WRA Species Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eriodictyon Trichocalyx A
I. SPECIES Eriodictyon trichocalyx A. Heller NRCS CODE: Family: Boraginaceae ERTR7 (formerly placed in Hydrophyllaceae) Order: Solanales Subclass: Asteridae Class: Magnoliopsida juvenile plant, August 2010 A. Montalvo , 2010, San Bernardino Co. E. t. var. trichocalyx A. Subspecific taxa ERTRT4 1. E. trichocalyx var. trichocalyx ERTRL2 2. E. trichocalyx var. lanatum (Brand) Jeps. B. Synonyms 1. E. angustifolium var. pubens Gray; E. californicum var. pubens Brand (Abrams & Smiley 1915) 2. E. lanatum (Brand) Abrams; E. trichocalyx A. Heller ssp. lanatum (Brand) Munz; E. californicum. Greene var. lanatum Brand; E. californicum subsp. australe var. lanatum Brand (Abrams & Smiley 1915) C.Common name 1. hairy yerba santa (Roberts et al. 2004; USDA Plants; Jepson eFlora 2015); shiny-leaf yerba santa (Rebman & Simpson 2006); 2. San Diego yerba santa (McMinn 1939, Jepson eFlora 2015); hairy yerba santa (Rebman & Simpson 2006) D.Taxonomic relationships Plants are in the subfamily Hydrophylloideae of the Boraginaceae along with the genera Phacelia, Hydrophyllum, Nemophila, Nama, Emmenanthe, and Eucrypta, all of which are herbaceous and occur in the western US and California. The genus Nama has been identified as a close relative to Eriodictyon (Ferguson 1999). Eriodictyon, Nama, and Turricula, have recently been placed in the new family Namaceae (Luebert et al. 2016). E.Related taxa in region Hannan (2013) recognizes 10 species of Eriodictyon in California, six of which have subspecific taxa. All but two taxa have occurrences in southern California. Of the southern California taxa, the most closely related taxon based on DNA sequence data is E. crassifolium (Ferguson 1999). There are no morphologically similar species that overlap in distribution with E. -
Diurnal Foraging Behavior of an Aphidophagous Hoverfly in an Insectary Plant Patch
Foraging behavior of an aphidophagous female JBiopest 10(2):154-162 (2017) Diurnalhoverfly. foraging behavior of an aphidophagous hoverfly in an insectary plant patch Chandrima Emtia and Kazuro O hno* JBiopest 5(1): 1-6 ABSTRACT A series of foraging bouts of Episyrphus balteatus (DeGeer) females were observed and recorded throughout the day in phacelia (Phacelia tanacetifolia Bentham) patches. The dominant transitions of interplant movement, approaching and probing bouts were statistically more frequent in the morning than in the afternoon. In the morning, interplant movement of foragers was significantly longer and they were moving at higher places of phacelia patches. They approached and probed flowers considerably longer in morning compared to afternoon. A significant positive relationship between the number of open flowers in a patch and the patch residence time was observed in the morning. The proportion of females having swollen abdomen filled with phacelia pollen (68.2%) in the afternoon was significantly higher than that (31.82%) in the morning. In our study, E. balteatus females spent more time foraging in phacelia patches in morning compared to afternoon. Based on the results and by considering the dual resources requirements of a female hoverfly (flower foraging and searching for aphids to lay eggs), we will discuss the effective diurnal foraging of E. balteatus females in phacelia patches. Keywords: Conservation biological control (CBC), Episyrphus balteatus (DeGeer), Foraging behavior, Insectary plant, Phacelia tanacetifolia (Bentham). Citation: Chandrima Emtia and Kazuro Ohno. 2017. Diurnal foraging behavior of an aphidophagous hoverfly in an insectary plant patch. Journal of Biopesticides, 10 (2): 154-162. INTRODUCTION (Tenhumberg and Poehling, 1995). -
Phacelia Campanularia A. Gray – a SOURCE of POLLEN FLOW for INSECT POLLINATORS
Vol. 50 No. 1 2006 Journal of Apicultural Science 33 Phacelia campanularia A. Gray – A SOURCE OF POLLEN FLOW FOR INSECT POLLINATORS Anna Wróblewska Department of Botany, University of Agriculture, Akademicka 15, 20 – 950 Lublin, Poland. E-mail: [email protected] Received 10 January 2006; accepted 13 May 2006 Summary The objective of the study was Phacelia campanularia, an annual species of Hydrophyllaceae family. During 2003 – 2005 seasons, the investigations of flowering period and pollen effi- ciency were carried out under climatic conditions of the Lublin area. Weight of pollen was esti- mated by Warakomska's modified ether method (1972), pollen grains were measured according to the recommendations by Andrejev (1926). The results showed that the blooming of Phacelia campanularia started in first decade of June and lasted till the third decade of July (37 – 45 days). The mean number of flowers developed per one plant during the vegetation season reached from 388.7 in 2004, to 423.3 in 2003 and 437.8 in 2005. The flower of Phacelia has five stamens, the anthers of which start dehiscing and releasing pollen at morning hours. Pollen grains are round-flattened with furrows and smooth exine. Their dimensions ranged between 18.88 – 19.63 µm in polar view and 21.32 – 22.15 µm in equatorial view. The mean pollen weight produced by one flower reached 1.05 mg in 2003, 1.42 mg in 2004 and 1.35 mg in 2005, i.e. 444.25 mg, 552.92 mg and 592.34 mg per one plant respectively. A square meter of a phacelia plot may supply 4.22 – 5.63 g of pollen. -
Cytogenetic Investigations in Colchicine Induced Tetraploid of Cosmos Sulphureus (Asteraceae)
Chromosome Botany (2017)12(3): 41-45 ©Copyright 2017 by the International Society of Chromosome Botany Cytogenetic investigations in colchicine induced tetraploid of Cosmos sulphureus (Asteraceae) Rakesh Chandra Verma1, Preeti Dass2, Nilofar Shaikh1,3 and Mushtaq Ahmad Khah1 1School of Studies in Botany, Vikram University, Ujjain 456010, India 2 School of Studies in Microbiology, Vikram University, Ujjain 456010, India 1Author for correspondence: ([email protected]) Received March 10, 2017: accepted July 7, 2017 ABSTRACT: Polyploidy or whole genome duplication is an important mechanism for acquiring new genes and creating genetic novelty in plants. In the present study, successful induction of autotetraploidy has been achieved through seedling treatment of colchicine in Cosmos sulphureus. Young seedlings were treated with different concentrations of aqueous colchicine (0.15, 0.2%, each for different durations) using the cotton-swab method. Polyploidy was confirmed during meiotic behavior of pollen mother cells. Induced tetraploid was cytogenetically distinguished from diploid by the occurrence of 48 chromosomes at diakinesis/metaphase-I with different combinations of univalent, bivalents, trivalents, and multivalent. In addition, different types of chromosomal anomalies such as laggards, micronuclei etc. were also observed at anaphase/telophase-I. Various cytological features like chromosomal associations (quadrivalents, bivalents and univalents) and chiasmata frequency were recorded at diakinesis/metaphase-I. It is expected that the induced colchiploid, if established, could be used in further cytological and breeding programs. KEYWORDS: Cosmos sulphureus, colchiploid, quadrivalent, capitulum Polyploidy has been a recurrent process during the either in 0.15 or 0.20% aqueous colchicine were placed on evolution of flowering plant that has made a considerable the emerging apical tip between two cotyledonary leaves. -
Desert Bells Phacelia Campanularia Updated
The Weekly Plant 4 March 2012 Common names: desertbells, desert bluebells, California bluebell Scientific name: Phacelia campanularia1 TAV location: Between driveway and Javelina Way in front of Sarah Dinham’s townhome. Discussion: This showy annual has inch-long, bell-shaped blue flowers. The leaves are coarsely toothed, basal, and have dark red edges. It’s not clear if this species is native to Arizona or just to California. Some references list it as native to Maricopa and Pima Counties. Others list it as native to California only. However, it is frequently included in “desert wildflower” mixes, which may explain its appearance in Arizona and at TAV. Phacelias2 are in the waterleaf family (Hydrophyllaceae). Most have blue-purple flowers and bloom in early spring. The 5-petaled flowers are held in a helicoid cyme, a structure typically found in the waterleaf family and also in the borage family (Boraginaceae). In a helicoid cyme, the flowers are held on a long stalk that is coiled on itself, similar to a scorpion’s tail or to the symbol used in the TAV and ASA logos. The stalk straightens as more flowers open. Why do we care about helicoid cymes? You can use it to help you identify a plant. If you find a plant with a helicoid cyme, check your ID books for plants in the waterleaf and borage families. Many plant identification books and floras3 organize plants by families. Even some websites organize plants by family. Check out Southeastern Arizona Wildflowers (http://www.fireflyforest.com/flowers/). On that website you can View Arizona Plants by flower color, name, or family. -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Anatomical Characteristics.Pdf (631.3
Title Anatomical Characteristics of Comos sulphureus Cav. from Family Asteraceae Author Dr. Ngu Wah Win Issue Date 1 Anatomical Characteristics of Comos sulphureus Cav. from Family Asteraceae Ngu Wah Win Associate Professor Department of Botany University of Mandalay Abstract In this research, morphological and anatomical structures of leaves, stems, and roots of Comos sulphureus Cav. of tribe Heliantheae belonging to the family Asteraceae were studied, photomicrographed and described. This species is annual erect herb, compound leaves and flowers are bisexual head. Anatomical characters of Cosmos sulphureus Cav. are dorsiventral type of leaves, anomocytic type of stomata, and collateral type of vascular bundles were found. The shapes of midrib are found to be oval-shaped, the petioles were oval or heart-shaped, and the stem was tetragonal or polygonal in shape. Key words – Asteraceae, dorsiventral, anomocytic, collateral Introduction In people's lives plants were important and were essential to balance the nature. Plants served the most important part in the cycle of nature. Without plants, there could be no life on earth. Plants were the only organisms and they can make their own food. People and animals were incapable to make their own food and depend directly or indirectly on plants for their supply of food. There were many plants that were edible and that were used by rural people but the main emphasis was on commercial important plants (Wyk 2005). Comos sulphureus Cav. is also known as crest lemon, sunset, cosmic yellow and cosmic orange. It is well known as cosmos in English name (McLeod 2007). Comos sulphureus Cav. is known as dye plant and is cultivated for this purpose. -
Botanischer Garten Der Universität Tübingen
Botanischer Garten der Universität Tübingen 1974 – 2008 2 System FRANZ OBERWINKLER Emeritus für Spezielle Botanik und Mykologie Ehemaliger Direktor des Botanischen Gartens 2016 2016 zur Erinnerung an LEONHART FUCHS (1501-1566), 450. Todesjahr 40 Jahre Alpenpflanzen-Lehrpfad am Iseler, Oberjoch, ab 1976 20 Jahre Förderkreis Botanischer Garten der Universität Tübingen, ab 1996 für alle, die im Garten gearbeitet und nachgedacht haben 2 Inhalt Vorwort ...................................................................................................................................... 8 Baupläne und Funktionen der Blüten ......................................................................................... 9 Hierarchie der Taxa .................................................................................................................. 13 Systeme der Bedecktsamer, Magnoliophytina ......................................................................... 15 Das System von ANTOINE-LAURENT DE JUSSIEU ................................................................. 16 Das System von AUGUST EICHLER ....................................................................................... 17 Das System von ADOLF ENGLER .......................................................................................... 19 Das System von ARMEN TAKHTAJAN ................................................................................... 21 Das System nach molekularen Phylogenien ........................................................................ 22 -
Biosystematic Studies of Phacelia Capitata
AN ABSTRACT OF THE THESIS OF J. Steph nShelly for the degree of Master of Science in Botanyand PlantPathologypresented on April 11. 1985. Title: Biosystematic Studies of Phacelia capitata (Hydrophyllaceae). a Species Endemic to Serpentine Soils in Southwestern OregonRedacted for privacy Abstract approved: Renton L. Chambers Phacelia capitataRruckeberg is a member of the Phacelia magellanica polyploidcomplex (species group Magellanicae), a group of wide-ranging, polymorphic perennials in westernNorthAmerica related to the South American P. secunda (= P. magellanica). The purpose of thisproject was to determine, to the extent possible, the interrelationships ofP. capitata within the Magellanicae, using studies of its distribution, cytology, morphology, reproductive biology, and population ecology. Phaceliacapitata is endemic to ultramafic (serpentine and peridotite) outcrops, or similar metamorphic substrates, in Coos, Douglas, and JacksonCounties, southwesternOregon. Field surveys revealed22 extant populations. The species occurs on open serpentine slopes, outcrops, and roadbanks or similarlydisturbed sites, generally in areas with a south to southeast exposure. The nativeplant community with which P. capitata is frequently associated is a Pinus ieffreyi/grass savanna. Soils from five P. capitata sites and two E. corvmbosa sites werechemically analyzed. At six of these locations the soils were derived from fully serpentinized parent materials, and were found to possess low levels of phosphorus and very low calcium/magnesium ratios when compared to an eighth sample from a non-serpentine soil. A soil sample fromone P. capitata site, derived from a metamorphic rock similar in appearance to serpentine, had chemical characteristics intermediatebetween those of serpentine and non-serpentine soils. Chromosome counts from 20 P. capitata populations revealed the existence of diploids (n=11) at 19 of them; tetraploid (n=22) counts were obtained from two populations, oneof these populations also containing diploids. -
COVER CROPS and SOIL-BORNE FUNGI DANGEROUS TOWARDS the CULTIVATION of SALSIFY (Tragopogon Porrifolius Var
Acta Sci. Pol., Hortorum Cultus 10(2) 2011, 167-181 COVER CROPS AND SOIL-BORNE FUNGI DANGEROUS TOWARDS THE CULTIVATION OF SALSIFY (Tragopogon porrifolius var. sativus (Gaterau) Br.) Elbieta Patkowska, Mirosaw Konopiski University of Life Sciences in Lublin Abstract. Salsify has a remarkable taste and nutritious values. It is a rich source of inulin – a glycoside which has a positive effect on human and animal organisms. The paper pre- sents studies on the species composition of soil-borne fungi infecting the roots of Tragopogon porrifolius var. sativus cultivated with the use of oats, tansy phacelia and spring vetch as cover crops. In a field experiment the cover crops formed abundant green mass before winter and it constituted a natural mulch on the surface of the plough land. It was managed in two ways: 1) mixed with the soil as a result of spring ploughing, or 2) mixed with the soil as a result of pre-winter ploughing. The conventional cultivation of salsify, i.e. without cover crops, constituted the control. The studies established the number and health status of four-week-old salsify seedlings and roots with necrotic signs. A laboratory mycological analysis made it possible to determine the quantitative and qualitative composition of fungi infecting the underground parts of Tragopogon porri- folius var. sativus. The emergences and the proportion of infected salsify seedlings varied and depended on the species of the mulching plant. The smallest number of infected seed- lings was obtained after the mulch with oats, slightly more after the application of spring vetch or tansy phacelia as cover crops, and the most in the control. -
Genome Size Is a Strong Predictor of Root Meristem Growth Rate
Hindawi Publishing Corporation Journal of Botany Volume 2010, Article ID 390414, 4 pages doi:10.1155/2010/390414 Research Article Genome Size Is a Strong Predictor of Root Meristem Growth Rate Adam Gruner, Nathan Hoverter, Tylia Smith, and Charles A. Knight Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA Correspondence should be addressed to Charles A. Knight, [email protected] Received 23 December 2009; Accepted 5 March 2010 Academic Editor: Johann Greilhuber Copyright © 2010 Adam Gruner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Variation in genome size (GS) has been linked to several facets of the plant phenotype. Recently it was shown that GS is significantly correlated with cell size and the duration of the cell cycle. Here we test the hypothesis that GS might also be a predictor of apical root meristem growth rate (RMGR). We studied eight species of eudicots with varying GS using time-lapse microscopic image analysis. A significant negative exponential relationship was observed between GS and RMGR. Our results show significantly decreased RMGR for large genome species. This relationship represents a significant consequence of GS expansion in plants and may partly explain why genome sizes tend to be small in eudicots. Interestingly, parasitic plants, which do not rely on root growth as much, often have large genomes. 1. Introduction the independent variables in (1) can be measured using time- lapse microscopic image analysis [12, 13]. -
Summer Cosmos – a Host of Cucumber Mosaic Virus M.S
J Agric Rural Dev 5(1&2), 84-93, June 2007 ISSN 1810-1860 JARD Journal of Agriculture & Rural Development Summer Cosmos – A Host of Cucumber mosaic virus 1 2 3* M.S. PARVIN , A.M. AKANDA AND A.H.M.A. RAHMAN 1, 2&3Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh ABSTRACT In order to identify the cause of virus disease-like symptoms developed naturally in Summer cosmos (Cosmos sulphureus) plants at Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur campus, a study was conducted during March 2004 to August 2005. The natural symptoms in Summer cosmos were consisted of mosaic, yellowing, shoe-string and leaf curling along with severe stunting of the infected plants. The ailments were found to be sap transmissible. Gomphrena globosa and Chenopodium amaranticolor were found to be good local lesion hosts producing chlorotic local lesion in the inoculated plants. The virus isolates obtained from the infected G. globosa plant had wide host range including Amaranthaceae, Chenopodiaceae, Compositae, Cucurbitaceae, Ligominosae and Solanaceae. The dilution end point, thermal inactivation point and longevity in vitro were determined as 10-6, 650C and 10 days, respectively. The host range test, dilution end point, thermal inactivation point and longevity in vitro suggested that the virus was identical to Cucumber mosaic virus (CMV). Double Antibody Sandwich Enzyme-Linked Immuno- Sorbent Assay (DAS-ELISA) detected the virus as CMV. The results of the study revealed that the virus disease-like symptoms naturally manifested in summer cosmos plants was identified as CMV. Key words: Summer cosmos, CMV, virus identification.