An Adjoint Characterization of the Category of Sets

Total Page:16

File Type:pdf, Size:1020Kb

An Adjoint Characterization of the Category of Sets An adjointcharacterization of the category of sets Rob ert Rosebrugh Department of Mathematics and Computer Science Mount Allison University Sackville N B EA C Canada R J Wood Department of Mathematics Statistics and Computing Science Dalhousie University Halifax N S BH J Canada Abstract op If a category B with Yoneda emb edding Y B CATB set has an adjoint string U a V a W a X a Y then B is equivalenttoset The authors gratefully acknowledge nancial supp ort from NSERC Canada Diagrams typ eset using M Barrs diagram macros Intro duction The statement of the Abstract was implicitly conjectured in Here we establish the conjecture We will see that it suces to assume that B has an adjoint string V a W a X a Y with V pullback preserving Aword on foundations and our notation is necessaryWe write set for the category of small sets and assume that there is a Grothendieck top os SETofsetswhich contains the set of arrows of set as an ob ject The category of category ob jects in SET whichwe write CAT is cartesian closed and set is an ob ject of CAT Thus for C a category in CAT op CAT C set is also an ob ject of CAT and we abbreviate it by MC it was written coop coop P C in Substitution gives a functor M CAT CAT where CAT is the dual which reverses b oth arrows of CAT functors and cells natural transformations A op category B in CAT is said to b e local ly smal l if it has a hom functor B B set or equivalently a Yoneda emb edding Y Y B MB Wesay that a category A is smal l B if the set of arrows of A is an ob ject of set All categories under consideration other than SET and CAT are ob jects of CAT A functor F A B is said to b e Kan if MF MB MA has a left adjoint denoted F If A is small and B is lo cally small then F is Kan but neither condition ML Smallness of A is necessary if saywehave L a F then ML aMF and F and lo cal smallness of B also ensures that MF has a right adjoint whichwe denote by F In particular for small A the Yoneda emb edding Y A MA yields Y a A A MY aY MA MMA and it is shown in that Y is isomorphic to A A A Y We can apply these considerations to A the empty category which is the initial MA ob ject of CAT The unique functor M is necessarily Y and gives rise to Y aMY a Y M But M is isomorphic to set and is terminal in CAT so the adjoint string is more conveniently lab elled a a set A further application of the result quoted from gives an adjoint string of the kind mentioned in the Abstract namely aM aM aM a Y set Mset set We recall from or that a lo cally small category B is said to b e total abbreviating total ly cocompleteifY B MB has a left adjoint X Considerable motivation for the terminology is given in either reference Examples include categories of algebras categories of spaces and categories of sheaves on a Grothendieck site The reader is advised to keep in mind the situation when B is an ordered set and Y is replaced by its counterpart in the category ord of ordered sets orderpreserving functions and transformations There B DB sends an element b to the downclosed subset of B consisting of all x such that x b D B is the lattice of all downclosed subsets of B ordered by inclusion This functor W has a left adjoint namely supremum precisely when B is cocomplete It is helpful to W think of X ab ove as a generalization of Continuing the analogywe recall from that W has a left adjoint precisely when B is constructively completely distributive With this in mind wesay that a total category is total ly distributive when it has an adjoint string W a X a Y B MB The considerations in the previous paragraph show that MA is totally distributive for small A W In the ord case a left adjoint for classies the or totally b elow relation dened W by b b if and only if for any D in D B b D implies b D A similar interpretation is op p ossible for W Its transp ose B B set is in some resp ects like another hom functor At least it makes go o d sense to think of its values as sets of arrows a priori distinct from the arrows of B A left adjoint V for W expresses a universal prop erty with resp ect to the new arrows and if this colimitlike functor itself has a left adjoint then ordinary limits also distribute over these colimitlike universals The p oint of the heuristics of the preceding paragraph is that the adjoint strings we are considering are manifestations of exactness Given a suitably complete and co complete category B it seems p ossible ab initio that B b e more distributive than set The Theorem of this pap er shows that this is not the case Exactness of a lo cally small category is strictly b ounded by the exactness of set Note further that while total categories B can fail to b e op cototal that is B can fail to b e total totally distributive categories are always cototal This and a detailed study of the heuristics ab ove will app ear in a separate forthcoming pap er The adjointcharacterization Let B b e a totally distributive category with adjoint string W a X a Y B MB We write X a Y to indicate that is the unit and is the counit for the adjunction Since Y is fully faithful is an isomorphism and X is cofully faithful i e CAT X C is fully faithful for all CWe write W a X for the other adjunction Cofully faithfulness of X implies that the unit is an isomorphism and so W is fully faithful We dene W Y to b e the unique natural transformation satisfying X Equivalently is the unique solution of X We write I E B for the inverter of W Y B MB i e E is the full sub category of B determined by those B for which is an isomorphism B I is the resulting inclusion For any functor F C D with DFCDinset for all C D and for any G K D we follow Street and Walters in writing DF G K MC for the functor whose value at K in K is DF GK If D is lo cally small DF G is the comp osite G Y MF K D MD MC Further still assuming that D is lo cally small and for any H K MD the Yoneda MF H even though MD need not b e lo cally small Lemma gives MDYFH Lemma Acategory B is equivalent to one of the form MA with A smal l if and only if B is total ly distributive and the inverter I as above is dense and Kan Pro of only if Wehave already remarked that MA is totally distributive for small A Here E is the Cauchy completion of A Since this part of the Lemma is not central to our present concerns we leave the pro of of this claim as an exercise for the reader In the ord case it is discussed in It is easy to see that I is dense and Kan if Given B and I as ab ove consider the comp osite Y MI B MB ME BI B Since Y and MI have left adjoints namely X and I resp ectivelysodoes BI We denote the left adjointby I since its value at in MEI is the colimit of I weighted by The unit for I a BI is an isomorphism since I is dense The following isomorphisms are justied by in order denition of I W a X is inverted by I the Yoneda lemma and fully faithfulness of I which follows from fully faithfulness of I MI I MBYII MBWI I BI X I BI I Thus BI B ME is an equivalence Since b oth E and now ME are lo cally small it follows from see also that E is small as required If C and D are total then a functor F C D preserves all colimits if and only if it has a right adjoint If moreover F is Kan then preservation of all colimits is equivalentto invertibility of the canonical natural transformation X F FX as shown in the left D C hand diagram b elow F F MC MD MC MMD X X X MY C D C D C D C MD F F Again the reader is advised to think of X as a general counterpart of the supremum arrow for a complete ordered set Now replace D in the immediately preceding discussion by MD where D is an arbitrary lo cally small category According to our denition of total category and again invoking or MD is total if and only if D is small But wedohave MY D assuming only that D is lo cally small If F is b oth Kan and a left adjoint then a canonical isomorphism as in the right hand diagram is pro duced by a mo dication of the calculations which establish that the canonical arrow in the left hand diagram is an isomorphism Of course we implicitly noted in the Intro duction that if D is small then MY X The D MD p oint is that for D lo cally small MD has the requisite weighted colimits and they are provided by MY D Let B b e a totally distributive category with V a W ThenW B MB is b oth Kan and a left adjoint The considerations of the previous paragraph show that WX MY W Since W is fully faithful XW and wehave MY W W W This is a formulation for B totally distributive categories of the Interp olation Lemma for constructively completely distributive lattices as in Now a calculation shows that the natural isomorphism ab ove MY W W W admits description by b oth MY W MY W W MY Y W W and MY W MY W W MY W Y W W X Y where b oth the rst and last unnamed isomorphisms express the fully faithfulness of Y and WX These descriptions the second unnamed isomorphism is an instance of MY W show that the profunctor B B determined by W B MB carries an idemp otent comonad structure with counit determined by W Y It is convenient to dene T VY B B Then MY W MY MV MVY MT which shows that MT coinverts By Lemma of T inverts Lemma Acategory B is equivalent to one of the form MA with A a smal l complete ordered set if and only if B is total ly distributive with V a W Pro of only if A small complete ordered set A is a total category Indeed by denition A DA has a left adjoint So do es the inclusion D A MA and its A
Recommended publications
  • Introduction
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 19{32 CATEGORICAL ASPECTS OF CONGRUENCE DISTRIBUTIVITY MARINO GRAN, DIANA RODELO AND IDRISS TCHOFFO NGUEFEU Abstract: We give new characterisations of regular Mal'tsev categories with dis- tributive lattice of equivalence relations through variations of the so-called Tri- angular Lemma and Trapezoid Lemma in universal algebra. We then give new characterisations of equivalence distributive Goursat categories (which extend 3- permutable varieties) through variations of the Triangular and Trapezoid Lemmas involving reflexive and positive (compatible) relations. Keywords: Mal'tsev categories, Goursat categories, congruence modular varieties, congruence distributive varieties, Shifting Lemma, Triangular Lemma, Trapezoid Lemma. Math. Subject Classification (2010): 08C05, 08B05, 08A30, 08B10, 18C05, 18B99, 18E10. Introduction Regular Mal'tsev categories [7] extend 2-permutable varieties of univer- sal algebras, also including many examples which are not necessarily vari- etal, such as topological groups, compact groups, torsion-free groups and C∗-algebras, for instance. These categories have the property that any pair of (internal) equivalence relations R and S on the same object permute: RS = SR (see [6], for instance, and the references therein). It is well known that regular Mal'tsev categories have the property that the lattice of equiva- lence relations on any object is modular, so that they satisfy (the categorical version of) Gumm's Shifting Lemma [16]. More generally, this is the case for Goursat categories [8], which are those regular categories for which the composition of equivalence relations on the same object is 3-permutable: RSR = SRS. In [13] we proved that, for a regular category, the property of being a Mal'tsev category, or of being a Goursat category, can be both characterised Received 23rd September 2019.
    [Show full text]
  • ROTA-BAXTER CATEGORIES Edmundo Castillo and Rafael Dıaz
    International Electronic Journal of Algebra Volume 5 (2009) 27-57 ROTA-BAXTER CATEGORIES Edmundo Castillo and Rafael D´ıaz Received: 11 March 2008; Revised: 12 October 2008 Communicated by A. C¸i˘gdem Ozcan¨ Abstract. We introduce Rota-Baxter categories and construct examples of such structures. Mathematics Subject Classification (2000): 05A30, 18A99, 81Q30 Keywords: Rota-Baxter algebras, categorification of rings, categorical inte- gration. 1. Introduction This work takes part in the efforts to understand the categorification of rings and other related algebraic structures. The idea of categorification of algebraic structures has been around for several decades and has gradually become better appreciated and understood. The expanding scope and applications of the notion of categorification has been greatly influenced by the works of Baez-Dolan [2,3], Crane-Frenkel [10], Crane-Yetter [11], Khovanov [24], among others. The basic idea is that it is worthwhile to look at the categorical foundations of set theoretical structures. Often sets arise as the equivalences classes of objects in a category. Going from a category to the set of equivalences classes of its objects is the pro- cess of decategorification. Categorification goes in the reverse direction, uncovering categories whose set of equivalences classes of objects reproduces a given set. Cat- egorifications always exist but are no unique. Thus two general problems arise: the classification of categorifications and the extraction of information regarding a given set theoretical construction from its categorical counterpart. Our approach to the categorification of rings, reviewed in Section 2, was first discussed in [17] with a view towards the categorification of the ring of functions on non-commutative spaces and the categorification of the algebra of annihilation and creation operators.
    [Show full text]
  • Coexponentiability and Projectivity: Rigs, Rings, and Quantales
    Theory and Applications of Categories, Vol. 32, No. 36, 2017, pp. 1222{1228. COEXPONENTIABILITY AND PROJECTIVITY: RIGS, RINGS, AND QUANTALES S.B. NIEFIELD AND R.J. WOOD Abstract. We show that a commutative monoid A is coexponentiable in CMon(V) if and only if −⊗A: V /V has a left adjoint, when V is a cocomplete symmetric monoidal closed category with finite biproducts and in which every object is a quotient of a free. Using a general characterization of the latter, we show that an algebra over a rig or ring R is coexponentiable if and only if it is finitely generated and projective as an R-module. Omitting the finiteness condition, the same result (and proof) is obtained for algebras over a quantale. 1. Introduction Recall that an object A of a category A with finite products is exponentiable if and only if − × A: A / A has a right adjoint. In [Niefield, 1982], the first author showed that for an algebra A over a commutative ring R, the spectrum Spec(A) is exponentiable in the category of affine schemes over Spec(R) if and only if A is finitely generated and projective as an R-module, and later showed in [Niefield, 2016] that essentially the same proof gave a characterization of coexponentiable morphisms of quantales (with the finiteness condition omitted). After a presentation of the latter, Lawvere and Menni asked if this characterization also generalized to rigs and, in particular, idempotent rigs. A rig (or \ring without negatives") is another name for a commutative semiring, and an idempotent rig is one in which 1+1 = 1.
    [Show full text]
  • AUTONOMOUS CATEGORIES 1. Introduction
    COHERENCE OF THE DOUBLE INVOLUTION ON ∗-AUTONOMOUS CATEGORIES J.R.B. COCKETT, M. HASEGAWA AND R.A.G. SEELY ABSTRACT. We show that any free ∗-autonomous category is strictly equivalent to a free ∗-autonomous category in which the double-involution (−)∗∗ is the identity functor and the canonical isomorphism A A∗∗ is an identity arrow for all A. 1. Introduction Many formulations of proof nets and sequent calculi for Classical Linear Logic (CLL) [9, 10] take it for granted that a type A is identical to its double negation A⊥⊥.Onthe other hand, since Seely [16], it has been assumed that ∗-autonomous categories [1,2]are the appropriate semantic models of (the multiplicative fragment of) CLL. However, in general, in a ∗-autonomous category an object A is only canonically isomorphic to its double involution A∗∗. For instance, in the category of finite dimensional vector spaces and linear maps, a vector space V is only isomorphic to its double dual V ∗∗. This raises the questions whether ∗-autonomous categories do not, after all, provide an accurate semantic model for these proof nets and whether there could be semantically non-identical proofs (or morphisms), which must be identified in any system which assumes a type is identical to its double negation. Whether this can happen is not completely obvious even when one examines purely syntactic descriptions of proofs with the isomorphism between A and A⊥⊥ present such as [14, 11] or the alternative proof net systems of [5] which are faithful to the categorical semantics. Fortunately, there is no such semantic gap: in this paper we provide a coherence theorem for the double involution on ∗-autonomous categories, which tells us that there is no difference between the up-to-identity approach and the up-to-isomorphism approach, as far as this double-negation problem is concerned.
    [Show full text]
  • Categories of Space and of Quantity
    Categories of Space and of Quantity F. WILLIAM LAWVERE (New York) 0. The ancient and honorable role of philosophy as a servant to the learning, development and use of scientific knowledge, though sadly underdeveloped since Grassmann, has been re-emerging from within the particular science of mathematics due to the latter's internal need; making this relationship more explicit (as well as further investigating the reasons for the decline) will, it is hoped, help to germinate the seeds of a brighter future for philo- sophy as well as help to guide the much wider learning of mathematics and hence of all the sciences. 1. The unity of interacting opposites "space vs. quantity", with the accom- panying "general vs. particular" and the resulting division of variable quan- tity into the interacting opposites "extensive vs. intensive", is susceptible, with the aid of categories, functors, and natural transformations, of a formulation which is on the one hand precise enough to admit proved theorems and considerable technical development and yet is on the other hand general enough to admit incorporation of almost any specialized hypothesis. Readers armed with the mathematical definitions of basic category theory should be able to translate the discussion in this section into symbols and diagrams for calculations. 2. The role of space as an arena for quantitative "becoming" underlies the qualitative transformation of a spatial category into a homotopy category, on which extensive and intensive quantities reappear as homology and cohomology. 3. The understanding of an object in a spatial category can be approached through definite Moore-Postnikov levels; each of these levels constitutes a mathematically precise "unity and identity of opposites", and their en- semble bears features strongly reminiscent of Hegel's Science of Logic.
    [Show full text]
  • Notes on Polynomial Functors
    Joachim Kock Notes on Polynomial Functors Very preliminary version: 2009-10-15 20:38 but with some mistakes fixed on 2016-08-16 15:09 PLEASE CHECK IF A NEWER VERSION IS AVAILABLE! http://mat.uab.cat/~kock/cat/polynomial.html PLEASE DO NOT WASTE PAPER PRINTING THIS! Joachim Kock Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona) SPAIN e-mail: [email protected] VERSION 2009-10-15 20:38 Available from http://mat.uab.cat/~kock This text was written in alpha. It was typeset in LATEX in standard book style, with mathpazo and fancyheadings. The figures were coded with the texdraw package, written by Peter Kabal. The diagrams were set using the diagrams package of Paul Taylor, and with XY-pic (Kristoffer Rose and Ross Moore). Preface Warning. Despite the fancy book layout, these notes are in VERY PRELIMINARY FORM In fact it is just a big heap of annotations. Many sections are very sketchy, and on the other hand many proofs and explanations are full of trivial and irrelevant details. There is a lot of redundancy and bad organisation. There are whole sections that have not been written yet, and things I want to explain that I don’t understand yet... There may also be ERRORS here and there! Feedback is most welcome. There will be a real preface one day I am especially indebted to André Joyal. These notes started life as a transcript of long discussions between An- dré Joyal and myself over the summer of 2004 in connection with [64]. With his usual generosity he guided me through the basic theory of poly- nomial functors in a way that made me feel I was discovering it all by myself.
    [Show full text]
  • (Semi)Ring of Algebraically Closed Fields
    The Grothendieck (semi)ring of algebraically closed fields Tibor Beke University of Massachusetts tibor [email protected] Nov 3, 2015 Tibor Beke The Grothendieck (semi)ring of algebraically closed fields model theory algebraic geometry I First order logic: language contains relation, constant and function symbols; only allows 8 and 9 quantifiers ranging over the domain of interpretation I `Theory' is a set of first order axioms in a given language I Can axiomatize most algebraic structures (e.g: ring, field, difference field; algebraically closed field, real closed field; category, groupoid; metric space) this way I No obvious first order axiomatization for: noetherian ring; topological space; manifold; variety; ringed space; scheme; complete metric space Tibor Beke The Grothendieck (semi)ring of algebraically closed fields model theory, ca. 1950 { 1965 I Strong set-theoretical flavor. Motivating question: given a theory T and infinite cardinal κ, what is the cardinality of the set of isomorphism classes of models of T of size κ? I Take T to be the theory of algebraically closed fields of a specific characteristic, κ an uncountable cardinal. Any two models of T of size κ are isomorphic (since they must have the same transcendence degree, namely κ, over the prime field). This is a rare phenomenon! I L´os'sconjecture: Let T contain countably many axioms. Suppose that for at least one uncountable κ, T has a unique isomorphism class of models of cardinality κ . Then, for every uncountable κ, T has a unique isomorphism class of models of cardinality κ. Tibor Beke The Grothendieck (semi)ring of algebraically closed fields model theory, ca.
    [Show full text]
  • Basic Category Theory (OPLSS 2016)
    Basic Category Theory (OPLSS 2016) Edward Morehouse Carnegie Mellon University June 2016 (revised June 30, 2016) Contents 1 Basic Categories 3 1.1 Definition of a Category ....................... 3 1.2 Diagrams ............................... 5 1.3 Structured Sets as Categories .................... 6 1.3.1 Discrete Categories ...................... 6 1.3.2 Preorder Categories ..................... 7 1.3.3 Monoid Categories ...................... 7 1.4 Categories of Structured Sets .................... 8 1.4.1 The Category of Sets ..................... 8 1.4.2 The Category of Preorders ................. 9 1.4.3 The Category of Monoids .................. 9 1.5 Categories of Types and Terms ................... 9 1.6 Categories of Categories ....................... 11 1.6.1 Functors ............................ 11 1.6.2 The Special Role of Sets ................... 13 1.7 New Categories from Old ...................... 15 1.7.1 Ordered Pair Categories ................... 15 1.7.2 Subcategories ......................... 17 1.7.3 Opposite Categories ..................... 18 1.7.4 Arrow Categories ....................... 19 1.7.5 Slice Categories ........................ 21 2 Behavioral Reasoning 23 2.1 Monic and Epic Morphisms ..................... 23 2.1.1 Monomorphisms ....................... 23 2.1.2 Epimorphisms ........................ 25 2.2 Split Monic and Epic Morphisms .................. 26 2.3 Isomorphisms ............................. 28 3 Universal Constructions 31 3.1 Terminal and Initial Objects ..................... 31 3.1.1 Terminal Objects ....................... 31 3.1.2 Unit Type ........................... 33 3.1.3 Global and Generalized Elements .............. 33 i ii CONTENTS 3.1.4 Initial Objects ........................ 34 3.1.5 Void Type ........................... 35 3.2 Products ................................ 35 3.2.1 Products of Objects ..................... 35 3.2.2 Product Functors ....................... 39 3.2.3 Product Types ........................ 41 3.2.4 Finite Products .......................
    [Show full text]
  • Of CAT. Thus, for C a Category in CAT, CAT(Cop, Set) Is Also an Object of CAT, and We Abbreviate It by J7C (It Was Written ^C in [8])
    proceedings of the american mathematical society Volume 122, Number 2, October 1994 AN ADJOINT CHARACTERIZATION OF THE CATEGORY OF SETS ROBERTROSEBRUGH AND R. J. WOOD (Communicated by Andreas R. Blass) Abstract. If a category B with Yoneda embedding Y: B -» CAT(B°P, set) has an adjoint string, U -\V -\W -\ X -\Y , then B is equivalent to set. 1. Introduction The statement of the abstract was implicitly conjectured in [9]. Here we establish the conjecture. We will see that it suffices to assume that B has an adjoint string V H W -\ X ^ Y with V pullback preserving. A word on foundations and our notation is necessary. We write set for the category of small sets and assume that there is a Grothendieck topos, SET, of sets which contains the set of arrows of set as an object. The 2-category of category objects in SET, which we write CAT, is cartesian closed, and set is an object of CAT. Thus, for C a category in CAT, CAT(Cop, set) is also an object of CAT, and we abbreviate it by J7C (it was written ^C in [8]). Substitution gives a 2-functor J7: CAT0005 -» CAT, where CAT000" is the dual which reverses both arrows of CAT (functors) and 2-cells (natural transformations). A category B in CAT is said to be locally small if it has a horn functor Bop x B —►set or equivalently a Yoneda embedding Y = Yb: B -» J7H. We say that a category A is small if the set of arrows of A is an object of set.
    [Show full text]
  • The Extensive Completion of a Distributive Category 1
    Theory and Applications of Categories, Vol. 8, No. 22, 2001, pp. 541–554. THE EXTENSIVE COMPLETION OF A DISTRIBUTIVE CATEGORY J.R.B. COCKETT AND STEPHEN LACK ABSTRACT. A category with finite products and finite coproducts is said to be dis- tributive ifthe canonical map A × B + A × C → A × (B + C) is invertible for all objects A, B,andC. Given a distributive category D, we describe a universal functor D → Dex preserving finite products and finite coproducts, for which Dex is extensive;thatis,for all objects A and B the functor Dex/A × Dex/B → Dex/(A + B) is an equivalence of categories. As an application, we show that a distributive category D has a full distributive em- bedding into the product ofan extensive category with products and a distributive preorder. 1. Introduction A category with finite products and finite coproducts is said to be distributive, if for all objects A, B,andC, the canonical map δ : A × B + A × C → A × (B + C) is invertible. These categories have proved to be important in theoretical computer science as they facilitate reasoning about programs with control and the specification of abstract data types. Every topos is a distributive category, so the categories Set, Gph, SetG,and Shv(X) of sets, (directed) graphs, G-sets, and sheaves on a space are all distributive. But there are many other examples which are not toposes, such as the category Top of topological spaces and continuous maps, the category Hty of topological spaces and homotopy classes of maps, the poset P(X)ofsubsetsofasetX, or the opposite of the category of commutative rings.
    [Show full text]
  • Linearly Distributive Functors
    Journal of Pure and Applied Algebra 143 (1999) 155–203 www.elsevier.com/locate/jpaa Linearly distributive functors J.R.B. Cockett a;1, R.A.G. Seely, b;∗;2 a Department of Computer Science, University of Calgary, 2500 University Drive, Calgary, Alta, Canada T2N 1N4 b Department of Mathematics, McGill University, 805 Sherbrooke St., Montreal,Ã Que, Canada H3A 2K6 Presented to Michael Barr to mark the occasion of his 60th birthday Abstract This paper introduces a notion of “linear functor” between linearly distributive categories that is general enough to account for common structure in linear logic, such as the exponentials ( ! , ? ), and the additives (product, coproduct), and yet when interpreted in the doctrine of ∗-autonomous categories, gives the familiar notion of monoidal functor. We show that there is a bi-adjunction between the 2-categories of linearly distributive categories and linear functors, and of ∗-autonomous categories and monoidal functors, given by the construction of the “nucleus” of a linearly distributive category. We develop a calculus of proof nets for linear functors, and show how linearity accounts for the essential coherence structure of the exponentials and the additives. c 1999 Elsevier Science B.V. All rights reversed. MSC: 03F07; 03B60; 18D10; 18D25 0. Introduction What is the “appropriate” notion of a functor between linearly (formerly “weakly”) distributive categories? In [5] we were content to think of the functors between linearly distributive categories as being those which preserved all the structure on the nose. However, this very restrictive notion does not allow the expression of common linear ∗ Corresponding author. 1 Research partially supported by NSERC, Canada.
    [Show full text]
  • Categorification of Hopf Algebras of Rooted Trees
    bialg.tex 2012-04-28 14:57 [1/29] Categorification of Hopf algebras of rooted trees JOACHIM KOCK1 Abstract We exhibit a monoidal structure on the category of finite sets indexed by P-trees for a finitary polynomial endofunctor P. This structure categorifies the monoid scheme (over Spec N) whose semiring of functions is (a P-version of) the Connes– Kreimer bialgebra H of rooted trees (a Hopf algebra after base change to Z and collapsing H0). The monoidal structure is itself given by a polynomial functor, represented by three easily described set maps; we show that these maps are the same as those occurring in the polynomial representation of the free monad on P. Keywords: Rooted trees, Hopf algebras, categorification, monoidal categories, polynomial functors, finite sets. Mathematical subject classification: 05C05; 16T05; 18A99. 1 Introduction 1.1 The Connes–Kreimer Hopf algebra and the Butcher group. The Hopf algebra H of rooted trees is now a well-established object in mathematics, thanks in particular to the seminal works of Connes and Kreimer. Kreimer [19] discovered that H con- trols the combinatorics of renormalisation in perturbative quantum field theory, and his collaboration with Connes (e.g. [8], [9], to cite a few) uncovered deep connections with noncommutative geometry, number theory, Lie theory, and algebraic combina- torics, stimulating a lot of further activity by many mathematicians and physicists. The arXiv:1109.5785v2 [math.CT] 28 Apr 2012 Connes–Kreimer Hopf algebra has now been characterised by several different univer- sal properties [8], [23], [7]. The group of characters of H , now called the Butcher group, was in fact studied by Butcher [5] some 30 years earlier, in relation with order conditions for Runge–Kutta methods in numerical integration.
    [Show full text]