Improving Compressed Air System Performance. a Sourcebook For

Total Page:16

File Type:pdf, Size:1020Kb

Improving Compressed Air System Performance. a Sourcebook For U.S. DEPARTMENT OF Energy Efficiency & ENERGY Renewable Energy ADVANCED MANUFACTURING OFFICE Improving Compressed Air System Performance A Sourcebook for Industry Third Edition IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable ACKNOWLEDGEMENTS Improving Compressed Air System Performance: A Sourcebook for Industry is a cooperative effort of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Advanced Manufacturing Office and the Compressed Air Challenge®. EERE originally undertook this project as part of a series of sourcebook publications on industrial systems. Other topics in this series include: pump systems; fan systems; motors; process heating; and steam systems. As work on the first edition progressed, the Compressed Air Challenge® was formed, bringing together the extraordinary combined talents of compressed air system auditors, trade associations, equipment manufacturers and distributors, utilities, and government agencies in a collaborative effort to improve the performance of industrial compressed air systems. The two programs joined forces in preparing the second and this third edition. For more information about EERE and the Compressed Air Challenge®, see Section 3: Where to Find Help. The Compressed Air Challenge®, EERE’s Advanced Manufacturing Office, Lawrence Berkeley National Laboratory, and Resource Dynamics Corporation wish to thank the staff at the many organizations who so generously assisted in the collection of data for this sourcebook. The contributions of the following participants are appreciated: Ron Marshall, Manitoba Hydro William Scales, Scales Industrial Technologies, Inc. Gary Shafer, Shafer Consulting Services, Inc. Paul Shaw, Scales Industrial Technologies, Inc. Paul Sheaffer, Lawrence Berkeley National Lab Rick Stasyshan, Compressed Air and Gas Institute H.P. Van Ormer, Air Power USA The review and comment from the following participants is also appreciated: Niff Ambrosino, Scales Industrial Technologies, Inc.; Joseph Ghislain, Ford Motor Company; Thomas Hyde, Alcoa, Inc.; Tracey Kohler, Compressed Air Challenge; Doug Peace, Shaw Industries Group, Inc.; David Prator, Atlas Copco; Tom Osborn, Bonneville Power Administration; Bill Orthwein, U.S. Department of Energy, Dean Smith, Air Science Engineering, Inc.; Dusty Smith, Pneu-Logic Corp.; Jody Sutter, Ingersoll Rand; Tony Yanessa, Tennessee Valley Authority; Jeff Yarnall, Rogers Machinery Co. Finally, a special thanks to William Scales for his extraordinary assistance in developing this third edition and previous editions. Prepared for: Compressed Air Challenge and the United States Department of Energy Prepared by: Lawrence Berkeley National Laboratory Berkeley, CA Resource Dynamics Corporation McLean, VA IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY CONTENTS QUICK START GUIDE SECTION 1. INTRODUCTION TO INDUSTRIAL COMPRESSED AIR SYSTEMS SECTION 2. PERFORMANCE IMPROVEMENT OPPORTUNITY ROADMAP FACT SHEET 1: ANALYZING COMPRESSED AIR NEEDS ..................................................................................................................... 20 FACT SHEET 2: POTENTIALLY INAPPROPRIATE USES OF COMPRESSED AIR ..................................................................................... 24 FACT SHEET 3: COMPRESSED AIR SYSTEM LEAKS ............................................................................................................................. 28 FACT SHEET 4: PRESSURE DROP AND CONTROLLING SYSTEM PRESSURE ......................................................................................... 31 FACT SHEET 5: COMPRESSED AIR SYSTEM CONTROLS ..................................................................................................................... 34 FACT SHEET 6: COMPRESSED AIR STORAGE ..................................................................................................................................... 43 FACT SHEET 7: PROVEN OPPORTUNITIES AT THE COMPONENT LEVEL ............................................................................................. 45 FACT SHEET 8: MAINTENANCE OF COMPRESSED AIR SYSTEMS FOR PEAK PERFORMANCE .............................................................. 51 FACT SHEET 9: HEAT RECOVERY AND COMPRESSED AIR SYSTEMS ................................................................................................... 58 FACT SHEET 10: BASELINING COMPRESSED AIR SYSTEMS ................................................................................................................ 60 FACT SHEET 11: DETERMINING YOUR COMPRESSED AIR SYSTEM ANALYSIS NEEDS ........................................................................ 62 FACT SHEET 12: COMPRESSED AIR SYSTEM ECONOMICS AND SELLING PROJECTS TO MANAGEMENT ............................................. 65 SECTION 3. WHERE TO FIND HELP ADVANCED MANUFACTURING OFFICE ............................................................................................................................................ 70 THE COMPRESSED AIR CHALLENGE .................................................................................................................................................. 71 DIRECTORY OF CONTACTS ............................................................................................................................................................... 73 RESOURCES AND TOOLS .................................................................................................................................................................. 74 BOOKS AND REPORTS ................................................................................................................................................................................ 74 EDUCATIONAL BROCHURES ......................................................................................................................................................................... 77 ONLINE RESOURCES .................................................................................................................................................................................. 78 DOE TIP SHEETS ...................................................................................................................................................................................... 79 DOE CASE STUDIES .................................................................................................................................................................................. 79 PERIODICALS ............................................................................................................................................................................................ 79 SOFTWARE .............................................................................................................................................................................................. 79 VIDEOS ................................................................................................................................................................................................... 80 WORKSHOPS AND TRAINING COURSES .......................................................................................................................................................... 80 APPENDIX A: GLOSSARY OF BASIC COMPRESSED AIR SYSTEM TERMINOLOGY ................................................................................ 83 APPENDIX B: PACKAGED COMPRESSOR EFFICIENCY RATINGS ......................................................................................................... 89 APPENDIX C: CAGI COMPRESSOR AND DRYER DATA SHEETS ........................................................................................................... 91 ROTARY COMPRESSOR ............................................................................................................................................................................... 92 REFRIGERANT DRYERS ............................................................................................................................................................................... 93 ROTARY VARIABLE FREQUENCY DRIVE COMPRESSOR ....................................................................................................................................... 94 CENTRIFUGAL COMPRESSORS ...................................................................................................................................................................... 95 IMPROVING COMPRESSED AIR SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY APPENDIX D: THE COMPRESSED AIR SYSTEM MARKETPLACE .......................................................................................................... 96 MARKET SIZE AND ENERGY CONSUMPTION ................................................................................................................................................... 96 COMPRESSED AIR SYSTEM MARKETPLACE ..................................................................................................................................................... 96 THE MARKET FOR COMPRESSED AIR SYSTEM EFFICIENCY SERVICES .................................................................................................................
Recommended publications
  • Compressed Air Compressed
    Construction Planning, Equipment, and Methods Sixth Edition CHAPTER COMPRESSEDCOMPRESSED AIRAIR • A. J. Clark School of Engineering •Department of Civil and Environmental Engineering By 11 Dr. Ibrahim Assakkaf ENCE 420 – Construction Equipment and Methods Spring 2003 Department of Civil and Environmental Engineering University of Maryland, College Park CHAPTER 11. COMPRESSED AIR Slide No. 1 ENCE 420 ©Assakkaf COMPRESSEDCOMPRESSED AIRAIR 1 CHAPTER 11. COMPRESSED AIR Slide No. 2 ENCE 420 ©Assakkaf INTRODUCTION Compressed air is used for: 9Drilling rock 9Driving piles 9Operating hand tools 9Pumping 9Cleaning PAVING PUMP BREAKER CHAPTER 11. COMPRESSED AIR Slide No. 3 ENCE 420 ©Assakkaf INTRODUCTION In many instances the energy supplied by compressed air is the most convenient method of operating equipment and tools. When air is compressed, it receives energy from the compressor. This energy is transmitted through a pipe or hose to the operating equipment, where a portion of the energy is converted into mechanical work. 2 CHAPTER 11. COMPRESSED AIR Slide No. 4 ENCE 420 ©Assakkaf INTRODUCTION The operations of compressing, transmitting, and using air will always result in a loss of energy, which will give an overall efficiency less than 100%, sometimes considerably less. CHAPTER 11. COMPRESSED AIR Slide No. 5 ENCE 420 ©Assakkaf INTRODUCTION Things to consider: 9Effect of altitude on capacity. 9Loss of air pressure in pipe and hose systems. 9Capacity factors. 3 CHAPTER 11. COMPRESSED AIR Slide No. 6 ENCE 420 ©Assakkaf OVERVIEWOVERVIEW Selecting the right air compressor depends on many factors. ¾ Compressor capacity and operating pressure depend on the tools used. ¾ Engine and compressor lose power and capacity as altitude increases and temperature rises.
    [Show full text]
  • Beach Nourishment Techniques: Report 1: Dredging Systems For
    BEACH NOURISHMENT TECHNIQUES R ep ort I DREDGING SYSTEMS FOR BEACH NOURISHMENT FROM OFFSHORE SOURCES by Thomas W. Richardson Hydraulics Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 September 1976 Report I of a Series Approved For Public Release; Distribution Unlimited TA 7 Prepared for Office, Chief of Engineers, U. S. Army .W34t Washington, D. C. 2 0 3 14 H-76-13 1976 Voi. 1 C . 3 BUREAU OF RECLAMATION LIBRARY DENVER, CO Destroy this report when no longer needed. Do not return it to the originator. P.yi!P.A.y .P f RECLAMATION DENVER LIBRARY 92071163 o'5 i Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Technical Report H-76-13 4 . T I T L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED BEACH NOURISHMENT TECHNIQUES; Report 1, DREDGING SYSTEMS FOR BEACH NOURISHMENT Report 1 of a series FROM OFFSHORE SOURCES 6. PERFORMING ORG. REPORT NUMBER 7. A U TH O R fsj 8. CONTRACT OR GRANT NUMBERS Thomas W. Richardson 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Hydraulics Laboratory P. 0. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE September 1976 Office, Chief of Engineers, U. S. Army Washington, D. C. 2031** 13. NUMBER OF PAGES 83 1 4 . MONITORING AGENCY NAME & ADDRESSfi/ different from Controlling Office) 15.
    [Show full text]
  • Compressed Air Engine Swadhinpatnaik Dept
    ISSN : 2249-5762 (Online) | ISSN : 2249-5770 (Print) IJRMET VOL . 5, ISSU E 2, MAY - OC T 2015 Compressed Air Engine SwadhinPatnaik Dept. of Mechanical engineering, SRM University, Chennai, India Abstract II. Components This paper work deals with the Compressed-air engine as a • CYLINDER pneumatic actuator that converts one form of energy into another. • PISTON The Air Driven Engine is an eco-friendly engine which operates • COMBUSTION CHAMBER with compressed air. This Engine uses the expansion of compressed • ONNECTING ROD air to drive the pistons of the engine. An Air Driven Engine is • CRANKSHAFT a pneumatic actuator that creates useful work by expanding • CAMSHAFT compressed air. There is no mixing of fuel with air as there is no • CAM combustion. An Air Driven Engine makes use of Compressed Air • PISTON RINGS Technology for its operation The Compressed Air Technology is • GUDGEON PIN quite simple. If we compress normal air into a cylinder the air • INLET would hold some energy within it. This energy can be utilized for • EXHAUST MANIFOLD useful purposes. When this compressed air expands, the energy is • INLET AND EXHAUST VALVE released to do work. So this energy in compressed air can also be • FLYWHEEL utilized to displace a piston. Compressed air propulsion may also be incorporated in hybrid systems, e.g., battery electric propulsion III. Engine Specifications and fuel tanks to recharge the batteries. This kind of system is called Type of fuel used : Petrol hybrid-pneumatic electric propulsion. Additionally, regenerative Cooling system : Air cooled braking can also be used in conjunction with this system. Number of cylinder : Single Number of stroke : Four Stroke Keywords Arrangement : Vertical Air, Compressed, Engine, Energy, Propulsion, Pneumatic Cubic capacity : 100 cc I.
    [Show full text]
  • Quincy Climate Control Compressed Air Systems Quincy Climate Control
    QUINCY CLIMATE CONTROL COMPRESSED AIR SYSTEMS QUINCY CLIMATE CONTROL COMPLETE COMPRESSED AIR SYSTEMS • Total Air Systems • Industry Specific • Quincy Reliable • Rapid Response TOTAL AIR SYSTEMS Your total air system demands are unique, but You’ll find that Quincy Climate Control with a Quincy Climate Control Compressed Systems are competitively priced and superior Air System the results are the same – efficient and in value. effective climate control. RAPID RESPONSE Climate control means more than just an air compressor. That’s why our systems can include Quincy understands that delivery is a criti- mounted and wired electronic duplex control cal factor in ordering a climate control sys- panels, mounted and piped refrigerated air tem. That’s why we have the manufacturing dryers, filters, and PRV stations. Every expertise and flexibility to ship your standard component integrates seamlessly to meet the Quincy Climate Control System in ten days or stringent conditions of your environment. less. Quincy Climate Control Systems are easy to quote, If you have climate control questions, the order, install, and service. Quincy Air Line, 217.222.7700, is your resource for questions about sizing, pricing, order status, aftermarket service, shipping, INDUSTRY SPECIFIC warranty claims and replacement parts. Our climate control specialists in the recip- Quincy Climate Control Systems have been rocating division are standing by to help you. engineered specifically for climate control. Our innovative beveled gap rings ensure a fast break-in and have established Quincy as the climate control leader – with a certified maximum oil carry-over of 2 ppm or less. QUINCY RELIABLE Every Quincy Climate Control System is built Quincy reliable.
    [Show full text]
  • 3. Pneumatic Tools and Equipment
    Pneumatic Tools Introduction Pneumatics refers to technology dealing with the application of pressurized gas (potential energy) to produce mechanical motion (kinetic energy). Pneumatic systems used in the fire/rescue service primarily use compressed gas as the source of power. There are a variety of pneumatic tools used in the fire/rescue service, each with a specific function. While some of these tools were developed specifically for rescue, many are simply borrowed from other industries, such as the automotive repair industry. All of the components of a pneumatic tool setup will be discussed in this module, starting with the air source and working downstream to the actual tool. Air Sources The key component to any pneumatic tool or airbag operation is compressed air. Compressed air can be obtained from a variety of sources on a rescue incident: Air Compressors Air compressors provide an unlimited supply of air. The most common type is the positive- displacement compressor that uses a reciprocating piston. (Other types that utilize impellers or rotary screws do exist.) The piston air compressor has components similar to an internal combustion engine: a crankshaft, connecting rod and piston, cylinder and a valve head. Typical compressors come in 1- or 2- cylinder versions and can be single- or two- stage. The compressor supplies a storage tank. When needed, air is drawn from the tank and the compressor replenishes it. Air compressors stop supplying the storage tank when pressure inside the tank reaches a specified limit. When air is consumed and the pressure in the storage tank drops below a certain level, the compressor starts up again.
    [Show full text]
  • Diving Air Compressor - Wikipedia, the Free Encyclopedia Diving Air Compressor from Wikipedia, the Free Encyclopedia
    2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia Diving air compressor From Wikipedia, the free encyclopedia A diving air compressor is a gas compressor that can provide breathing air directly to a surface-supplied diver, or fill diving cylinders with high-pressure air pure enough to be used as a breathing gas. A low pressure diving air compressor usually has a delivery pressure of up to 30 bar, which is regulated to suit the depth of the dive. A high pressure diving compressor has a delivery pressure which is usually over 150 bar, and is commonly between 200 and 300 bar. The pressure is limited by an overpressure valve which may be adjustable. A small stationary high pressure diving air compressor installation Contents 1 Machinery 2 Air purity 3 Pressure 4 Filling heat 5 The bank 6 Gas blending 7 References 8 External links A small scuba filling and blending station supplied by a compressor and Machinery storage bank Diving compressors are generally three- or four-stage-reciprocating air compressors that are lubricated with a high-grade mineral or synthetic compressor oil free of toxic additives (a few use ceramic-lined cylinders with O-rings, not piston rings, requiring no lubrication). Oil-lubricated compressors must only use lubricants specified by the compressor's manufacturer. Special filters are used to clean the air of any residual oil and water(see "Air purity"). Smaller compressors are often splash lubricated - the oil is splashed around in the crankcase by the impact of the crankshaft and connecting A low pressure breathing air rods - but larger compressors are likely to have a pressurized lubrication compressor used for surface supplied using an oil pump which supplies the oil to critical areas through pipes diving at the surface control point and passages in the castings.
    [Show full text]
  • Surface Supplied Diving Operations Using Nitrox
    Guidance on Surface Supplied Diving Operations using Nitrox IMCA D 048 January 2017 The International Marine Contractors Association (IMCA) is the international trade association representing offshore, marine and underwater engineering companies. IMCA promotes improvements in quality, health, safety, environmental and technical standards through the publication of information notes, codes of practice and by other appropriate means. Members are self-regulating through the adoption of IMCA guidelines as appropriate. They commit to act as responsible members by following relevant guidelines and being willing to be audited against compliance with them by their clients. There are five core committees that relate to all members: © Competence & Training © Contracts & Insurance © Health, Safety, Security & Environment © Lifting & Rigging © Marine Policy & Regulatory Affairs The Association is organised through four distinct divisions, each covering a specific area of members’ interests: Diving, Marine, Offshore Survey and Remote Systems & ROV. There are also five regions which facilitate work on issues affecting members in their local geographic area – Asia-Pacific, Europe & Africa, Middle East & India, North America and South America. IMCA D 048 www.imca-int.com/diving If you have any comments on this document, please click the feedback button below: [email protected] Date Reason Revision March 2012 Initial publication January 2017 Change to advice on the selection of gas mixes for emergency breathing cylinders carried in a wet bell or basket (section 4.2). Other minor updates made during review. The information contained herein is given for guidance only and endeavours to reflect best industry practice. For the avoidance of doubt no legal liability shall attach to any guidance and/or recommendation and/or statement herein contained.
    [Show full text]
  • Agitation Dredging: Lessons and Guidelines from Past Projects
    0 TECHNICAL REPORT HL-84-6 föftf / -AGITATION DREDGING: LESSONS AND GUIDELINES FROM PAST PROJECTS by Thomas W. Richardson Hydraulics Laboratory DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631 Vicksburg, Mississippi 39180-0631 July 1984 Final Report Approved For Public Release; Distribution Unlimited Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000 LIBRARY MAR 1 5 -1985 Bureau ot Reclamation Denver, Colorado Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. BUREAU OF RECLAMATION DENVER LIBRARY Æ 92012004 ' Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. R E P O R T NU M B ER 2. GOVT ACCESSION NO. 3. R E C IP IE N T ’ S C A T A L O G N U M B ER Technical Report HL-84-6 4. T IT L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED AGITATION DREDGING: LESSONS AND GUIDELINES FROM Final Report PAST PROJECTS 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR*» 8. CONTRACT OR GRANT NUMBER*» Thomas W. Richardson 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS US Army Engineer Waterways Experiment Station Hydraulics Laboratory PO Box 631, Vicksburg, Mississippi 39180-0631 11.
    [Show full text]
  • Decompression Sickness (DCS) “Bends”
    SLMA Guide to Management of Decompression Sickness (DCS) “Bends” A collaborative Publication of the Sri Lanka Medical Association and the Directorate of Health Services – Sri Lanka Navy 2013 These guidelines are the result of a long-term collaboration between divers with experience in caring for DCS victims, doctors and diving officers of the Sri Lanka Navy with experience in administering Hyperbaric Oxygen (HBO) treatment to such victims, a doctor who is a trained SCUBA diver with knowledge of the subject and a neurophysician with experience in treating victims who have not undergone recompression therapy. Edited by Malik Fernando for the Sri Lanka Medical Association and the Directorate of Health Services – Sri Lanka Navy November 2013 Updated May 2018 Published by Sri Lanka Medical Association ‘Wijerama House’ 6, Wijerama Mawatha Colombo 7 Guide to Management of Decompression Sickness (DCS) “Bends” A collaborative Publication of the Sri Lanka Medical Association and the Directorate of Health Services of the Sri Lanka Navy Decompression sickness (DCS), commonly called ‘bends’, is a condition seen in those who have breathed compressed air, such as SCUBA divers, for too long at too high a pressure and who have returned to atmospheric pressure too quickly. This happens when they do not follow recommended diving protocols and come up to atmospheric pressure after a prolonged period at a great depth so rapidly that there is no time for inert gases dissolved in the blood and tissues to be eliminated. The result is that bubbles of nitrogen form in the blood and tissues due to the rapid reduction of ambient pressure.
    [Show full text]
  • Decompression Sickness in Inside Attendants
    SECTION VI 643 CHAPTER 2 DECOMPRESSION SICKNESS IN INSIDE ATTENDANTS PAUL J. SHEFFIELD AND CHRISTY J. PIRONE WHAT IS DECOMPRESSION SICKNESS? Decompression Sickness (DCS) Defined: DCS is an illness that occurs when environmental pressure is reduced sufficiently to cause gases that are dissolved in body tissues to evolve as bubbles. Primarily consisting of nitrogen, the bubbles evolve from solution when the inside attendant surfaces too fast for the body to compensate. Patients do not have the problem because the oxygen they breathe during hyperbaric oxygen treatment elimi- nates the nitrogen from their bodies. Signs and Symptoms of DCS: Bubbles that cause DCS can form in all parts of the body and the anatomic location accounts for the variety of signs and symptoms. (1) DCS can manifest itself from minor to life-threatening symptoms. Minor skin itching or tingling usually passes within 20 to 30 min- utes, and no treatment is necessary, all other forms of DCS are treated in the hyperbaric chamber with immediate compression and hyperbaric oxygen. “Bends pain” seen in about 90% of cases, may appear anywhere in the body, but is more frequent in legs or arms that were exercised during the exposure. Neurologic symptoms involving the brain or spinal cord occur in about 25% of cases, and are manifested by a wide variety of symptoms but mainly by headache, numbness, paralysis of an arm or leg, loss of sensation, vertigo, visu- al distortions or blindness, and extreme fatigue. Chokes is a rare but life-threat- ening respiratory disorder caused by gas emboli in the lungs, and manifested by wheezing, chest pain, or troublesome cough.
    [Show full text]
  • United States Patent (10) Patent N0.: US 6,666,623 B1 Greene (45) Date of Patent: Dec
    US006666623B1 (12) United States Patent (10) Patent N0.: US 6,666,623 B1 Greene (45) Date of Patent: Dec. 23, 2003 (54) BUOYANCY CONTROL DEVICE AND 5,560,738 A * 10/1996 Noel ........................ .. 405/186 METHOD FOR CONTROLLING DIVERS 6,287,053 B1 * 9/2001 Garofalo et al. .......... .. 405/186 ASCENT 6,435,032 B1 * 8/2002 Holloway et al. .......... .. 73/713 2002/0127062 A1 * 9/2002 Biran et al. ............... .. 405/186 (75) Inventor: gsuegiard M. Greene, White Plains, NY FOREIGN PATENT DOCUMENTS GB 2246745 * 2/1992 ................ .. 441/88 (73) Assignee: Safe Flight Instrument Corporation, * . White Plains, NY (US) ‘med by exammer Primary Examiner—Jong-Suk (James) Lee ( * ) Notice: Subject to any disclaimer, the term of this (74) Attorney, A gem, 0r Firm—Dennison, Schultz & patent is extended or adjusted under 35 Dougherty U.S.C. 154(b) by 0 days. (57) ABSTRACT (21) APPL NOJ 10/167,585 Abuoyancy control device includes a buoyancy compensa (22) Filed Jun 13 2002 tor to be Worn by a scuba diver, a compressed air tank, a ' ' ’ depth or pressure gauge and a valve connecting the buoy ( 51 ) Int. Cl.7 .............................................. .. B63C 11/02 anc y com P ensator and com p ressed air tank for releasin g air (52) US. Cl. ....................... .. 405/186; 405/185; 441/88; mm and out of the buoyancy compensator- Amicroprocessor 441/96 is connected to the depth gauge and the valve for controlling (58) Field Of Search ............................... .. 405/185, 186; the amount of air in the buoyancy compensator in response 114/315, 331; 441/80, 88, 92, 96, 106, to the depth of the diver.
    [Show full text]
  • Decompression Sickness: a Review R
    Brit. J. industr. Med., I968, 25, 4. Decompression Sickness: A Review R. I. McCALLUM From the Nuffield Department of Industrial Health, University of Newcastle upon Tyne Work in compressed air is a dangerous activity, European continent pressures are expressed in whether it is carried on under water in a con- kilogrammes per square centimetre (kg. /cm.2). ventional diving suit, in self-contained breathing Although the use of these different units can be apparatus or in a diving bell, or in relatively dry confusing, it is not difficult to convert one into conditions in a caisson or an underwater tunnel. another. Surprisingly large numbers of men have worked at Decompression procedures used for deep sea one time or another in compressed air in tunnels or divers are generally held to be safer and to result in caissons and it is the dangers which arise to the much less decompression sickness, particularly bone health of these men that are considered here. disease, than those used for tunnel and caisson When a tunnel is driven through water-logged workers. It is often asked why tables and procedures strata or through porous ground under a river, the similar to those used in diving are not applied in open end of the tunnel must be sealed off and air civil engineering work, and to answer this a brief pumped in to balance the hydrostatic pressure, description of the particular circumstances affecting should there be any danger of water flooding in and such work must be given. bringing with it unmanageable quantities of silt or sand.
    [Show full text]