Categories of Space and of Quantity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Creating New Concepts in Mathematics: Freedom and Limitations. the Case of Category Theory
Creating new concepts in mathematics: freedom and limitations. The case of Category Theory Zbigniew Semadeni Institute of Mathematics, University of Warsaw Abstract In the paper we discuss the problem of limitations of freedom in mathematics and search for criteria which would differentiate the new concepts stemming from the historical ones from the new concepts that have opened unexpected ways of thinking and reasoning. We also investigate the emergence of category theory (CT) and its origins. In particular we explore the origins of the term functor and present the strong evidence that Eilenberg and Carnap could have learned the term from Kotarbinski´ and Tarski. Keywords categories, functors, Eilenberg-Mac Lane Program, mathematical cognitive transgressions, phylogeny, platonism. CC-BY-NC-ND 4.0 • 1. Introduction he celebrated dictum of Georg Cantor that “The essence of math- Tematics lies precisely in its freedom” expressed the idea that in mathematics one can freely introduce new notions (which may, how- Philosophical Problems in Science (Zagadnienia FilozoficzneNo w Nauce) 69 (2020), pp. 33–65 34 Zbigniew Semadeni ever, be abandoned if found unfruitful or inconvenient).1 This way Cantor declared his opposition to claims of Leopold Kronecker who objected to the free introduction of new notions (particularly those related to the infinite). Some years earlier Richard Dedekind stated that—by forming, in his theory, a cut for an irrational number—we create a new number. For him this was an example of a constructed notion which was a free creation of the human mind (Dedekind, 1872, § 4). In 1910 Jan Łukasiewicz distinguished constructive notions from empirical reconstructive ones. -
Introduction
Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 19{32 CATEGORICAL ASPECTS OF CONGRUENCE DISTRIBUTIVITY MARINO GRAN, DIANA RODELO AND IDRISS TCHOFFO NGUEFEU Abstract: We give new characterisations of regular Mal'tsev categories with dis- tributive lattice of equivalence relations through variations of the so-called Tri- angular Lemma and Trapezoid Lemma in universal algebra. We then give new characterisations of equivalence distributive Goursat categories (which extend 3- permutable varieties) through variations of the Triangular and Trapezoid Lemmas involving reflexive and positive (compatible) relations. Keywords: Mal'tsev categories, Goursat categories, congruence modular varieties, congruence distributive varieties, Shifting Lemma, Triangular Lemma, Trapezoid Lemma. Math. Subject Classification (2010): 08C05, 08B05, 08A30, 08B10, 18C05, 18B99, 18E10. Introduction Regular Mal'tsev categories [7] extend 2-permutable varieties of univer- sal algebras, also including many examples which are not necessarily vari- etal, such as topological groups, compact groups, torsion-free groups and C∗-algebras, for instance. These categories have the property that any pair of (internal) equivalence relations R and S on the same object permute: RS = SR (see [6], for instance, and the references therein). It is well known that regular Mal'tsev categories have the property that the lattice of equiva- lence relations on any object is modular, so that they satisfy (the categorical version of) Gumm's Shifting Lemma [16]. More generally, this is the case for Goursat categories [8], which are those regular categories for which the composition of equivalence relations on the same object is 3-permutable: RSR = SRS. In [13] we proved that, for a regular category, the property of being a Mal'tsev category, or of being a Goursat category, can be both characterised Received 23rd September 2019. -
Ralph Martin Kaufmann Publications 1. Kaufmann, Ralph
Ralph Martin Kaufmann Department of Mathematics, Purdue University 150 N. University Street, West Lafayette, IN 47907{2067 Tel.: (765) 494-1205 Fax: (765) 494-0548 Publications 1. Kaufmann, Ralph M., Khlebnikov, Sergei, and Wehefritz-Kaufmann, Birgit \Local models and global constraints for degeneracies and band crossings" J. of Geometry and Physics 158 (2020) 103892. 2. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background I: operadic & simplicial aspects" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 1-90. 3. Galvez-Carillo, Imma, Kaufmann, Ralph M., and Tonks, Andrew. \Three Hopf algebras from number theory, physics & topology, and their common background II: general categorical formulation" Comm. in Numb. Th. and Physics (CNTP), vol 14,1 (2020), 91-169. 4. Kaufmann, Ralph M. \Lectures on Feynman categories", 2016 MATRIX annals, 375{438, MATRIX Book Ser., 1, Springer, Cham, 2018. 5. Kaufmann, Ralph M. and Kaufmann-Wehfritz, B. Theoretical Properties of Materials Formed as Wire Network Graphs from Triply Periodic CMC Surfaces, Especially the Gyroid in: \The Role of Topology in Materials", Eds: Gupta, S. and Saxena, A., Springer series in Solid State Sciences. Springer, 2018 6. Kaufmann, Ralph and Lucas, Jason. \Decorated Feynman categories". J. of Noncommutative Geometry, 1 (2017), no 4 1437-1464 7. Berger, C. and Kaufmann R. M. \Comprehensive Factorization Systems". Special Issue in honor of Professors Peter J. Freyd and F.William Lawvere on the occasion of their 80th birthdays, Tbilisi Mathematical Journal 10 (2017), no. 3,. 255-277 8. Kaufmann, Ralph M. -
An Interview with F. William Lawvere
An Interview with F. William Lawvere You have written a paper, published for the first time in 1986, entitled \Taking categories seriously"1. Why should we take categories seriously ? In all those areas where category theory is actively used the categorical concept of adjoint functor has come to play a key role. Such a universal instrument for guiding the learning, development, and use of advanced mathematics does not fail to have its indications also in areas of school and college mathematics, in the most basic relationships of space and quantity and the calculations based on those relationships. By saying \take categories seriously", I meant that one should seek, cultivate, and teach helpful examples of an elementary nature. The relation between teaching and research is partly embodied in simple general concepts that can guide the elaboration of examples in both. No- tions and constructions, such as the spectral analysis of dynamical systems, have important aspects that can be understood and pursued without the complications of limiting the models to specific classical categories. The application of some simple general concepts from category theory can lead from a clarification of basic con- structions on dynamical systems to a F. William Lawvere (Braga, March 2007) construction of the real number system with its structure as a closed cate- gory; applied to that particular closed category, the general enriched category theory leads inexorably to embedding the- orems and to notions of Cauchy completeness, rotation, convex hull, radius, and 1Revista Colombiana de Matematicas 20 (1986) 147-178. Reprinted in Repr. Theory Appl. Categ. 8 (2005) 1-24 (electronic). -
GRASSMANN's DIALECTICS and CATEGORY THEORY in Several
F. WILLIAM LAWVERE GRASSMANN'S DIALECTICS AND CATEGORY THEORY PROGRAMMATIC OUTLINE In several key connections in his foundations of geometrical algebra, Grassmann makes significant use of the dialectical philosophy of 150 years ago. Now, after fifty years of development of category theory as a means for making explicit some nontrivial general arguments in geometry, it is possible to recover some of Grassmann's insights and to express these in ways comprehensible to the modem geometer. For example, the category J/. of affine-linear spaces and maps (a monument to Grassmann) has a canonical adjoint functor to the category of (anti)commutative graded algebras, which as in Grassmann's detailed description yields a sixteen-dimensional algebra when applied to a three dimensional affine space (unlike the eight-dimensional exterior algebra of a three-dimensional vector space). The natural algebraic structure of these algebras includes a boundary operator d which satisfies the (signed) Leibniz rule; for example, if A, B are points of the affine space then the product AB is the axial vector from A to B which the boundary degrades to the corresponding translation vector: d(AB) = B-A (since dA = dB = I for points). Grassmann philosophically motivated a notion of a "simple law of change," but his editors in the 1890' s found this notion incoherent and decided he must have meant mere translations. However, translations are insufficient for the foundational task of deciding when two formal products are geometrically equal axial vectors. But if "Iaw of change" is understood as an action of the additive monoid of time, "simple" turns out to mean that the action is internal to the category J/. -
ROTA-BAXTER CATEGORIES Edmundo Castillo and Rafael Dıaz
International Electronic Journal of Algebra Volume 5 (2009) 27-57 ROTA-BAXTER CATEGORIES Edmundo Castillo and Rafael D´ıaz Received: 11 March 2008; Revised: 12 October 2008 Communicated by A. C¸i˘gdem Ozcan¨ Abstract. We introduce Rota-Baxter categories and construct examples of such structures. Mathematics Subject Classification (2000): 05A30, 18A99, 81Q30 Keywords: Rota-Baxter algebras, categorification of rings, categorical inte- gration. 1. Introduction This work takes part in the efforts to understand the categorification of rings and other related algebraic structures. The idea of categorification of algebraic structures has been around for several decades and has gradually become better appreciated and understood. The expanding scope and applications of the notion of categorification has been greatly influenced by the works of Baez-Dolan [2,3], Crane-Frenkel [10], Crane-Yetter [11], Khovanov [24], among others. The basic idea is that it is worthwhile to look at the categorical foundations of set theoretical structures. Often sets arise as the equivalences classes of objects in a category. Going from a category to the set of equivalences classes of its objects is the pro- cess of decategorification. Categorification goes in the reverse direction, uncovering categories whose set of equivalences classes of objects reproduces a given set. Cat- egorifications always exist but are no unique. Thus two general problems arise: the classification of categorifications and the extraction of information regarding a given set theoretical construction from its categorical counterpart. Our approach to the categorification of rings, reviewed in Section 2, was first discussed in [17] with a view towards the categorification of the ring of functions on non-commutative spaces and the categorification of the algebra of annihilation and creation operators. -
CONCEPTUAL MATHEMATICS, a Review by Scott W. Williams
CONCEPTUAL MATHEMATICS, a review by Scott W. Williams Not long ago, I spoke with a professor at strong HBCU department. Her Ph.D. was nearly twenty years ago, but I shocked her with the following statement, "Most of our beginning graduate students [even those in Applied Mathematics] are entering with the basic knowledge and language of Category Theory. These days one might find Chemists, Computer Scientists, Engineers, Linguists and Physicists expressing concepts and asking questions in the language of Category Theory because it slices across the artificial boundaries dividing algebra, arithmetic, calculus, geometry, logic, topology. If you have students you wish to introduce to the subject, I suggest a delightfully elementary book called Conceptual Mathematics by F. William Lawvere and Stephen H. Schanuel" [Cambridge University Press 1997, $35 on Amazon.com) (ISBN: 0521478170 | ISBN- 13:9780521478175)]. From the introduction: "Our goal in this book is to explore the consequences of a new and fundamental insight about the nature of mathematics which has led to better methods for understanding and usual mathematical concepts. While the insight and methods are simple ... they will require some effort to master, but you will be rewarded with a clarity of understanding that will be helpful in unraveling the mathematical aspect of any subject matter." Who are the authors? Lawvere is one of the greatest visionaries of mathematics in the last half of the twentieth century. He characteristically digs down beneath the foundations of a concept in order to simplify its understanding. Though Schanuel has published research in diverse areas of Algebra, Topology, and Number Theory, he is known as a great teacher. -
Coexponentiability and Projectivity: Rigs, Rings, and Quantales
Theory and Applications of Categories, Vol. 32, No. 36, 2017, pp. 1222{1228. COEXPONENTIABILITY AND PROJECTIVITY: RIGS, RINGS, AND QUANTALES S.B. NIEFIELD AND R.J. WOOD Abstract. We show that a commutative monoid A is coexponentiable in CMon(V) if and only if −⊗A: V /V has a left adjoint, when V is a cocomplete symmetric monoidal closed category with finite biproducts and in which every object is a quotient of a free. Using a general characterization of the latter, we show that an algebra over a rig or ring R is coexponentiable if and only if it is finitely generated and projective as an R-module. Omitting the finiteness condition, the same result (and proof) is obtained for algebras over a quantale. 1. Introduction Recall that an object A of a category A with finite products is exponentiable if and only if − × A: A / A has a right adjoint. In [Niefield, 1982], the first author showed that for an algebra A over a commutative ring R, the spectrum Spec(A) is exponentiable in the category of affine schemes over Spec(R) if and only if A is finitely generated and projective as an R-module, and later showed in [Niefield, 2016] that essentially the same proof gave a characterization of coexponentiable morphisms of quantales (with the finiteness condition omitted). After a presentation of the latter, Lawvere and Menni asked if this characterization also generalized to rigs and, in particular, idempotent rigs. A rig (or \ring without negatives") is another name for a commutative semiring, and an idempotent rig is one in which 1+1 = 1. -
AUTONOMOUS CATEGORIES 1. Introduction
COHERENCE OF THE DOUBLE INVOLUTION ON ∗-AUTONOMOUS CATEGORIES J.R.B. COCKETT, M. HASEGAWA AND R.A.G. SEELY ABSTRACT. We show that any free ∗-autonomous category is strictly equivalent to a free ∗-autonomous category in which the double-involution (−)∗∗ is the identity functor and the canonical isomorphism A A∗∗ is an identity arrow for all A. 1. Introduction Many formulations of proof nets and sequent calculi for Classical Linear Logic (CLL) [9, 10] take it for granted that a type A is identical to its double negation A⊥⊥.Onthe other hand, since Seely [16], it has been assumed that ∗-autonomous categories [1,2]are the appropriate semantic models of (the multiplicative fragment of) CLL. However, in general, in a ∗-autonomous category an object A is only canonically isomorphic to its double involution A∗∗. For instance, in the category of finite dimensional vector spaces and linear maps, a vector space V is only isomorphic to its double dual V ∗∗. This raises the questions whether ∗-autonomous categories do not, after all, provide an accurate semantic model for these proof nets and whether there could be semantically non-identical proofs (or morphisms), which must be identified in any system which assumes a type is identical to its double negation. Whether this can happen is not completely obvious even when one examines purely syntactic descriptions of proofs with the isomorphism between A and A⊥⊥ present such as [14, 11] or the alternative proof net systems of [5] which are faithful to the categorical semantics. Fortunately, there is no such semantic gap: in this paper we provide a coherence theorem for the double involution on ∗-autonomous categories, which tells us that there is no difference between the up-to-identity approach and the up-to-isomorphism approach, as far as this double-negation problem is concerned. -
Toposes of Laws of Motion
Toposes of Laws of Motion F. William Lawvere Transcript from Video, Montreal September 27, 1997 Individuals do not set the course of events; it is the social force. Thirty-five or forty years ago it caused us to congregate in centers like Columbia University or Berkeley, or Chicago, or Montreal, or Sydney, or Zurich because we heard that the pursuit of knowledge was going on there. It was a time when people in many places had come to realize that category theory had a role to play in the pursuit of mathematical knowledge. That is basically why we know each other and why many of us are more or less the same age. But it’s also important to point out that we are still here and still finding striking new results in spite of all the pessimistic things we heard, even 35 or 40 years ago, that there was no future in abstract generalities. We continue to be surprised to find striking new and powerful general results as well as to find very interesting particular examples. We have had to fight against the myth of the mainstream which says, for example, that there are cycles during which at one time everybody is working on general concepts, and at another time anybody of consequence is doing only particular examples, whereas in fact serious mathematicians have always been doing both. 1. Infinitesimally Generated Toposes In fact, it is the relation between the General and the Particular about which I wish to speak. I read somewhere recently that the basic program of infinitesimal calculus, continuum mechanics, and differential geometry is that all the world can be reconstructed from the infinitely small. -
Colin S. Mclarty Truman P. Handy Professor of Intellectual Philosophy, and of Mathematics Case Western Reserve University
Colin S. McLarty Truman P. Handy Professor of Intellectual Philosophy, and of Mathematics Case Western Reserve University 211 Clark Hall Phone: (w) 216 368-2632 (h) 440 286-7431 Cleveland OH 44106 Fax: 216 368-0814 Email: [email protected] Homepage: cwru.edu/artsci/phil/mclarty.html Education Ph.D. Philosophy, Case Western Reserve University, 1980. Dissertation: Things and Things in Themselves: The Logic of Reference in Leibniz, Lambert, and Kant. Advisors: Raymond J. Nelson and Chin-Tai Kim. M.A. Philosophy, Case Western Reserve University, 1975. B.S. Mathematics, Case Institute of Technology, 1972. Area of Specialization: Logic; history and philosophy of mathematics. Areas of Competence: Philosophy of Science; History of Philosophy esp. Plato, Kant; Contemporary French Philosophy. Employment Shanxi University, China. Visiting Lecturer, Philosophy of Science and Technology, 2011. University of Notre Dame,Visiting Associate Professor, Philosophy, Fall 2002. Harvard University, Visiting Scholar, Mathematics 1995–1996. Case Western Reserve University, Philosophy 1987–. Chair of Department 1996–2010. Cleveland State University, Lecturer, Mathematics 1984–1986. Cleveland Art Institute, Lecturer, Philosophy 1984–1986. Current Research My Summer School in Denmark on a structural foundation for mathematics, expanded my Beijing (2007) talk and is now a book forthcoming with OUP. I pursue the perspective one mathematician expressed say- ing “philosophers should know our objects only have the properties we say they do.” Those are structural properties and in practice rely on category theory. My recent articles show how this ontology suits current research. And I have a series of articles on Emmy Noether (1882–1935, generally considered the greatest of woman mathematicians) and Saunders Mac Lane (1909–2005, greatly influenced by Noether) showing how deep the attitude goes in 20th century mathematics. -
Categorical Semantics for Dynamically Typed Languages, Notes for History of Programming Languages, 2017
Categorical Semantics for Dynamically Typed Languages, Notes for History of Programming Languages, 2017 Max S. New, Northeastern University April 30, 2017 Abstract These are the notes for a talk I gave for Matthias Felleisen's History of Programming Languages class. I've tried to avoid recounting detailed descriptions of category theory and domain theory here, which I think the cited papers themselves did a good job of doing. Instead, I've tried to take advantage of the connections between syntax and category theory to reframe some of the results in these papers as syntactic translations, especially the theorems in 4, 7. 1 Historical Overview In 1969, Dana Scott wrote a paper in which he said untyped lambda calculus had no mathematical meaning (Scott [1993]), 11 years later he wrote a paper that organized many of the different semantics he and others had since found using the language of category theory (Scott [1980]). This latter paper is really the first deserving of the title \categorical semantics of dynamic typing", and so I'm going to present some of the theorems and \theorems" presented in that paper, but mingled with the history of the idea and the preceding papers that led to them. In Figure 1 we have a very skeletal timeline: On the left are some founda- tional categorical logic papers, on the right are some seminal semantics papers by Dana Scott that we'll go over in some detail throughout this article. I drew them in parallel, but it is clear that there was interaction between the sides, for instance Scott says he received a suggestion by Lawvere in Scott [1972].