Diving Air Compressor - Wikipedia, the Free Encyclopedia Diving Air Compressor from Wikipedia, the Free Encyclopedia

Total Page:16

File Type:pdf, Size:1020Kb

Diving Air Compressor - Wikipedia, the Free Encyclopedia Diving Air Compressor from Wikipedia, the Free Encyclopedia 2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia Diving air compressor From Wikipedia, the free encyclopedia A diving air compressor is a gas compressor that can provide breathing air directly to a surface-supplied diver, or fill diving cylinders with high-pressure air pure enough to be used as a breathing gas. A low pressure diving air compressor usually has a delivery pressure of up to 30 bar, which is regulated to suit the depth of the dive. A high pressure diving compressor has a delivery pressure which is usually over 150 bar, and is commonly between 200 and 300 bar. The pressure is limited by an overpressure valve which may be adjustable. A small stationary high pressure diving air compressor installation Contents 1 Machinery 2 Air purity 3 Pressure 4 Filling heat 5 The bank 6 Gas blending 7 References 8 External links A small scuba filling and blending station supplied by a compressor and Machinery storage bank Diving compressors are generally three- or four-stage-reciprocating air compressors that are lubricated with a high-grade mineral or synthetic compressor oil free of toxic additives (a few use ceramic-lined cylinders with O-rings, not piston rings, requiring no lubrication). Oil-lubricated compressors must only use lubricants specified by the compressor's manufacturer. Special filters are used to clean the air of any residual oil and water(see "Air purity"). Smaller compressors are often splash lubricated - the oil is splashed around in the crankcase by the impact of the crankshaft and connecting A low pressure breathing air rods - but larger compressors are likely to have a pressurized lubrication compressor used for surface supplied using an oil pump which supplies the oil to critical areas through pipes diving at the surface control point and passages in the castings. Most oil lubricated compressors will have a wet sump at the bottom of the crankcase, and require the oil level to be within limits indicated by a sight glass or dipstick for proper lubrication. The compressor should also be level within the manufacturer's specification while operating. These constraints ensure that the lubricant is in the right place for http://en.wikipedia.org/wiki/Diving_air_compressor 1/4 2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia either the moving parts to contact it for splash lubrication, or for reliable suction to the oil pump. Failure to comply with these specifications can lead to damage to the compressor due to excessive friction and overheating, and contamination of the breathing air by toxic breakdown products of the lubricants. The compression process helps remove water from the gas, making it dry, which is good for reducing corrosion in diving cylinders and freezing of diving regulators, but contributes towards dehydration, a factor in decompression sickness, in divers who breathe the gas. Air purity The compressed air output by the compressor must be filtered to make it fit for use as a breathing gas.[1] Filters remove: Water, using silica gel, activated alumina or a molecular sieve Oil, using activated carbon or a molecular sieve Carbon monoxide, using a catalyst (Hopcalite) Oil, which must be used to lubricate the compressor's internal parts, can be particularly deadly[citation needed] if it enters the breathing gas and is inhaled as a mist. Petroleum-based oils cannot be absorbed and Filling a cylinder from the panel metabolized by the body and will coat the internal surfaces of the lungs, causing a condition known as lipoid pneumonia and leading to asphyxiation and death. For this reason, compressors must be carefully designed and maintained to ensure that oil contamination of the breathing gas is within safe limits. Petroleum-based oils must never be used within the compressor.[citation needed] Instead, vegetable-based[citation needed] or specifically formulated synthetic oils are used, which can be safely absorbed and metabolized[citation needed] by the body in small quantities, should a malfunction occur. Carbon monoxide (CO) is a gas that is present in the exhaust gas of internal combustion engines, including those often used to drive compressors. It also comes from the breakdown of lubricating oil when compressors run too hot. CO is odorless, colorless, and tasteless. CO is deadly even in small quantities, because it readily binds with the hemoglobin in red blood cells and thus destroys the blood's ability to carry oxygen. Diving compressors must be carefully designed and placed so that the compressor's intake is located in fresh air well away and upstream from any engine exhaust. Periodically, the air produced by a compressor must be tested to ensure it meets air purity standards. Frequency of testing, contaminants that must be analysed, and the allowable limits vary between applications and jurisdictions. The following impurities may be checked for: Carbon dioxide Carbon monoxide Lubricating-oil vapour Total hydrocarbons Nitrogen dioxide Odor and taste Solid particles http://en.wikipedia.org/wiki/Diving_air_compressor 2/4 2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia Water vapor Pressure Diving compressors generally fall into one of two categories: those used for surface supplied diving and those used for filling scuba diving cylinders. Surface supplied diving compressors are low-pressure and high-volume. They supply breathing air directly to a diver, through a control panel sometimes called a "rack" via a hose which is usually part of a group of hoses and cables called an "umbilical". Their output is generally between 6 and 20 bar /100 and 300 psi. These compressors must be sufficiently powerful to deliver gas at a sufficient pressure and volume for multiple divers working at depths of up to about 60 m (two hundred feet). Compressors used to fill scuba cylinders have a high delivery pressure Air bank and may have a low delivery volume. They are used to fill diving cylinders and storage cylinders or banks of storage cylinders. These compressors may be smaller and less powerful because the volume of gas they deliver is not so critical as it is not directly used by the diver; a lower volume compressor can be used to fill large storage cylinders during the periods when demand is low. This stored compressed air can be decanted into diving cylinders when needed. Common scuba diving cylinder pressures are 200 bar (2940 psi), 3000 psi (207 bar), 232 bar (3400 psi) and 300 bar (4500 psi). Filling heat When diving cylinders are filled the gas inside them warms as a result of adiabatic heating. When the gas cools by losing heat to the surroundings, the pressure will drop as described by the general gas equation and Gay-Lussac's law. Divers, to maximise their dive time, generally want their cylinders filled to their safe capacity, the working pressure. To provide the diver with a cylinder filled to the working pressure at the nominal temperature of 15 or 20°C, the cylinder and gas must be kept cool when filling or filled to a pressure such that when it cools it is at the working pressure. This is known as the developed pressure for the filling temperature. Health and safety regulations and pressure vessel design standards may limit the working temperature of the cylinder, commonly to 65°C, in which case the cylinder must be filled slowly enough to avoid exceeding then maximum working temperature. Cylinders are often filled at a rate of less than 1 bar (100 kPa or 15 lbf/in²) per second to allow time for heat transfer to the surroundings to limit this increase in temperature. As a method to remove heat faster when filling the cylinder, some filling stations “wet fill” cylinders immersed in a bath of cold water. There is an increased risk of internal cylinder corrosion caused by moisture from the wet environment entering the cylinder due to contamination during connection of the filling hose during wet filling.[2] The bank Compressors may be connected to a bank of large, high-pressure cylinders to store compressed gas, for use at peak times. This allows a cheaper low-powered compressor, which is relatively slow at pumping gas, to fill the bank automatically during idle periods, storing a large volume of pressurized air so that a batch of cylinders can be http://en.wikipedia.org/wiki/Diving_air_compressor 3/4 2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia filled more quickly at peak demand without being delayed by the slow-running compressor. In surface-supplied diving, high-pressure cylinder banks may be used as an emergency backup in case of primary compressor failure, or they may be used as the primary source of breathing gas, a system also known as "Scuba replacement". Gas blending Main article: Gas blending Compressors may be linked to a gas blending panel to make nitrox, trimix, heliair or heliox mixes.[3] The panel controls the decanting of oxygen and helium from cylinders bought from commercial gas suppliers. As it is not possible to decant to a diving cylinder from a storage cylinder that holds gas at a lower pressure than the diving cylinder, the expensive Gas blending panel gas in low pressure storage cylinders is not easily consumed and may go to waste when the storage cylinder is returned to the supplier. The cascade system may be used with a bank of storage cylinders to economically consume these high cost gases so that the economically maximum gas is used from the bank.[3] This involves filling a diving cylinder by first decanting from the bank cylinder with the lowest pressure that is higher than the diving cylinder's pressure and then from the next higher-pressure bank cylinder in succession until the diving cylinder is full.
Recommended publications
  • Compressed Air Compressed
    Construction Planning, Equipment, and Methods Sixth Edition CHAPTER COMPRESSEDCOMPRESSED AIRAIR • A. J. Clark School of Engineering •Department of Civil and Environmental Engineering By 11 Dr. Ibrahim Assakkaf ENCE 420 – Construction Equipment and Methods Spring 2003 Department of Civil and Environmental Engineering University of Maryland, College Park CHAPTER 11. COMPRESSED AIR Slide No. 1 ENCE 420 ©Assakkaf COMPRESSEDCOMPRESSED AIRAIR 1 CHAPTER 11. COMPRESSED AIR Slide No. 2 ENCE 420 ©Assakkaf INTRODUCTION Compressed air is used for: 9Drilling rock 9Driving piles 9Operating hand tools 9Pumping 9Cleaning PAVING PUMP BREAKER CHAPTER 11. COMPRESSED AIR Slide No. 3 ENCE 420 ©Assakkaf INTRODUCTION In many instances the energy supplied by compressed air is the most convenient method of operating equipment and tools. When air is compressed, it receives energy from the compressor. This energy is transmitted through a pipe or hose to the operating equipment, where a portion of the energy is converted into mechanical work. 2 CHAPTER 11. COMPRESSED AIR Slide No. 4 ENCE 420 ©Assakkaf INTRODUCTION The operations of compressing, transmitting, and using air will always result in a loss of energy, which will give an overall efficiency less than 100%, sometimes considerably less. CHAPTER 11. COMPRESSED AIR Slide No. 5 ENCE 420 ©Assakkaf INTRODUCTION Things to consider: 9Effect of altitude on capacity. 9Loss of air pressure in pipe and hose systems. 9Capacity factors. 3 CHAPTER 11. COMPRESSED AIR Slide No. 6 ENCE 420 ©Assakkaf OVERVIEWOVERVIEW Selecting the right air compressor depends on many factors. ¾ Compressor capacity and operating pressure depend on the tools used. ¾ Engine and compressor lose power and capacity as altitude increases and temperature rises.
    [Show full text]
  • Hypothermia Brochure
    Visit these websites for more water safety and hypothermia prevention in- formation. What is East Pierce Fire & Rescue Hypothermia? www.eastpiercefire.org Hypothermia means “low temperature”. Washington State Drowning When your body is exposed to cold tem- Prevention Coalition Hypothermia www.drowning-prevention.org perature, it tries to protect itself by keeping a normal body temperature of 98.6°F. It Children’s Hospital & tries to reduce heat loss by shivering and Regional Medical Center In Our Lakes moving blood from your arms and legs to www.seattlechildrens.org the core of your body—head, chest and and Rivers abdomen. Hypothermia Prevention, Recognition and Treatment www.hypothermia.org Stages of Hypothermia Boat Washington Mild Hypothermia www.boatwashington.org (Core body temperature of 98.6°— 93.2°F) Symptoms: Shivering; altered judg- ment; numbness; clumsiness; loss of Boat U.S. Foundation dexterity; pain from cold; and fast www.boatus.com breathing. Boat Safe Moderate Hypothermia www.boatsafe.com (Core body temperature of 93.2°—86°F) Symptoms: Semiconscious to uncon- scious; shivering reduced or absent; lips are blue; slurred speech; rigid n in muscles; appears drunk; slow Eve breathing; and feeling of warmth can occur. mer! Headquarters Station Sum Severe Hypothermia 18421 Old Buckley Hwy (Core body temperature below 86°F) Bonney Lake, WA 98391 Symptoms: Coma; heart stops; and clinical death. Phone: 253-863-1800 Fax: 253-863-1848 Email: [email protected] Know the water. Know your limits. Wear a life vest. By choosing to swim in colder water you Waters in Western Common Misconceptions Washington reduce your survival time.
    [Show full text]
  • Hypothermia and Respiratory Heat Loss While Scuba Diving
    HYPOTHERMIA AND RESPIRATORY HEAT LOSS WHILE SCUBA DIVING Kateřina Kozáková Faculty of Physical Education and Sport, Charles University in Prague, Department of Biomedical Labo- ratory Abstract One of the factors affecting length of stay under water of a diver is heat comfort. During scuba diving there is an increased risk of hypothermia. Hypothermia is one of the most life threatening factors of a diver and significantly affects his performance. The body heat loss runs by different mechanisms. One of them is the respiratory mechanism, which is often overlooked. Compressed dry air or other media is coming out from the cylinder, which have to be heated and humidified to a suitable value. Thus the organism loses body heat and consequently energy. Based on literature search the article will describe safe dive time in terms of hypo- thermia in connection to respiratory heat loss. Key words: hypothermia, heat loss, respiration, scuba diving, water environment Souhrn Jedním z faktorů ovlivňujících délku pobytu potápěče pod vodou je tepelný komfort. Během výkonu přístro- jového potápění hrozí zvýšené riziko hypotermie. Hypotermie představuje jedno z nejzávažnějších ohrožení života potápěče a zásadně ovlivňuje jeho výkon. Ke ztrátám tělesného tepla dochází různými mechanismy. Jednou cestou tepelných ztrát je ztráta tepla dýcháním, která je často opomíjená. Z potápěčského přístroje vychází suchý stlačený vzduch nebo jiné médium, který je třeba při dýchání ohřát a zvlhčit na potřebnou hodnotu. Tím organismus ztrácí tělesné teplo a potažmo energii. Tento článek, na základě literární rešerše, popíše bezpečnou dobou ponoru z hlediska hypotermie a v souvislosti se ztrátou tepla dýcháním. Klíčová slova: hypotermie, ztráta tepla, dýchání, přístrojové potápění, vodní prostředí Introduction amount of body heat.
    [Show full text]
  • Escherichia Coli HD701
    The Process Intensification of Biological Hydrogen Production by Escherichia coli HD701 By Michael Sulu A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Chemical Engineering College of Engineering and Physical Sciences The University of Birmingham November 2009 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Hydrogen is seen as a potential fuel for the future; its choice is driven by the increasing awareness of the necessity for clean fuel. Together with the simultaneous development of “green technologies” and sustainable development, a current goal is to convert waste to energy or to create energy from a renewable resource. Biological processing [of renewables] or bioremediation of waste to create hydrogen as a product fulfils this goal and, as such, is widely researched. In this work, an already established process, using a hydrogenase up‐regulated strain ‐ was characterised and the important process parameters were established. This bacterial strain has the potential for industrial‐scale hydrogen production from, for example, waste sugars. Previous work, repeated here, showed that hydrogen could be generated by E.
    [Show full text]
  • Statement of Qualifications to Provide Professional Engineering Services for Regional Integrated Water Resources Plan May 2009
    Statement of Qualifications to Provide Professional Engineering Services for Regional Integrated Water Resources Plan May 2009 May 7, 2009 Mr. Mark Hilty Water Management Department Director City of Franklin Administrative Offices City Hall Mall 109 Third Avenue South, Suite 103 Franklin, TN 37064 City of Franklin, Tennessee Request for Qualifications Regional Integrated Water Resources Plan Dear Mr. Hilty: Burns & McDonnell Engineering Co., Inc. is pleased to submit our Qualifications in response to the above referenced request for qualifications (RFQ) for engineering services to the City of Franklin. We have reviewed the RFQ documents and confirm that we understand the intent of the RFQ documents. Founded in 1898, Burns & McDonnell is a nationally recognized engineering, architectural and construction services firm with a regional office located in Atlanta, Georgia. Burns & McDonnell also has an office in Knoxville, Tennessee, from which this project with the City will be managed. Burns & McDonnell is ranked 29th on Engineering News-Record’s list of the top 500 U.S. design firms, and in the top third of the leading design/build firms. Our company was founded to provide water, power and sewerage facilities to municipalities throughout the Midwest. By the 1930s, we were serving the forerunner of the Knoxville Utilities Board in Tennessee. Today we have hundreds of professionals solely dedicated to providing municipal services to clients across the United States. It is no surprise to the employee-owners of Burns & McDonnell that the company was recently named as one of FORTUNE Magazine’s 100 Best Companies to Work For. We believe strongly that the success of our company can be directly related to our employee-owners’ ability and desire to fulfill our mission: “Make Our Clients Successful.” With a rich 110 year history and broad base of services and capabilities, Burns & McDonnell is committed to exceeding the expectations of our clients.
    [Show full text]
  • The Hazards of Nitrogen Asphyxiation US Chemical Safety and Hazard Investigation Board
    The Hazards of Nitrogen Asphyxiation US Chemical Safety and Hazard Investigation Board Introduction • Nitrogen makes up 78% of the air we breath; because of this it is often assumed that nitrogen is not hazardous. • However, nitrogen is safe to breath only if it is mixed with an appropriate amount of oxygen. • Additional nitrogen (lower oxygen) cannot be detected by the sense of smell. Introduction • Nitrogen is used commercially as an inerting agent to keep material free of contaminants (including oxygen) that may corrode equipment, present a fire hazard, or be toxic. • A lower oxygen concentration (e.g., caused by an increased amount of nitrogen) can have a range of effects on the human body and can be fatal if if falls below 10% Effects of Oxygen Deficiency on the Human Body Atmospheric Oxygen Concentration (%) Possible Results 20.9 Normal 19.0 Some unnoticeable adverse physiological effects 16.0 Increased pulse and breathing rate, impaired thinking and attention, reduced coordination 14.0 Abnormal fatigue upon exertion, emotional upset, faulty coordination, poor judgment 12.5 Very poor judgment and coordination, impaired respiration that may cause permanent heart damage, nausea, and vomiting <10 Inability to move, loss of consciousness, convulsions, death Source: Compressed Gas Association, 2001 Statistics on Incidents CSB reviewed cases of nitrogen asphyxiation that occurred in the US between 1992 and 2002 and determined the following: • 85 incidents of nitrogen asphyxiation resulted in 80 deaths and 50 injuries. • The majority of
    [Show full text]
  • Diving Safety Manual Revision 3.2
    Diving Safety Manual Revision 3.2 Original Document: June 22, 1983 Revision 1: January 1, 1991 Revision 2: May 15, 2002 Revision 3: September 1, 2010 Revision 3.1: September 15, 2014 Revision 3.2: February 8, 2018 WOODS HOLE OCEANOGRAPHIC INSTITUTION i WHOI Diving Safety Manual DIVING SAFETY MANUAL, REVISION 3.2 Revision 3.2 of the Woods Hole Oceanographic Institution Diving Safety Manual has been reviewed and is approved for implementation. It replaces and supersedes all previous versions and diving-related Institution Memoranda. Dr. George P. Lohmann Edward F. O’Brien Chair, Diving Control Board Diving Safety Officer MS#23 MS#28 [email protected] [email protected] Ronald Reif David Fisichella Institution Safety Officer Diving Control Board MS#48 MS#17 [email protected] [email protected] Dr. Laurence P. Madin John D. Sisson Diving Control Board Diving Control Board MS#39 MS#18 [email protected] [email protected] Christopher Land Dr. Steve Elgar Diving Control Board Diving Control Board MS# 33 MS #11 [email protected] [email protected] Martin McCafferty EMT-P, DMT, EMD-A Diving Control Board DAN Medical Information Specialist [email protected] ii WHOI Diving Safety Manual WOODS HOLE OCEANOGRAPHIC INSTITUTION DIVING SAFETY MANUAL REVISION 3.2, September 5, 2017 INTRODUCTION Scuba diving was first used at the Institution in the summer of 1952. At first, formal instruction and proper information was unavailable, but in early 1953 training was obtained at the Naval Submarine Escape Training Tank in New London, Connecticut and also with the Navy Underwater Demolition Team in St.
    [Show full text]
  • Beach Nourishment Techniques: Report 1: Dredging Systems For
    BEACH NOURISHMENT TECHNIQUES R ep ort I DREDGING SYSTEMS FOR BEACH NOURISHMENT FROM OFFSHORE SOURCES by Thomas W. Richardson Hydraulics Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 September 1976 Report I of a Series Approved For Public Release; Distribution Unlimited TA 7 Prepared for Office, Chief of Engineers, U. S. Army .W34t Washington, D. C. 2 0 3 14 H-76-13 1976 Voi. 1 C . 3 BUREAU OF RECLAMATION LIBRARY DENVER, CO Destroy this report when no longer needed. Do not return it to the originator. P.yi!P.A.y .P f RECLAMATION DENVER LIBRARY 92071163 o'5 i Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Technical Report H-76-13 4 . T I T L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED BEACH NOURISHMENT TECHNIQUES; Report 1, DREDGING SYSTEMS FOR BEACH NOURISHMENT Report 1 of a series FROM OFFSHORE SOURCES 6. PERFORMING ORG. REPORT NUMBER 7. A U TH O R fsj 8. CONTRACT OR GRANT NUMBERS Thomas W. Richardson 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Hydraulics Laboratory P. 0. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE September 1976 Office, Chief of Engineers, U. S. Army Washington, D. C. 2031** 13. NUMBER OF PAGES 83 1 4 . MONITORING AGENCY NAME & ADDRESSfi/ different from Controlling Office) 15.
    [Show full text]
  • Final Addendum to the CDM Accident Prevention Plan Remedial Investigation Activities Raritan Bay Slag Superfund Site
    Final Addendum to the CDM Accident Prevention Plan Remedial Investigation Activities Raritan Bay Slag Superfund Site Currents and Sediment Dynamics Studies Prepared For: CDM Federal Programs Corporation 14420 Albemarle Point Place, Ste 210 Chantilly, VA 20151 Prepared By: Woods Hole Group, Inc. 81 Technology Park Drive East Falmouth, MA 02536 November 2010 Woods Hole Group, Inc. FINAL ADDENDUM TO THE CDM ACCIDENT PREVENTION PLAN Currents and Sediment Dynamics Studies for the Raritan Bay Slag Superfund Site Old Bridge and Sayreville, New Jersey Prepared for: CDM Federal Programs Corporation As an addendum to the existing Accident Prevention Plan for the Raritan Bay Slag Superfund Site Prepared by: Woods Hole Group 81 Technology Park Drive East Falmouth, MA 02536 November 22, 2010 Final Addendum to CDM APP i 2010-090 Remedial Investigation Activities, November 2010 Raritan Bay Slag Superfund Site, Old Bridge and Sayreville, NJ 110 Fieldcrest Avenue, 6th Floor Edison, New Jersey 08837 tel: 732 -225-7000 fax: 732- 225-7851 November 30, 2010 Kansas City District Corps of Engineers CENWK- PM-ED Kristine Stein 601 East 12th Street Kansas City, Missouri 64106-2896 Tanya Mitchell U.S. Environmental Protection Agency, Region 2 290 Broadway-19th Floor New York, NY 10007-1866 Project: Contract No. W912DQ-08-D-0018 Subject: Final Addendum to the CDM Acident Prevention Plan Raritan Bay Slag Superfund Site Old Bridge/Sayreville, New Jersey Dear Ms. Stein and Ms. Mitchell: CDM is pleased to submit the Final Addendum to the CDM APP for the Raritan Bay Slag Superfund Site in Old Bridge and Sayreville, New Jersey. The APP Addendum was prepared for CDM by the Woods Hole Group and addresses activities that will be performed in connection with the currents and sediment dynamics work.
    [Show full text]
  • Clinical Management of Severe Acute Respiratory Infections When Novel Coronavirus Is Suspected: What to Do and What Not to Do
    INTERIM GUIDANCE DOCUMENT Clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do Introduction 2 Section 1. Early recognition and management 3 Section 2. Management of severe respiratory distress, hypoxemia and ARDS 6 Section 3. Management of septic shock 8 Section 4. Prevention of complications 9 References 10 Acknowledgements 12 Introduction The emergence of novel coronavirus in 2012 (see http://www.who.int/csr/disease/coronavirus_infections/en/index. html for the latest updates) has presented challenges for clinical management. Pneumonia has been the most common clinical presentation; five patients developed Acute Respira- tory Distress Syndrome (ARDS). Renal failure, pericarditis and disseminated intravascular coagulation (DIC) have also occurred. Our knowledge of the clinical features of coronavirus infection is limited and no virus-specific preven- tion or treatment (e.g. vaccine or antiviral drugs) is available. Thus, this interim guidance document aims to help clinicians with supportive management of patients who have acute respiratory failure and septic shock as a consequence of severe infection. Because other complications have been seen (renal failure, pericarditis, DIC, as above) clinicians should monitor for the development of these and other complications of severe infection and treat them according to local management guidelines. As all confirmed cases reported to date have occurred in adults, this document focuses on the care of adolescents and adults. Paediatric considerations will be added later. This document will be updated as more information becomes available and after the revised Surviving Sepsis Campaign Guidelines are published later this year (1). This document is for clinicians taking care of critically ill patients with severe acute respiratory infec- tion (SARI).
    [Show full text]
  • Deep Sea Dive Ebook Free Download
    DEEP SEA DIVE PDF, EPUB, EBOOK Frank Lampard | 112 pages | 07 Apr 2016 | Hachette Children's Group | 9780349132136 | English | London, United Kingdom Deep Sea Dive PDF Book Zombie Worm. Marrus orthocanna. Deep diving can mean something else in the commercial diving field. They can be found all over the world. Depth at which breathing compressed air exposes the diver to an oxygen partial pressure of 1. Retrieved 31 May Diving medicine. Arthur J. Retrieved 13 March Although commercial and military divers often operate at those depths, or even deeper, they are surface supplied. Minimal visibility is still possible far deeper. The temperature is rising in the ocean and we still don't know what kind of an impact that will have on the many species that exist in the ocean. Guiel Jr. His dive was aborted due to equipment failure. Smithsonian Institution, Washington, DC. Depth limit for a group of 2 to 3 French Level 3 recreational divers, breathing air. Underwater diving to a depth beyond the norm accepted by the associated community. Limpet mine Speargun Hawaiian sling Polespear. Michele Geraci [42]. Diving safety. Retrieved 19 September All of these considerations result in the amount of breathing gas required for deep diving being much greater than for shallow open water diving. King Crab. Atrial septal defect Effects of drugs on fitness to dive Fitness to dive Psychological fitness to dive. The bottom part which has the pilot sphere inside. List of diving environments by type Altitude diving Benign water diving Confined water diving Deep diving Inland diving Inshore diving Muck diving Night diving Open-water diving Black-water diving Blue-water diving Penetration diving Cave diving Ice diving Wreck diving Recreational dive sites Underwater environment.
    [Show full text]
  • Unit 11 Sound Speed of Sound Speed of Sound Sound Can Travel Through Any Kind of Matter, but Not Through a Vacuum
    Unit 11 Sound Speed of Sound Speed of Sound Sound can travel through any kind of matter, but not through a vacuum. The speed of sound is different in different materials; in general, it is slowest in gases, faster in liquids, and fastest in solids. The speed depends somewhat on temperature, especially for gases. vair = 331.0 + 0.60T T is the temperature in degrees Celsius Example 1: Find the speed of a sound wave in air at a temperature of 20 degrees Celsius. v = 331 + (0.60) (20) v = 331 m/s + 12.0 m/s v = 343 m/s Using Wave Speed to Determine Distances At normal atmospheric pressure and a temperature of 20 degrees Celsius, speed of sound: v = 343m / s = 3.43102 m / s Speed of sound 750 mi/h Speed of light 670 616 629 mi/h c = 300,000,000m / s = 3.00 108 m / s Delay between the thunder and lightning Example 2: The thunder is heard 3 seconds after the lightning seen. Find the distance to storm location. The speed of sound is 345 m/s. distance = v t = (345m/s)(3s) = 1035m Example 3: Another phenomenon related to the perception of time delays between two events is an echo. In a canyon, an echo is heard 1.40 seconds after making the holler. Find the distance to the canyon wall (v=345m/s) distanceround trip = vt = (345 m/s )( 1.40 s) = 483 m d= 484/2=242m Applications: Sonar, Ultrasound, and Medical Imaging • Ultrasound or ultrasonography is a medical imaging technique that uses high frequency sound waves and their echoes.
    [Show full text]