 The ANSI/ISA Instrument Air Standard and Adsorption Type Dryers By Deepak Vetal, Atlas Copco Compressors 18 Great Plains and Air Capital Equipment Monitor Great Savings By Nicholas De Deken, EnergAir 26 Compressed Air Purification Fundamentals – the Compressor’s Job 12 By Tim Dugan, P.E., Compression Engineering Corporation 34 Compressed Air Assessment Finds Problems at a Meat Processor By Ron Marshall, Marshall Compressed Air Consulting 18 COLUMNS 4 From the Editor 6 Industry News 44 Resources for Energy Engineers Technology Picks 49 Advertiser Index 49 The Marketplace Jobs and Technology 34 airbestpractices.com 3 | 11/17 COLUMNS FROM THE EDITOR Compressed Air Purification The ANSI/ISA-7.0.0-1996 Instrument Air Standard is often used as a reference COMPRESSED AIR BEST PRACTICES® in production facilities. Pressure dew point, particle size, lubricant content EDITORIAL ADVISORY BOARD Manager, Demand Side Ball and contaminants are the four elements identified in the standard in its effort Doug Barndt Energy-Sustainability Corporation to define instrument air quality for use in pneumatic instruments. Deepak Vetal, from Atlas Copco, provides us with a succinct summary of the Standard Richard Feustel Senior Energy Advisor Leidos followed by a review of adsorption compressed air drying technologies. William Jerald Energy Manager CalPortland Global EH&S/Plant Varroc Lighting Jennifer Meier Air Capital Equipment has represented Sullair in Kansas since 1978 and Engineering Manager Systems now represents them also in Oklahoma and parts of Missouri. Their longtime customer, Wichita- Thomas Mort Thomas Mort Senior Auditor based seeding equipment manufacturer Great Plains, has grown over the years and had Sullair Consulting compressors running in five separate buildings. Nicholas De Deken, from EnergAir, provides Corporate Energy Team Brad Reed Toyota (retired) us with an interesting audit story detailing how using a master compressor control helped Great Leader Plains consolidate and optimize their compressed air system. Industrial Energy Managers Brad Runda Global Director, Energy Koch Industries Air compressors are actually responsible for removing most of the moisture in a compressed air Uli Schildt Energy Engineer Darigold system. Tim Dugan, from Compression Engineering Corporation, provides us with a solid review Energy Performance Michelin North Thomas Sullivan of the air compressor intake, oil-temperature control, after-cooler cleanliness and maintenance, Manager America moisture separator design and drain maintenance. All these factors impact performance. Paint & Powder Booth Fiat Chrysler Bryan Whitfield Specialist Automotive Ron Marshall has provided us with an article about an audit done at a meat processor where Director Marketing David Andrews Sullair the energy costs associated with compressed air were $153,000 per year. The audit discovers Communications these costs can be lowered by almost fifty percent. Chief culprits were 71 compressed air leaks Vice President Erik Arfalk Atlas Copco and air compressors running in very inefficient modulating modes of operation. Communications IAC Air Steve Briscoe VP Energy Management Thank you for investing your time and efforts into Compressed Air Best Practices®. Compression Compressed Paul Edwards President ROD SMITH, Editor Air Consultants tel: 412-980-9901, [email protected] Tilo Fruth President Beko USA Blackhawk Chris Gordon President Equipment Harris Phil Kruger General Manager 2017 Expert Webinar Series Equipment HEAT OF COMPRESSION DESSICANT DRYER BASIC Frank Langro Director Marketing Festo Compressed Air System Assessments PRINCIPLES Sales & Marketing Parker GSF John Lucidi Join veteran compressed air auditor, Hank van Ormer, on November Manager Division 9th, to examine the uniquely efficient regeneration process of HOC Wayne Perry Sr. Technical Director Kaeser desiccant dryers and applications where they are best suited. Sponsored By: Power Supply Jim Timmersman Senior Auditor Register and view our 2017 Webinar Calendar, Industries please visit www.airbestpractices.com/webinars Hank Van Ormer Technical Director Air Power USA Compressed Air & Gas Institute, Compressed Air Challenge 2017 MEDIA PARTNERS 4 airbestpractices.com OIL FREE SCROLL TECHNOLOGY Coaire’s oil free scroll compressors are precision crafted with high quality materials to deliver optimal performance. Coaire is engineered to meet any critical application with capacities ranging from 3-50HP. Coaire oil free scroll compressors are the ideal solution. 562-463-3935 Learn more at www.coaire.com | 11/17 COLUMNS INDUSTRY NEWS Gardner Denver Acquires LeROI customer relationships,” said Vicente Reynal, About Gardner Denver Compressors Gardner Denver's CEO. “This transaction is Gardner Denver (NYSE: GDI) is a leading Gardner Denver Holdings Inc. (NYSE: aligned with our strategy of leveraging core global provider of mission-critical flow GDI), a leading global provider of mission- technologies and know-how to drive organic control and compression equipment and critical flow control and compression growth and build additional value at acquired associated aftermarket parts, consumables equipment, announced it has acquired LeROI companies. LeROI will provide mission-critical and services, selling across multiple attractive Compressors (“LeROI”) for a purchase price gas compression technologies and enable end-markets within the industrial, energy and of approximately $20 million funded by cash expansion of our product offering into new and medical industries. Its broad and complete on hand. Based in Sidney, Ohio, LeROI is a attractive markets. We are thrilled to welcome range of compressor, pump, vacuum and leading North American manufacturer of gas the LeROI team to the Gardner Denver family,” blower products and services, along with compression equipment and solutions for added Reynal. its application expertise and over 155 years vapor recovery, biogas and other process and “This marks an exciting time for the LeROI of engineering heritage, allows Gardner industrial applications. LeROI will be part of business,” said Richard Wall, LeROI’s president. Denver to provide differentiated product and Gardner Denver's Industrials Segment. “As part of Gardner Denver, LeROI will be service offerings for its customers’ specific uses. Gardner Denver supports its customers “LeROI is a market-leading business with better positioned than ever to continue to through its global geographic footprint of 37 strong talent and excellent long-standing deliver service excellence to our customers and expand into new markets.” key manufacturing facilities, more than 30 RENT BIG, OIL-FREE, Relevant Solutions offers rentals for any need. Including: air compressors (performance from deep vacuum service through pressures to 600 MOBILE psi), nitrogen generation and associated equipment (dryers, starters, cooling towers, transformers, tanks etc). AIR Call Relevant Solutions at 1-888-RENTAIR for your rental needs. EMERGENCY PLANNED LONG-TERM relevantsolutions.com/rentals 6 airbestpractices.com COLUMNS 11/17 | complementary service and repair centers “Sullair is very excited to have a distributor air dryers/filters/drains, industrial vacuum across six continents, and approximately 6,100 offering such a highly trained and experienced systems, flow controllers and Genuine Sullair employees world-wide. For more news and compressor team to customers in Northern Replacement Parts. information on Gardner Denver, please visit California,” according to Tim Sohnlein, Sullair “Our team at California Compression is very www.gardnerdenver.com. director of sales, commercial and industrial excited to represent the Sullair line in the products. “We are excited about the end-to- Northern California area,” says Jim Morgan, California Compression Appointed end capabilities California Compression brings California Compression’s president. “We truly Sullair Distributor to the market. Their expert audit capabilities believe that Sullair products are the best in Sullair, an industry leader in innovative will be a tremendous asset in ensuring the industry, and their commitment to the oil- compressed air solutions since 1965, is pleased customers receive the compressed air solution free and Centrifugal product lines, combined to announce California Compression, LLC has best suiting their application.” with our expertise in auditing and utility been appointed an authorized distributor for California Compression carries the full line incentive programs, provide tremendous Sullair Commercial and Industrial Products of Sullair oil flooded compressors from 5 hp growth opportunities for both companies for Northern California. As an authorized to 600 hp, plus the complete line of oil-free well into the future.” distributor,
Recommended publications
  • Compressed Air Compressed
    Construction Planning, Equipment, and Methods Sixth Edition CHAPTER COMPRESSEDCOMPRESSED AIRAIR • A. J. Clark School of Engineering •Department of Civil and Environmental Engineering By 11 Dr. Ibrahim Assakkaf ENCE 420 – Construction Equipment and Methods Spring 2003 Department of Civil and Environmental Engineering University of Maryland, College Park CHAPTER 11. COMPRESSED AIR Slide No. 1 ENCE 420 ©Assakkaf COMPRESSEDCOMPRESSED AIRAIR 1 CHAPTER 11. COMPRESSED AIR Slide No. 2 ENCE 420 ©Assakkaf INTRODUCTION Compressed air is used for: 9Drilling rock 9Driving piles 9Operating hand tools 9Pumping 9Cleaning PAVING PUMP BREAKER CHAPTER 11. COMPRESSED AIR Slide No. 3 ENCE 420 ©Assakkaf INTRODUCTION In many instances the energy supplied by compressed air is the most convenient method of operating equipment and tools. When air is compressed, it receives energy from the compressor. This energy is transmitted through a pipe or hose to the operating equipment, where a portion of the energy is converted into mechanical work. 2 CHAPTER 11. COMPRESSED AIR Slide No. 4 ENCE 420 ©Assakkaf INTRODUCTION The operations of compressing, transmitting, and using air will always result in a loss of energy, which will give an overall efficiency less than 100%, sometimes considerably less. CHAPTER 11. COMPRESSED AIR Slide No. 5 ENCE 420 ©Assakkaf INTRODUCTION Things to consider: 9Effect of altitude on capacity. 9Loss of air pressure in pipe and hose systems. 9Capacity factors. 3 CHAPTER 11. COMPRESSED AIR Slide No. 6 ENCE 420 ©Assakkaf OVERVIEWOVERVIEW Selecting the right air compressor depends on many factors. ¾ Compressor capacity and operating pressure depend on the tools used. ¾ Engine and compressor lose power and capacity as altitude increases and temperature rises.
    [Show full text]
  • Beach Nourishment Techniques: Report 1: Dredging Systems For
    BEACH NOURISHMENT TECHNIQUES R ep ort I DREDGING SYSTEMS FOR BEACH NOURISHMENT FROM OFFSHORE SOURCES by Thomas W. Richardson Hydraulics Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 September 1976 Report I of a Series Approved For Public Release; Distribution Unlimited TA 7 Prepared for Office, Chief of Engineers, U. S. Army .W34t Washington, D. C. 2 0 3 14 H-76-13 1976 Voi. 1 C . 3 BUREAU OF RECLAMATION LIBRARY DENVER, CO Destroy this report when no longer needed. Do not return it to the originator. P.yi!P.A.y .P f RECLAMATION DENVER LIBRARY 92071163 o'5 i Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Technical Report H-76-13 4 . T I T L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED BEACH NOURISHMENT TECHNIQUES; Report 1, DREDGING SYSTEMS FOR BEACH NOURISHMENT Report 1 of a series FROM OFFSHORE SOURCES 6. PERFORMING ORG. REPORT NUMBER 7. A U TH O R fsj 8. CONTRACT OR GRANT NUMBERS Thomas W. Richardson 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Hydraulics Laboratory P. 0. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE September 1976 Office, Chief of Engineers, U. S. Army Washington, D. C. 2031** 13. NUMBER OF PAGES 83 1 4 . MONITORING AGENCY NAME & ADDRESSfi/ different from Controlling Office) 15.
    [Show full text]
  • Compressed Air Engine Swadhinpatnaik Dept
    ISSN : 2249-5762 (Online) | ISSN : 2249-5770 (Print) IJRMET VOL . 5, ISSU E 2, MAY - OC T 2015 Compressed Air Engine SwadhinPatnaik Dept. of Mechanical engineering, SRM University, Chennai, India Abstract II. Components This paper work deals with the Compressed-air engine as a • CYLINDER pneumatic actuator that converts one form of energy into another. • PISTON The Air Driven Engine is an eco-friendly engine which operates • COMBUSTION CHAMBER with compressed air. This Engine uses the expansion of compressed • ONNECTING ROD air to drive the pistons of the engine. An Air Driven Engine is • CRANKSHAFT a pneumatic actuator that creates useful work by expanding • CAMSHAFT compressed air. There is no mixing of fuel with air as there is no • CAM combustion. An Air Driven Engine makes use of Compressed Air • PISTON RINGS Technology for its operation The Compressed Air Technology is • GUDGEON PIN quite simple. If we compress normal air into a cylinder the air • INLET would hold some energy within it. This energy can be utilized for • EXHAUST MANIFOLD useful purposes. When this compressed air expands, the energy is • INLET AND EXHAUST VALVE released to do work. So this energy in compressed air can also be • FLYWHEEL utilized to displace a piston. Compressed air propulsion may also be incorporated in hybrid systems, e.g., battery electric propulsion III. Engine Specifications and fuel tanks to recharge the batteries. This kind of system is called Type of fuel used : Petrol hybrid-pneumatic electric propulsion. Additionally, regenerative Cooling system : Air cooled braking can also be used in conjunction with this system. Number of cylinder : Single Number of stroke : Four Stroke Keywords Arrangement : Vertical Air, Compressed, Engine, Energy, Propulsion, Pneumatic Cubic capacity : 100 cc I.
    [Show full text]
  • Diving Air Compressor - Wikipedia, the Free Encyclopedia Diving Air Compressor from Wikipedia, the Free Encyclopedia
    2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia Diving air compressor From Wikipedia, the free encyclopedia A diving air compressor is a gas compressor that can provide breathing air directly to a surface-supplied diver, or fill diving cylinders with high-pressure air pure enough to be used as a breathing gas. A low pressure diving air compressor usually has a delivery pressure of up to 30 bar, which is regulated to suit the depth of the dive. A high pressure diving compressor has a delivery pressure which is usually over 150 bar, and is commonly between 200 and 300 bar. The pressure is limited by an overpressure valve which may be adjustable. A small stationary high pressure diving air compressor installation Contents 1 Machinery 2 Air purity 3 Pressure 4 Filling heat 5 The bank 6 Gas blending 7 References 8 External links A small scuba filling and blending station supplied by a compressor and Machinery storage bank Diving compressors are generally three- or four-stage-reciprocating air compressors that are lubricated with a high-grade mineral or synthetic compressor oil free of toxic additives (a few use ceramic-lined cylinders with O-rings, not piston rings, requiring no lubrication). Oil-lubricated compressors must only use lubricants specified by the compressor's manufacturer. Special filters are used to clean the air of any residual oil and water(see "Air purity"). Smaller compressors are often splash lubricated - the oil is splashed around in the crankcase by the impact of the crankshaft and connecting A low pressure breathing air rods - but larger compressors are likely to have a pressurized lubrication compressor used for surface supplied using an oil pump which supplies the oil to critical areas through pipes diving at the surface control point and passages in the castings.
    [Show full text]
  • Improving Compressed Air System Performance. a Sourcebook For
    U.S. DEPARTMENT OF Energy Efficiency & ENERGY Renewable Energy ADVANCED MANUFACTURING OFFICE Improving Compressed Air System Performance A Sourcebook for Industry Third Edition IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable ACKNOWLEDGEMENTS Improving Compressed Air System Performance: A Sourcebook for Industry is a cooperative effort of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Advanced Manufacturing Office and the Compressed Air Challenge®. EERE originally undertook this project as part of a series of sourcebook publications on industrial systems. Other topics in this series include: pump systems; fan systems; motors; process heating; and steam systems. As work on the first edition progressed, the Compressed Air Challenge® was formed, bringing together the extraordinary combined talents of compressed air system auditors, trade associations, equipment manufacturers and distributors, utilities, and government agencies in a collaborative effort to improve the performance of industrial compressed air systems. The two programs joined forces in preparing the second and this third edition. For more information about EERE and the Compressed Air Challenge®, see Section 3: Where to Find Help. The Compressed Air Challenge®, EERE’s Advanced Manufacturing Office, Lawrence Berkeley National Laboratory, and Resource Dynamics Corporation wish to thank the staff at the many organizations who so generously assisted in the collection of data for this sourcebook. The contributions of the following participants are appreciated: Ron Marshall, Manitoba Hydro William Scales, Scales Industrial Technologies, Inc. Gary Shafer, Shafer Consulting Services, Inc.
    [Show full text]
  • Surface Supplied Diving Operations Using Nitrox
    Guidance on Surface Supplied Diving Operations using Nitrox IMCA D 048 January 2017 The International Marine Contractors Association (IMCA) is the international trade association representing offshore, marine and underwater engineering companies. IMCA promotes improvements in quality, health, safety, environmental and technical standards through the publication of information notes, codes of practice and by other appropriate means. Members are self-regulating through the adoption of IMCA guidelines as appropriate. They commit to act as responsible members by following relevant guidelines and being willing to be audited against compliance with them by their clients. There are five core committees that relate to all members: © Competence & Training © Contracts & Insurance © Health, Safety, Security & Environment © Lifting & Rigging © Marine Policy & Regulatory Affairs The Association is organised through four distinct divisions, each covering a specific area of members’ interests: Diving, Marine, Offshore Survey and Remote Systems & ROV. There are also five regions which facilitate work on issues affecting members in their local geographic area – Asia-Pacific, Europe & Africa, Middle East & India, North America and South America. IMCA D 048 www.imca-int.com/diving If you have any comments on this document, please click the feedback button below: [email protected] Date Reason Revision March 2012 Initial publication January 2017 Change to advice on the selection of gas mixes for emergency breathing cylinders carried in a wet bell or basket (section 4.2). Other minor updates made during review. The information contained herein is given for guidance only and endeavours to reflect best industry practice. For the avoidance of doubt no legal liability shall attach to any guidance and/or recommendation and/or statement herein contained.
    [Show full text]
  • Agitation Dredging: Lessons and Guidelines from Past Projects
    0 TECHNICAL REPORT HL-84-6 föftf / -AGITATION DREDGING: LESSONS AND GUIDELINES FROM PAST PROJECTS by Thomas W. Richardson Hydraulics Laboratory DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631 Vicksburg, Mississippi 39180-0631 July 1984 Final Report Approved For Public Release; Distribution Unlimited Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000 LIBRARY MAR 1 5 -1985 Bureau ot Reclamation Denver, Colorado Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. BUREAU OF RECLAMATION DENVER LIBRARY Æ 92012004 ' Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. R E P O R T NU M B ER 2. GOVT ACCESSION NO. 3. R E C IP IE N T ’ S C A T A L O G N U M B ER Technical Report HL-84-6 4. T IT L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED AGITATION DREDGING: LESSONS AND GUIDELINES FROM Final Report PAST PROJECTS 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR*» 8. CONTRACT OR GRANT NUMBER*» Thomas W. Richardson 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS US Army Engineer Waterways Experiment Station Hydraulics Laboratory PO Box 631, Vicksburg, Mississippi 39180-0631 11.
    [Show full text]
  • Decompression Sickness (DCS) “Bends”
    SLMA Guide to Management of Decompression Sickness (DCS) “Bends” A collaborative Publication of the Sri Lanka Medical Association and the Directorate of Health Services – Sri Lanka Navy 2013 These guidelines are the result of a long-term collaboration between divers with experience in caring for DCS victims, doctors and diving officers of the Sri Lanka Navy with experience in administering Hyperbaric Oxygen (HBO) treatment to such victims, a doctor who is a trained SCUBA diver with knowledge of the subject and a neurophysician with experience in treating victims who have not undergone recompression therapy. Edited by Malik Fernando for the Sri Lanka Medical Association and the Directorate of Health Services – Sri Lanka Navy November 2013 Updated May 2018 Published by Sri Lanka Medical Association ‘Wijerama House’ 6, Wijerama Mawatha Colombo 7 Guide to Management of Decompression Sickness (DCS) “Bends” A collaborative Publication of the Sri Lanka Medical Association and the Directorate of Health Services of the Sri Lanka Navy Decompression sickness (DCS), commonly called ‘bends’, is a condition seen in those who have breathed compressed air, such as SCUBA divers, for too long at too high a pressure and who have returned to atmospheric pressure too quickly. This happens when they do not follow recommended diving protocols and come up to atmospheric pressure after a prolonged period at a great depth so rapidly that there is no time for inert gases dissolved in the blood and tissues to be eliminated. The result is that bubbles of nitrogen form in the blood and tissues due to the rapid reduction of ambient pressure.
    [Show full text]
  • Decompression Sickness in Inside Attendants
    SECTION VI 643 CHAPTER 2 DECOMPRESSION SICKNESS IN INSIDE ATTENDANTS PAUL J. SHEFFIELD AND CHRISTY J. PIRONE WHAT IS DECOMPRESSION SICKNESS? Decompression Sickness (DCS) Defined: DCS is an illness that occurs when environmental pressure is reduced sufficiently to cause gases that are dissolved in body tissues to evolve as bubbles. Primarily consisting of nitrogen, the bubbles evolve from solution when the inside attendant surfaces too fast for the body to compensate. Patients do not have the problem because the oxygen they breathe during hyperbaric oxygen treatment elimi- nates the nitrogen from their bodies. Signs and Symptoms of DCS: Bubbles that cause DCS can form in all parts of the body and the anatomic location accounts for the variety of signs and symptoms. (1) DCS can manifest itself from minor to life-threatening symptoms. Minor skin itching or tingling usually passes within 20 to 30 min- utes, and no treatment is necessary, all other forms of DCS are treated in the hyperbaric chamber with immediate compression and hyperbaric oxygen. “Bends pain” seen in about 90% of cases, may appear anywhere in the body, but is more frequent in legs or arms that were exercised during the exposure. Neurologic symptoms involving the brain or spinal cord occur in about 25% of cases, and are manifested by a wide variety of symptoms but mainly by headache, numbness, paralysis of an arm or leg, loss of sensation, vertigo, visu- al distortions or blindness, and extreme fatigue. Chokes is a rare but life-threat- ening respiratory disorder caused by gas emboli in the lungs, and manifested by wheezing, chest pain, or troublesome cough.
    [Show full text]
  • United States Patent (10) Patent N0.: US 6,666,623 B1 Greene (45) Date of Patent: Dec
    US006666623B1 (12) United States Patent (10) Patent N0.: US 6,666,623 B1 Greene (45) Date of Patent: Dec. 23, 2003 (54) BUOYANCY CONTROL DEVICE AND 5,560,738 A * 10/1996 Noel ........................ .. 405/186 METHOD FOR CONTROLLING DIVERS 6,287,053 B1 * 9/2001 Garofalo et al. .......... .. 405/186 ASCENT 6,435,032 B1 * 8/2002 Holloway et al. .......... .. 73/713 2002/0127062 A1 * 9/2002 Biran et al. ............... .. 405/186 (75) Inventor: gsuegiard M. Greene, White Plains, NY FOREIGN PATENT DOCUMENTS GB 2246745 * 2/1992 ................ .. 441/88 (73) Assignee: Safe Flight Instrument Corporation, * . White Plains, NY (US) ‘med by exammer Primary Examiner—Jong-Suk (James) Lee ( * ) Notice: Subject to any disclaimer, the term of this (74) Attorney, A gem, 0r Firm—Dennison, Schultz & patent is extended or adjusted under 35 Dougherty U.S.C. 154(b) by 0 days. (57) ABSTRACT (21) APPL NOJ 10/167,585 Abuoyancy control device includes a buoyancy compensa (22) Filed Jun 13 2002 tor to be Worn by a scuba diver, a compressed air tank, a ' ' ’ depth or pressure gauge and a valve connecting the buoy ( 51 ) Int. Cl.7 .............................................. .. B63C 11/02 anc y com P ensator and com p ressed air tank for releasin g air (52) US. Cl. ....................... .. 405/186; 405/185; 441/88; mm and out of the buoyancy compensator- Amicroprocessor 441/96 is connected to the depth gauge and the valve for controlling (58) Field Of Search ............................... .. 405/185, 186; the amount of air in the buoyancy compensator in response 114/315, 331; 441/80, 88, 92, 96, 106, to the depth of the diver.
    [Show full text]
  • Decompression Sickness: a Review R
    Brit. J. industr. Med., I968, 25, 4. Decompression Sickness: A Review R. I. McCALLUM From the Nuffield Department of Industrial Health, University of Newcastle upon Tyne Work in compressed air is a dangerous activity, European continent pressures are expressed in whether it is carried on under water in a con- kilogrammes per square centimetre (kg. /cm.2). ventional diving suit, in self-contained breathing Although the use of these different units can be apparatus or in a diving bell, or in relatively dry confusing, it is not difficult to convert one into conditions in a caisson or an underwater tunnel. another. Surprisingly large numbers of men have worked at Decompression procedures used for deep sea one time or another in compressed air in tunnels or divers are generally held to be safer and to result in caissons and it is the dangers which arise to the much less decompression sickness, particularly bone health of these men that are considered here. disease, than those used for tunnel and caisson When a tunnel is driven through water-logged workers. It is often asked why tables and procedures strata or through porous ground under a river, the similar to those used in diving are not applied in open end of the tunnel must be sealed off and air civil engineering work, and to answer this a brief pumped in to balance the hydrostatic pressure, description of the particular circumstances affecting should there be any danger of water flooding in and such work must be given. bringing with it unmanageable quantities of silt or sand.
    [Show full text]
  • Compressed Air Engine Report.Pdf
    Design and Fabrication of Compressed Air Engine. Final Year Project For the award of Bachelor of Technology (B. Tech.) in Mechanical Engineering Submitted By: Manik Gupta (2006EME21) Vishavjeet Singh (2006EME26) Harish Gupta (2006EME29) Sudhanshu Rometra (2006EME37) Zorawar Singh (2006EME49) Under the Supervision of: Mr. R.K. Shahu (Lecturer) School of Mechanical Engineering Shri Mata Vaishno Devi University, Katra (J&K), India . April, 2010. CERTIFICATE This is to certify that the thesis entitled " Design and Fabrication of Compressed Air Engine” is being submitted by Manik Gupta , Zorawar Singh, Sudhanshu Rometra, Harish Gupta, Vishavjeet Singh to School of Mechanical Engineering, College of Engineering, Shri Mata Vaishno Devi University, Katra (J&K), for the award of the Bachelor of Technology in Mechanical, is a bonafide work carried out by them under my supervision and guidance. The results obtained by us have not been submitted to any other university or institute, either in part or in full, for the award of any other degree or diploma. Guide: Director: Mr. R.K. Shahu Dr. A.S.Sudan (Lecturer) School Of Mechnical Engineering School of Mechanical Engineering ACKNOWLEDGEMENT We are highly thankful to Mr. R.K. Shahu of Mechanical Engineering Department, S.M.V.D. University, Katra for his efficient guidance and support. He always encouraged and inspired us a lot to work hard and get through the problems. We extend our gratitude to him for being the guiding force. His ever increasing helping nature needs a special mention. We would also like to thank all the faculty of School of Mechanincal Engineering, to provide us all the help that we required at different stages of completion of our project work.
    [Show full text]