Evaluation of Sunn Hemp (Crotalaria Juncea L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance. -
DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. -
View Full Text Article
229 Progressive Horticulture, Vol. 45, No. 1, March 2013 Progressive Horticulture, Vol. 45, No. 1, March 2013 © Copyright by ISHRD, Printed in India [Research Article] Legume pod borer (Maruca testulalis Geyer) and their relative yield losses in cowpea cultivars 1 2 3 Arvind Kumar, Akhilesh Kumar, S. Satpathy, Shiv Mangal Singh and Hira Lal Department of Entomology, Chandra Shekhar Azad University of Agriculture & Technology, Kanpur- 208 002 (U.P.) India Email: [email protected] 1 Krishi Vigyan Kendra (JNKVV, Jabalpur),Shahdol - 484 001(MP) 2 Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata-700 120 3 Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh - 221 005, India ABSTRACT Field experiments were conducted at Chandra Shekhar Azad University of Agriculture & Technology, Kanpur during Kharif season o f 2007-2008.One promising variety Pusa Komal and fourteen g e notypes of c o wpea were evaluated against major pests of cowpea legume pod borer (Maruca testulalis) were observed as major pests of c o wpea at fl ower and pod stages of c r op growth. The maximum population of pests was recorded as 0.83 pod borer larvae per fl ower bud at 91 DAS during second week of November and 2.18 per pod at 84 DAS during fi rst week of November. The pod damage among the test cultivars varied from 22.8% to 32.56% by pod borers and genotype KCP-6 was least susceptible, whereas KCP-1 was most susceptible to this pest. None of the cultivars was found resistant to this pest. The varietal susceptibility to pod borer was found to be less in genotype KCP-6, Pusa Komal and RGC-5 and more in genotype KCP-1, RGC-2 and RGC-4. -
Etiella Zinckenella) Infestation Using Some Bio and Chemical Insecticides
ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X) Volume 4 Issue 7 July 2020 Research Article Response of Three Soybean Genotypes to Lima Bean Pod Borer (Etiella zinckenella) Infestation Using Some Bio and Chemical Insecticides Eman I Abdel-Wahab1*, S M Tarek1, Marwa Kh A Mohamed1 and Received: June 19, 2020 Soheir F Abd El-Rahman2 Published: July 01, 2020 1Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt © All rights are reserved by Eman I 2Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, Abdel-Wahab., et al. Egypt *Corresponding Author: Eman I Abdel-Wahab, Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt. Abstract The present investigation was carried out at Giza Agricultural Experiments and Research Station, Agricultural Research Center (ARC), Giza, Egypt during the two successive seasons 2018 and 2019 to evaluate three soybean genotypes (Giza 35, Crawford and DR10l) to infestation with lima bean pod borer using four bio and chemical insecticides (Diple-2x 6.4% DF, Biover10 % WP, Suncide Agri-pest and Lannate 25% WP) for increasing seed yield and net return. The treatments were four insecticides (Diple-2x 6.4% DF, Biover10 % WP, Suncide Agri-pest and Lannate 25% WP) beside water as control and three soybean genotypes (Giza 35, Crawford and DR10l). Split-plot distributions in a randomized complete block design with three replications were used. Insecticide sources were randomly assigned to main plots and soybean genotypes were allocated in subplots. The results showed that the bacterial insecticide Diple-2x 6.4% DF recorded lower pod infestation and seed damage than the other insecticides. -
Sunn Hemp (Crotalaria Juncea) Plant Guide
Plant Guide for the stem to harden and the leaves to fill out, while still SUNN HEMP remaining short enough for goats to reach leaves. Crotalaria juncea L. The leaves of C. juncea can be used for cattle forage Plant Symbol = CRJU during late summer and early fall, but the amount of fiber in stems is too high 6 weeks after planting to be used as Contributed by: USDA NRCS Cape May Plant Materials suitable forage (Mansoer et al., 1997). Mannetje (2012) Center, Cape May, NJ found that the leaves and stems must be dried before fed to cattle and sheep. Cover crop/green manure: C. juncea is used as a nitrogen-fixing green manure to improve soil quality, reduce soil erosion, conserve soil moisture, suppress weeds and nematodes, and recycle plant nutrients. It grows quickly and can produce more than 5,000 lb dry matter/acre and 120 lb nitrogen/acre in 9–12 weeks (Clark, 2007). Fertilized and hand-weeded plots have yielded 5.6–6.2 T (short tons) per acre (Duke, 1983). Leaves have a nitrogen concentration between 2–5% and roots and stems have between 0.6–2% (Treadwell and Alligood, 2008). Its fast growth makes it ideally suited for planting in late summer rotations before fall cash crops. Sunn hemp (Crotalaria juncea).(Photo by Chris Miller, USDA-NRCS, Wildlife: Deer will browse plants and turkey and quail Cape May Plant Materials Center) will use C. juncea for shelter and food. Alternate Names Ethnobotany Alternate Common Names: Indian hemp, Madras hemp, C. juncea has been grown as a fiber crop in India since brown hemp 600 BC (Treadwell and Alligood, 2008) and is still used for fiber production in India and Pakistan (Wang and Scientific Alternate Names: McSorley, 2009). -
Insect and Vertebrate Pests Associated with Cultivated Field Pea (Pisum Sativum Linn) in Northern
Science World Journal Vol. 15(No 1) 2020 www.scienceworldjournal.org ISSN 1597-6343 Published by Faculty of Science, Kaduna State University INSECT AND VERTEBRATE PESTS ASSOCIATED WITH CULTIVATED FIELD PEA (PISUM SATIVUM LINN) IN NORTHERN GUINEA SAVANNA OF NIGERIA Full Length Research Article Ibrahim H.1, Dangora D.B.2, Abubakar B.Y.2 and Suleiman A.B.3 1Department of Biological Sciences, Kaduna State University, Kaduna State, Nigeria 2Department of Botany Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria 3Department of Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria Corresponding Author’s Email Address: [email protected] Phone: +2347034503167 ABSTRACT as 24 insect species being reported. The major insect pests Pisum sativum commonly called field pea (Family; Fabaceae). include; pea stem fly (Melanogromyza phaseoli Tryon), pea leaf The aim of this study was to determine the incidence and identify miners (Chromatomyia horticola Goureau), and thrips (Caliothrips pests of field pea in major growing areas of Nigeria. The larval sp.) (Prasad et al., 1983; Bijjur and Verma, 1995; Yadav and stages of the insect were collected from different field pea farms Patel, 2015).The authors (Shanower et al., 1999; Kooner and in Northern Guinea Savanna of Nigeria (Shika dam, Katanga and Cheema, 2006) reported damaged by insects as major factor Zangon Danbarno, Sabuwa, Rapiyan fan in Barkin Ladi and responsible for low crop yield on legumes which causes leaf Razek fan). The percentage incidence of pest’s infestation was death. There are no reports of pests infesting field pea in Nigeria, calculated for each sampling location. Identification of the pests hence the need for this study. -
Relative Susceptibility of Crotalaria Spp. to Attack by Etiella Zinckenella in Puerto Rico1
Relative susceptibility of Crotalaria spp. to attack by Etiella zinckenella in Puerto Rico1 Alejandro E. Seganu-Cannona and Pedro Barbosa2 ABSTRACT Four Crotalaria species were found attacked by the lima bean pod borer Etiella zinckenella (Treit.) in Puerto Rico: C. pallida, C. anagyroides, C. zanzibariea and C. incana. Non-susceptible species were C. retasa, C. stipularia and C. lanceolata. Early literature observations on the effect of soil characteristics (pH, soil penetrability, and organic matter) on attack rates of this borer to C pallida could not be confirmed on the basis of field observations. Only plant patch size seemed to be positively correlated with attack rates. Female oviposition patterns are discussed. Oviposition on C pallida field collected pods was restricted to green pods larger than 3.2 cm. No eggs were found on senescent pods. INTRODUCTION The lima bean pod borer, Etiella zinckenella (Treit.), was reported in Puerto Rico in 1890 (20). Since then, it has been studied by many visiting and resident entomologists. Leonard and Mills (6) first reported this pyralid boring on pods of lima beans, cowpeas, pigeon peas and Crotalaria (no species given). Wolcott (17,18) recorded that among all species of Crotalaria, only C. incana L. was attacked, and C. retusa L. appeared immune to this borer. This author also reported that Crotalaria plants growing on sandy soils were more susceptible to pod loss by E. zinckenella than those growing on clay soils. Further studies by Scott (12) corroborated Wolcott's observations on C. retusa resistance and added C stipularia Desv. to the list of resistant species. -
Reconstructing the Deep-Branching Relationships of the Papilionoid Legumes
SAJB-00941; No of Pages 18 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Reconstructing the deep-branching relationships of the papilionoid legumes D. Cardoso a,⁎, R.T. Pennington b, L.P. de Queiroz a, J.S. Boatwright c, B.-E. Van Wyk d, M.F. Wojciechowski e, M. Lavin f a Herbário da Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil b Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH5 3LR Edinburgh, UK c Department of Biodiversity and Conservation Biology, University of the Western Cape, Modderdam Road, \ Bellville, South Africa d Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, 2006 Auckland Park, Johannesburg, South Africa e School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA f Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA article info abstract Available online xxxx Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume Edited by J Van Staden subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Keywords: Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relation- Leguminosae ships of the early-branching lineages due to limited sampling. -
Evaluation of Some Selected Pesticides Against the Two Pod Borers Helicoverpa Armigera and Etiella Zinckenella Population Infest
Research Journal of Agriculture and Biological Sciences, 2(6): 578-583, 2006 © 2006, INSInet Publication Evaluation of Some Selected Pesticides Against the Two Pod Borers Helicoverpa Armigera and Etiella Zinckenella Population Infesting Cowpea in the Newly Reclaimed Regions Gehan, Y. Abdou and E.F. Abdalla. Department of Pest and Plant Protection, National Research Centre, Dokki, Egypt. Abstract: The two pod borers Helicoverpa armigera Hubner and Etiella zinckenella Treitschke are the most destructive insect pests which infest several crops of leguminosae in Egypt. Field experiments wer conducted to evaluate the efficacy of some relatively safe compounds beside the conventional pesticides for control of these pests on cowpea, Vigna ungiculata under the conditions of newly reclaimed regions. The results revealed that most of the treatments were able to suppress the levels of infestation to different degrees according to the nature of the tested compounds and the number of sprays applied. Application of non- traditional compounds such as thiamethoxam (neonicotinoid group) or Indoxacarb (oxadiozine group) significantly reduced the larval populations of H. armigera by 76 and 70% and E. zinkenella by 58 and 55%, respectively. Plots sprayed with methoxyfenozide (non-steroid ecdysone agonist )provided satisfactory control (61% reduction) against H. armigera population while exerted weak activity(< 26%) against E. zinkenella population. On the other hand, the potency of the common neurotoxic pesticides; chlorpyrifos (organophosphate) or cypermethrin (pyrethroid) were still the most effective pesticides against both species giving 76-81% reduction in infestation. However, all the tested pesticides and the rates used had low residual effect and thus, weekly applications to protect the plants of new insect attack were necessary. -
Scientific Name – Vigna Radiata English Common Name – Mung Bean Asian Common Names – • Burmese: Pe-Di, Pe-Di-Sein, P
Scientific name – Vigna radiata English common name – Mung bean Asian common names – Burmese: pe-di, pe-di-sein, pè di sien, pe-nauk, to-pi-si Chinese: lü dou, luhk dáu (Cantonese), lü zi lü dou Hindi: मग ं , व셍ण चना Japanese: bundou, fundou, yaenari, ryokutou Khmer: sândaèk ba:y Lao: thwàx khiêw, thwàx ngo:k, thwàx sadê:k Malay: arta ijo (Indonesia), kacang djong (Indonesia), kacang hijau (Malaysia) Photo: ECHO Asia staff Thai: ถั่วเขียว thua kiew Vietnamese: - , - Tagalog: balatong, mongo Varieties – Burmese Green - Day-neutral, bush variety, green seed. Lao - Day-neutral, bush variety, approximately 60 days from seed to flowering, green seed. General description and special characteristics – A bushy or vining annual that produces yellow flowers and pods up to 15 cm (6 in) in length. Mung bean is an important grain legume crop throughout Asia for its use as food, as an intercrop with rice, and as a green manure and fodder. Crop uses (culinary) – Mung bean is used throughout Asia as a food legume, flour, for dessert, and sprouted for use in other dishes. It has a protein content of approximately 25%. Transparent glass noodles are made from mung bean starch and in India and Pakistan, the dried seeds are consumed whole or after splitting into dhal. Split seeds are eaten fried and salted as a snack. Throughout Asia, dried beans are boiled until soft, seasoned with sugar, ginger or coconut milk, and eaten as a dessert soup. Mung bean sprouts are germinated and can be eaten both uncooked and cooked. Crop uses (soil improvement) – Mung bean is grown as a rainfed crop frequently preceding rice planting or following rice harvest. -
Pdf (539.04 K)
J. of Plant Protection and Pathology, Mansoura Univ., Vol 11 (1):29 - 36, 2002 Journal of Plant Protection and Pathology Journal homepage: www.jppp.mans.edu.eg Available online at: www. jppp.journals.ekb.eg Efficiency of Certain Bio-Insecticides for Reducing the Yield Losses due to the Bean Pod Borer, Etiella zinckenella (Treitschke) in Soybean Fields 1* 2 Soheir F. Abd El-Rahman and Eman I Abdel-wahab Cross Mark 1Plant Prot. Res. Inst., Agric. Res. Center, Dokki, Giza, Egypt 2Field Crops Res. Inst., Agric. Res. Center, Giza, Egypt ABSTRACT The pod borer Etiella zinckenella (Treitschke) is most destructive insect which infest crops of leguminosae in Egypt. Field experiments were carried out in farm of Agricultural Research Center, Giza governorate during 2017 and 2018 seasons. First experiment was conducted to study seasonal incidence of this insect on soybean and its relation with weather factors under natural conditions. In first season, the larval population increased to make two peaks, that recorded in the 1st and 3rd weeks of September. In second season found one peak on September, 4th. The relationship between population fluctuation and three climatic factors (minimum and maximum temperatures& R.H. %) were studied. Simple correlation of Max. and Min. temperatures were negative but R.H.% gave positive effects. The second experiment was conducted to evaluate efficacy of Biover, MgChl and Dipel 2xfor control of this insect under field conditions in addition the yield. Results showed that, mean reduction of larvae for highest concentrations of tested treatments were arranged descendingly as Biover (63.04%) followed by MgChl (55.52%) and finally Dipel 2x (51.28%) with significant differences between treatments compared with control. -
Rapid Biodiversity Assessment of REPUBLIC of NAURU
RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements