View Full Text Article

Total Page:16

File Type:pdf, Size:1020Kb

View Full Text Article 229 Progressive Horticulture, Vol. 45, No. 1, March 2013 Progressive Horticulture, Vol. 45, No. 1, March 2013 © Copyright by ISHRD, Printed in India [Research Article] Legume pod borer (Maruca testulalis Geyer) and their relative yield losses in cowpea cultivars 1 2 3 Arvind Kumar, Akhilesh Kumar, S. Satpathy, Shiv Mangal Singh and Hira Lal Department of Entomology, Chandra Shekhar Azad University of Agriculture & Technology, Kanpur- 208 002 (U.P.) India Email: [email protected] 1 Krishi Vigyan Kendra (JNKVV, Jabalpur),Shahdol - 484 001(MP) 2 Central Research Institute for Jute and Allied Fibres, Barrackpore, Kolkata-700 120 3 Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh - 221 005, India ABSTRACT Field experiments were conducted at Chandra Shekhar Azad University of Agriculture & Technology, Kanpur during Kharif season o f 2007-2008.One promising variety Pusa Komal and fourteen g e notypes of c o wpea were evaluated against major pests of cowpea legume pod borer (Maruca testulalis) were observed as major pests of c o wpea at fl ower and pod stages of c r op growth. The maximum population of pests was recorded as 0.83 pod borer larvae per fl ower bud at 91 DAS during second week of November and 2.18 per pod at 84 DAS during fi rst week of November. The pod damage among the test cultivars varied from 22.8% to 32.56% by pod borers and genotype KCP-6 was least susceptible, whereas KCP-1 was most susceptible to this pest. None of the cultivars was found resistant to this pest. The varietal susceptibility to pod borer was found to be less in genotype KCP-6, Pusa Komal and RGC-5 and more in genotype KCP-1, RGC-2 and RGC-4. The maximum healthy and total pod yield was recorded in genotype KCP-2 (94.30 and 129.85 q ha-1) followed by genotypes RCP-4 (87.57 and 122.08 q ha-1). Contrarily, the minimum was recorded in Pusa Komal (50.55 and 67.07 q ha -1) followed by RCP-2 (51.34 and 70.08 q ha -1) and KCP-6 (64.07 and 83.00 q ha -1). KEY WORDS: Pad borer, legume, cowpea, yield, losses Cowpea [Vigna unguiculata (L.) Walp.] is one of MATERIALS AND METHODS the most common vegetable grown all over India. It is The experiment was carried out during Kharif severely damaged by Pod borers (Maruca vitrata and season of 2007-2008. The experimental site is situated Helicoverpa armigera) are most damaging pest during at University Vegetable Research Farm, Chandra the post fl owering stage (Nair, 1986; Yadav and Yadav, Shekhar Azad University of Agriculture & Technology, 1983). Maruca vitrata damage the fl ower bud also. The Kalyanpur, Kanpur. Fourteen genotypes along with a deformation or direct damage of fl oral parts imparts standard v a riety P u sa Komal were taken a s t e st materials. adverse effect on yield. After pod formation the All the normal agronomic practices were followed borer scrap and bore into the pod, feeding the seeds for raising the crop. The experiment was replicated inside resulting in direct damage of pods. The species thrice in a randomized block design.The observation composition of borers infesting cowpea in fl owering and on recording the infestation of pod borer damaging podding stage depends mostly on cropping season and pods, the number of damaged pods and total number the prevailing weather conditions. Keeping the above of pods in fi ve tagged plants in each plot were counted facts in view, the present investigation was planned at every picking and their cumulative total was worked and carried out on as a preventive measure the role of out. The intensity of pod borer population in fl owers resistant cultivars is most important in management of and pods was estimated by counting the number of this pest particularly in low input subsistence growing larvae per 10 fl ower-buds and pods separately from the condition in marginally fertile lands. These are many tagged plants at weekly interval and the average value sources of resistance against the pest. was worked out for its infestation. The data collected on Online version available on: www.indianjournals.com Progressive Horticulture, Vol. 45, No. 1, March 2013 230 Table 1: Population of legume pod borer and extent of yield losses in different cowpea cultivars Pod borer larvae Healthy pod Total pod Genotypes / variety (No. pod-1) Pod damage (%) yield (q ha-1) yield (q ha-1) per fl ower bud per pod RCP-1 0.44 1.11 25.16 (14.58) 67.11 89.67 RCP-2 0.56 1.42 26.74 (15.51) 51.34 70.08 RCP-3 0.62 1.53 29.45 (17.14) 80.38 113.93 RCP-4 0.50 1.23 28.27 (16.43) 87.57 122.08 KCP-1 0.73 1.97 32.56 (19.01) 65.47 97.08 KCP-2 0.59 1.48 27.38 (15.90) 94.30 129.85 KCP-3 0.45 1.19 25.83 (14.98) 77.92 105.05 KCP-4 0.63 1.63 30.69 (17.88) 80.37 115.95 KCP-6 0.36 1.16 22.81 (13.19) 64.07 83.00 RGC-1 0.48 1.29 26.32 (15.26) 76.43 103.73 RGC-2 0.67 1.86 31.78 (18.54) 68.96 101.08 RGC-3 0.61 1.70 28.93 (16.82) 67.82 95.43 RGC-4 0.67 1.79 31.24 (18.22) 77.69 112.98 RGC-5 0.41 0.95 23.65 (13.69) 84.29 110.40 Pusa Komal 0.40 0.89 24.63 (14.26) 50.55 67.07 CD (P=0.05) 0.10 0.28 3.32 7.33 27.76 *Figures in parentheses are transformed value. Fig. 1: Relative yield loss in cowpea cultivars caused by legume pod borer 231 Progressive Horticulture, Vol. 45, No. 1, March 2013 various aspects were subjected to the statistical analysis different cowpea cultivars has also been reported by after suitable transformations. Analysis of variance was Ramalho et al. (1977). The cowpea particularly kharif calculated to fi nd out the signifi cant differences between season crop suffers from the damage of a number of the treatments on the basis of CD values. pod borers; the extent of damage varies a lot depending on the cultivars (Nair, 1986; Yadav and Yadav, 1983). RESULTS AND DISCUSSION The canopy structure and pod position in cowpea Legume pod borer (Maruca testulalis Geyer) were infl uenced the intensity of infestation and damage by other most serious pests of cowpea at fl owering, pod Maruca testulalis and defoliated cultivars sustained less formation and maturity of pod. It is clear from the infestation and damage than under-foliated plants. experimental fi ndings that M. testulalis appeared in the Cultivars with pods held within the canopy suffered cowpea fl ower bud for the fi rst time at 49 DAS during the more damage than cultivars with pods in the normal last week of September and in the pod at 63 DAS during position. Canopy structure and pod position acting second week of October, 2007. The maximum number together or independently, exerted profound effects of pod borer larvae per fl ower bud (0.83) was recorded on cowpea resistance to M. testulalis. Selection and at 91 DAS during second week of November followed breeding cowpea cultivars with less dense foliage and by 0.71 larvae per fl ower bud at 98 DAS during third long peduncles holding the reproductive structures week of November. Similarly, the maximum number of above the canopy should increase cowpea resistance to pod borer larvae per pod (2.18) was recorded at 84 DAS M. testulalis (Oghiakhe et al., 1991). during fi rst week of November followed by 1.90 larvae The pod damage among the test cultivars varied per pod at 91 DAS during second week of November. from 22.81% to 32.56% and the minimum pod damage As regards their range, the population of larvae varied was recorded in genotype KCP-6 (22.81%) which was between 0.36 to 0.73 per fl ower bud and 0.89 to 1.97 per closely followed by genotypes RGC-5 (23.65%), Pusa pod on different genotypes, and 0.29 to 0.83 larvae per Komal (24.63%) and RCP-1 (25.16%). On contrary, KCP- fl ower bud and 0.46 to 2.18 per pod during different 1 was most susceptible with maximum (32.56%) pod weeks of observations(Table 1). Similar fi ndings have damage followed by genotypes RGC-2 (31.78%), RGC- also been reported by Veeranna et al. (1997) in cowpea. 4 (31.24%) and KCP-4 (30.69%). All most similar trend Bachatly and Malak (2001) obtained highest infestation was obtained in case of number of pod borer larvae per of cowpea pod borer during second week of November, pod indicating the increase of number of infested pod whereas seed infestation was highest during last week with an increase in number of pod borer larvae per pod. of October. The number of larvae per pod was highest These results are collaborated with the fi ndings of those during last week of October. Sharma (1999) in kindney bean and Sharma et al. (1999) There was a signifi cant variability among different in dolichos bean. genotypes with regard to mean population of pod borer It is evident from the present investigation that the larvae per pod (Table 1 Fig.
Recommended publications
  • 1 1 DNA Barcodes Reveal Deeply Neglected Diversity and Numerous
    Page 1 of 57 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France. 12 3Institut de Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, 13 CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France. 14 4 Landesmuseum für Kärnten, Abteilung Zoologie, Museumgasse 2, 9020 Klagenfurt, Austria 15 5 Department of Entomology, University of Antananarivo, Antananarivo 101, Madagascar 16 6 Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road E., Guelph, ON 17 N1G2W1, Canada 18 7Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Genome Downloaded from www.nrcresearchpress.com by UNIV GUELPH on 10/03/18 19 Montpellier–Université Paul-Valéry Montpellier–EPHE), 1919 Route de Mende, F-34293 20 Montpellier, France. 21 8Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, UK. 22 23 24 Email for correspondence: [email protected] For personal use only. This Just-IN manuscript is the accepted prior to copy editing and page composition. It may differ from final official version of record. 1 Page 2 of 57 25 26 Abstract 27 Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, 28 essentially from anthropogenic disturbance.
    [Show full text]
  • DNA Barcodes Reveal Deeply Neglected Diversity and Numerous Invasions of Micromoths in Madagascar
    Genome DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Journal: Genome Manuscript ID gen-2018-0065.R2 Manuscript Type: Article Date Submitted by the 17-Jul-2018 Author: Complete List of Authors: Lopez-Vaamonde, Carlos; Institut National de la Recherche Agronomique (INRA), ; Institut de Recherche sur la Biologie de l’Insecte (IRBI), Sire, Lucas; Institut de Recherche sur la Biologie de l’Insecte Rasmussen,Draft Bruno; Institut de Recherche sur la Biologie de l’Insecte Rougerie, Rodolphe; Institut Systématique, Evolution, Biodiversité (ISYEB), Wieser, Christian; Landesmuseum für Kärnten Ahamadi, Allaoui; University of Antananarivo, Department Entomology Minet, Joël; Institut de Systematique Evolution Biodiversite deWaard, Jeremy; Biodiversity Institute of Ontario, University of Guelph, Decaëns, Thibaud; Centre d'Ecologie Fonctionnelle et Evolutive (CEFE UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE), , CEFE UMR 5175 CNRS Lees, David; Natural History Museum London Keyword: Africa, invasive alien species, Lepidoptera, Malaise trap, plant pests Is the invited manuscript for consideration in a Special 7th International Barcode of Life Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 57 Genome 1 DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in 2 Madagascar 3 4 5 Carlos Lopez-Vaamonde1,2, Lucas Sire2, Bruno Rasmussen2, Rodolphe Rougerie3, 6 Christian Wieser4, Allaoui Ahamadi Allaoui 5, Joël Minet3, Jeremy R. deWaard6, Thibaud 7 Decaëns7, David C. Lees8 8 9 1 INRA, UR633, Zoologie Forestière, F- 45075 Orléans, France. 10 2 Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS Université de Tours, UFR 11 Sciences et Techniques, Tours, France.
    [Show full text]
  • Etiella Zinckenella) Infestation Using Some Bio and Chemical Insecticides
    ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X) Volume 4 Issue 7 July 2020 Research Article Response of Three Soybean Genotypes to Lima Bean Pod Borer (Etiella zinckenella) Infestation Using Some Bio and Chemical Insecticides Eman I Abdel-Wahab1*, S M Tarek1, Marwa Kh A Mohamed1 and Received: June 19, 2020 Soheir F Abd El-Rahman2 Published: July 01, 2020 1Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt © All rights are reserved by Eman I 2Plant Protection Research Institute, Agriculture Research Center, Dokki, Giza, Abdel-Wahab., et al. Egypt *Corresponding Author: Eman I Abdel-Wahab, Food Legumes Research Department, Field Crops Research Institute, Agricultural Research Center, Giza, Egypt. Abstract The present investigation was carried out at Giza Agricultural Experiments and Research Station, Agricultural Research Center (ARC), Giza, Egypt during the two successive seasons 2018 and 2019 to evaluate three soybean genotypes (Giza 35, Crawford and DR10l) to infestation with lima bean pod borer using four bio and chemical insecticides (Diple-2x 6.4% DF, Biover10 % WP, Suncide Agri-pest and Lannate 25% WP) for increasing seed yield and net return. The treatments were four insecticides (Diple-2x 6.4% DF, Biover10 % WP, Suncide Agri-pest and Lannate 25% WP) beside water as control and three soybean genotypes (Giza 35, Crawford and DR10l). Split-plot distributions in a randomized complete block design with three replications were used. Insecticide sources were randomly assigned to main plots and soybean genotypes were allocated in subplots. The results showed that the bacterial insecticide Diple-2x 6.4% DF recorded lower pod infestation and seed damage than the other insecticides.
    [Show full text]
  • Insect and Vertebrate Pests Associated with Cultivated Field Pea (Pisum Sativum Linn) in Northern
    Science World Journal Vol. 15(No 1) 2020 www.scienceworldjournal.org ISSN 1597-6343 Published by Faculty of Science, Kaduna State University INSECT AND VERTEBRATE PESTS ASSOCIATED WITH CULTIVATED FIELD PEA (PISUM SATIVUM LINN) IN NORTHERN GUINEA SAVANNA OF NIGERIA Full Length Research Article Ibrahim H.1, Dangora D.B.2, Abubakar B.Y.2 and Suleiman A.B.3 1Department of Biological Sciences, Kaduna State University, Kaduna State, Nigeria 2Department of Botany Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria 3Department of Microbiology, Ahmadu Bello University, Zaria, Kaduna State, Nigeria Corresponding Author’s Email Address: [email protected] Phone: +2347034503167 ABSTRACT as 24 insect species being reported. The major insect pests Pisum sativum commonly called field pea (Family; Fabaceae). include; pea stem fly (Melanogromyza phaseoli Tryon), pea leaf The aim of this study was to determine the incidence and identify miners (Chromatomyia horticola Goureau), and thrips (Caliothrips pests of field pea in major growing areas of Nigeria. The larval sp.) (Prasad et al., 1983; Bijjur and Verma, 1995; Yadav and stages of the insect were collected from different field pea farms Patel, 2015).The authors (Shanower et al., 1999; Kooner and in Northern Guinea Savanna of Nigeria (Shika dam, Katanga and Cheema, 2006) reported damaged by insects as major factor Zangon Danbarno, Sabuwa, Rapiyan fan in Barkin Ladi and responsible for low crop yield on legumes which causes leaf Razek fan). The percentage incidence of pest’s infestation was death. There are no reports of pests infesting field pea in Nigeria, calculated for each sampling location. Identification of the pests hence the need for this study.
    [Show full text]
  • Relative Susceptibility of Crotalaria Spp. to Attack by Etiella Zinckenella in Puerto Rico1
    Relative susceptibility of Crotalaria spp. to attack by Etiella zinckenella in Puerto Rico1 Alejandro E. Seganu-Cannona and Pedro Barbosa2 ABSTRACT Four Crotalaria species were found attacked by the lima bean pod borer Etiella zinckenella (Treit.) in Puerto Rico: C. pallida, C. anagyroides, C. zanzibariea and C. incana. Non-susceptible species were C. retasa, C. stipularia and C. lanceolata. Early literature observations on the effect of soil characteristics (pH, soil penetrability, and organic matter) on attack rates of this borer to C pallida could not be confirmed on the basis of field observations. Only plant patch size seemed to be positively correlated with attack rates. Female oviposition patterns are discussed. Oviposition on C pallida field collected pods was restricted to green pods larger than 3.2 cm. No eggs were found on senescent pods. INTRODUCTION The lima bean pod borer, Etiella zinckenella (Treit.), was reported in Puerto Rico in 1890 (20). Since then, it has been studied by many visiting and resident entomologists. Leonard and Mills (6) first reported this pyralid boring on pods of lima beans, cowpeas, pigeon peas and Crotalaria (no species given). Wolcott (17,18) recorded that among all species of Crotalaria, only C. incana L. was attacked, and C. retusa L. appeared immune to this borer. This author also reported that Crotalaria plants growing on sandy soils were more susceptible to pod loss by E. zinckenella than those growing on clay soils. Further studies by Scott (12) corroborated Wolcott's observations on C. retusa resistance and added C stipularia Desv. to the list of resistant species.
    [Show full text]
  • Evaluation of Some Selected Pesticides Against the Two Pod Borers Helicoverpa Armigera and Etiella Zinckenella Population Infest
    Research Journal of Agriculture and Biological Sciences, 2(6): 578-583, 2006 © 2006, INSInet Publication Evaluation of Some Selected Pesticides Against the Two Pod Borers Helicoverpa Armigera and Etiella Zinckenella Population Infesting Cowpea in the Newly Reclaimed Regions Gehan, Y. Abdou and E.F. Abdalla. Department of Pest and Plant Protection, National Research Centre, Dokki, Egypt. Abstract: The two pod borers Helicoverpa armigera Hubner and Etiella zinckenella Treitschke are the most destructive insect pests which infest several crops of leguminosae in Egypt. Field experiments wer conducted to evaluate the efficacy of some relatively safe compounds beside the conventional pesticides for control of these pests on cowpea, Vigna ungiculata under the conditions of newly reclaimed regions. The results revealed that most of the treatments were able to suppress the levels of infestation to different degrees according to the nature of the tested compounds and the number of sprays applied. Application of non- traditional compounds such as thiamethoxam (neonicotinoid group) or Indoxacarb (oxadiozine group) significantly reduced the larval populations of H. armigera by 76 and 70% and E. zinkenella by 58 and 55%, respectively. Plots sprayed with methoxyfenozide (non-steroid ecdysone agonist )provided satisfactory control (61% reduction) against H. armigera population while exerted weak activity(< 26%) against E. zinkenella population. On the other hand, the potency of the common neurotoxic pesticides; chlorpyrifos (organophosphate) or cypermethrin (pyrethroid) were still the most effective pesticides against both species giving 76-81% reduction in infestation. However, all the tested pesticides and the rates used had low residual effect and thus, weekly applications to protect the plants of new insect attack were necessary.
    [Show full text]
  • Scientific Name – Vigna Radiata English Common Name – Mung Bean Asian Common Names – • Burmese: Pe-Di, Pe-Di-Sein, P
    Scientific name – Vigna radiata English common name – Mung bean Asian common names – Burmese: pe-di, pe-di-sein, pè di sien, pe-nauk, to-pi-si Chinese: lü dou, luhk dáu (Cantonese), lü zi lü dou Hindi: मग ं , व셍ण चना Japanese: bundou, fundou, yaenari, ryokutou Khmer: sândaèk ba:y Lao: thwàx khiêw, thwàx ngo:k, thwàx sadê:k Malay: arta ijo (Indonesia), kacang djong (Indonesia), kacang hijau (Malaysia) Photo: ECHO Asia staff Thai: ถั่วเขียว thua kiew Vietnamese: - , - Tagalog: balatong, mongo Varieties – Burmese Green - Day-neutral, bush variety, green seed. Lao - Day-neutral, bush variety, approximately 60 days from seed to flowering, green seed. General description and special characteristics – A bushy or vining annual that produces yellow flowers and pods up to 15 cm (6 in) in length. Mung bean is an important grain legume crop throughout Asia for its use as food, as an intercrop with rice, and as a green manure and fodder. Crop uses (culinary) – Mung bean is used throughout Asia as a food legume, flour, for dessert, and sprouted for use in other dishes. It has a protein content of approximately 25%. Transparent glass noodles are made from mung bean starch and in India and Pakistan, the dried seeds are consumed whole or after splitting into dhal. Split seeds are eaten fried and salted as a snack. Throughout Asia, dried beans are boiled until soft, seasoned with sugar, ginger or coconut milk, and eaten as a dessert soup. Mung bean sprouts are germinated and can be eaten both uncooked and cooked. Crop uses (soil improvement) – Mung bean is grown as a rainfed crop frequently preceding rice planting or following rice harvest.
    [Show full text]
  • Pdf (539.04 K)
    J. of Plant Protection and Pathology, Mansoura Univ., Vol 11 (1):29 - 36, 2002 Journal of Plant Protection and Pathology Journal homepage: www.jppp.mans.edu.eg Available online at: www. jppp.journals.ekb.eg Efficiency of Certain Bio-Insecticides for Reducing the Yield Losses due to the Bean Pod Borer, Etiella zinckenella (Treitschke) in Soybean Fields 1* 2 Soheir F. Abd El-Rahman and Eman I Abdel-wahab Cross Mark 1Plant Prot. Res. Inst., Agric. Res. Center, Dokki, Giza, Egypt 2Field Crops Res. Inst., Agric. Res. Center, Giza, Egypt ABSTRACT The pod borer Etiella zinckenella (Treitschke) is most destructive insect which infest crops of leguminosae in Egypt. Field experiments were carried out in farm of Agricultural Research Center, Giza governorate during 2017 and 2018 seasons. First experiment was conducted to study seasonal incidence of this insect on soybean and its relation with weather factors under natural conditions. In first season, the larval population increased to make two peaks, that recorded in the 1st and 3rd weeks of September. In second season found one peak on September, 4th. The relationship between population fluctuation and three climatic factors (minimum and maximum temperatures& R.H. %) were studied. Simple correlation of Max. and Min. temperatures were negative but R.H.% gave positive effects. The second experiment was conducted to evaluate efficacy of Biover, MgChl and Dipel 2xfor control of this insect under field conditions in addition the yield. Results showed that, mean reduction of larvae for highest concentrations of tested treatments were arranged descendingly as Biover (63.04%) followed by MgChl (55.52%) and finally Dipel 2x (51.28%) with significant differences between treatments compared with control.
    [Show full text]
  • Rapid Biodiversity Assessment of REPUBLIC of NAURU
    RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU JUNE 2013 NAOERO GO T D'S W I LL FIRS SPREP Library/IRC Cataloguing-in-Publication Data McKenna, Sheila A, Butler, David J and Wheatley, Amanda. Rapid biodiversity assessment of Republic of Nauru / Sheila A. McKeena … [et al.] – Apia, Samoa : SPREP, 2015. 240 p. cm. ISBN: 978-982-04-0516-5 (print) 978-982-04-0515-8 (ecopy) 1. Biodiversity conservation – Nauru. 2. Biodiversity – Assessment – Nauru. 3. Natural resources conservation areas - Nauru. I. McKeena, Sheila A. II. Butler, David J. III. Wheatley, Amanda. IV. Pacific Regional Environment Programme (SPREP) V. Title. 333.959685 © SPREP 2015 All rights for commercial / for profit reproduction or translation, in any form, reserved. SPREP authorises the partial reproduction or translation of this material for scientific, educational or research purposes, provided that SPREP and the source document are properly acknowledged. Permission to reproduce the document and / or translate in whole, in any form, whether for commercial / for profit or non-profit purposes, must be requested in writing. Secretariat of the Pacific Regional Environment Programme P.O. Box 240, Apia, Samoa. Telephone: + 685 21929, Fax: + 685 20231 www.sprep.org The Pacific environment, sustaining our livelihoods and natural heritage in harmony with our cultures. RAPID BIODIVERSITY ASSESSMENT OF REPUBLIC OF NAURU SHEILA A. MCKENNA, DAVID J. BUTLER, AND AmANDA WHEATLEY (EDITORS) NAOERO GO T D'S W I LL FIRS CONTENTS Organisational Profiles 4 Authors and Participants 6 Acknowledgements
    [Show full text]
  • 1 Modern Threats to the Lepidoptera Fauna in The
    MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist.
    [Show full text]
  • DNA Barcodes Reveal Deeply Neglected
    DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar Carlos Lopez-Vaamonde, Lucas Sire, Bruno Rasmussen, Rodolphe Rougerie, Christian Wieser, Allaoui Ahamadi Allaoui, Joël Minet, Jeremy Dewaard, Thibaud Decaëns, David Lees To cite this version: Carlos Lopez-Vaamonde, Lucas Sire, Bruno Rasmussen, Rodolphe Rougerie, Christian Wieser, et al.. DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar. Genome, NRC Research Press, 2019, 62 (3), pp.108-121. 10.1139/gen-2018-0065. hal-02613924 HAL Id: hal-02613924 https://hal.archives-ouvertes.fr/hal-02613924 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Pagination not final (cite DOI) / Pagination provisoire (citer le DOI) 1 ARTICLE DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar1 Carlos Lopez-Vaamonde, Lucas Sire, Bruno Rasmussen, Rodolphe Rougerie, Christian Wieser, Allaoui Ahamadi Allaoui, Joël Minet, Jeremy R. deWaard, Thibaud Decaëns, and David C. Lees Abstract: Madagascar is a prime evolutionary hotspot globally, but its unique biodiversity is under threat, essentially from anthropogenic disturbance. There is a race against time to describe and protect the Madagascan endangered biota.
    [Show full text]
  • Aesa Based Ipm Package Pea
    AESA BASED IPM PACKAGE PEA Directorate of Plant Protection National Institute of Plant Quarantine and Storage Health Management N. H. IV, Faridabad, Haryana Rajendranagar, Hyderabad, Telangana Department of Agriculture and Cooperation Ministry of Agriculture Government of India The AESA based IPM – Pea (Pisum sativum L.), was compiled by the NIPHM working group under the Chairmanship of Dr. Satyagopal Korlapati, IAS, DG, NIPHM, and guidance of Shri. Utpal Kumar Singh, IAS. JS (PP). The package was developed taking into account the advice of experts listed below on various occasions before finalization. NIPHM Working Group: Chairman : Dr. Satyagopal Korlapati, IAS, Director General Vice-Chairmen : Dr. S. N. Sushil, Plant Protection Advisor : Dr. P. Jeyakumar, Director (PHM) Core Members : 1. Er. G. Shankar, Joint Director (PHE), Pesticide Application Techniques Expertise. 2. Dr. O. P. Sharma, Joint Director (A & AM), Agronomy Expertise. 3. Dr. Satish Kumar Sain, Assistant Director (PHM), Pathology Expertise. 4. Dr. Dhana Raj Boina, Assistant Director (PHM), Entomology Expertise. Other members 5. Dr. N. Srinivasa, Assistant Director (RPM), Rodent Expertise. 6. Dr. B. S. Sunanda, Assistant Scientific Officer (PHM), Nematology Expertise. Contributions by DPPQ&S Experts: 1. Shri. Ram Asre, Additional Plant Protection Advisor (IPM), 2. Dr. K. S. Kapoor, Deputy Director (Entomology), 3. Dr. Sanjay Arya, Deputy Director (Plant Pathology), 4. Dr. Subhash Kumar, Deputy Director (Weed Science) 5. Dr. C. S. Patni, Plant Protection Officer (Plant Pathology) Contributions by External Experts: 1. Dr. Jaydeep Halder, Scientist (Entomology), ICAR-IIVR, Post bag No.1, Post office Jakhini, Shahanshapur, Varanasi-221305, UP 2. Dr. Sujoy Saha, Senior Scientist (Plant pathology), ICAR-IIVR, Post bag No.1, Post office Jakhini, Shahanshapur, Varanasi-221305, UP 3.
    [Show full text]