Notes on Polynomial Functors

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Polynomial Functors Joachim Kock Notes on Polynomial Functors Very preliminary version: 2009-10-15 20:38 but with some mistakes fixed on 2016-08-16 15:09 PLEASE CHECK IF A NEWER VERSION IS AVAILABLE! http://mat.uab.cat/~kock/cat/polynomial.html PLEASE DO NOT WASTE PAPER PRINTING THIS! Joachim Kock Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona) SPAIN e-mail: [email protected] VERSION 2009-10-15 20:38 Available from http://mat.uab.cat/~kock This text was written in alpha. It was typeset in LATEX in standard book style, with mathpazo and fancyheadings. The figures were coded with the texdraw package, written by Peter Kabal. The diagrams were set using the diagrams package of Paul Taylor, and with XY-pic (Kristoffer Rose and Ross Moore). Preface Warning. Despite the fancy book layout, these notes are in VERY PRELIMINARY FORM In fact it is just a big heap of annotations. Many sections are very sketchy, and on the other hand many proofs and explanations are full of trivial and irrelevant details. There is a lot of redundancy and bad organisation. There are whole sections that have not been written yet, and things I want to explain that I don’t understand yet... There may also be ERRORS here and there! Feedback is most welcome. There will be a real preface one day I am especially indebted to André Joyal. These notes started life as a transcript of long discussions between An- dré Joyal and myself over the summer of 2004 in connection with [64]. With his usual generosity he guided me through the basic theory of poly- nomial functors in a way that made me feel I was discovering it all by myself. I was fascinated by the theory, and I felt very privileged for this opportunity, and by writing down everything I learned (including many details I filled in myself), I hoped to benefit others as well. Soon the subject became one of my main research lines and these notes began to grow out of proportions. The next phase of the manuscript was as a place to dump basic stuff I needed to work out in relation to my research. At present it is just a heap of annotations, and the reader is recommended to read rather the research papers that have seen the light in the interim: • Polynomial functors and polynomial monads [39] with Gambino • Polynomial functors and trees [63] (single-authored) [Rough draft, version 2009-10-15 20:38.] [Input file: polynomial.tex, 2009-10-15 20:38] iv • Polynomial functors and opetopes [64] with Joyal, Batanin, and Mascari, • Local fibered right adjoints are polynomial with Anders Kock, • Polynomials in categories with pullbacks by Mark Weber, • Categorification of Hopf algebras of rooted trees (by me), • Data types with symmetries and polynomial functors over groupoids (by me), (I will gradually incorporate the material from these papers into the notes in some form.) Finally, a third aspect, which has been present all along, is the ambi- tion that these notes can grow into something more unified — a book! I would like to survey connections with and applications to combinatorics, computer science, topology, and whatever else turns up. This will require of course that I learn more about these connections and applications, and I am gradually picking up these subjects. I have benefited from conversations and email correspondence with Anders Kock, Andy Tonks, Clemens Berger, David Gepner, Ieke Moerdijk, Imma Gálvez, Jiri Adámek, Juan Climent Vidal, Krzysztof Kapulkin, Marek Zawadowski, Mark Weber, Martin Hyland, Michael Batanin, Neil Ghani, Nicola Gambino, Pierre Hyvernat, Tom Fiore, Tom Hirschowitz... I am very thankful to Jesús Hernando Pérez Alcázar for organising my mini-course on polynomial functors in Santa Marta, Colombia, in August 2009 — a perfect opportunity for me to synthesise some of this material. Barcelona, August 2009 JOACHIM KOCK [email protected] [Rough draft, version 2009-10-15 20:38.] [Input file: polynomial.tex, 2009-10-15 20:38] Contents Preface iii Introduction 1 Historical remarks ........................ 5 I Polynomial functors in one variable 9 0.0 Prologue: natural numbers and finite sets ........... 11 1 Basic theory of polynomials in one variable 17 1.1 Definition ............................. 19 1.2 Examples .............................. 24 1.3 Other viewpoints ......................... 28 1.4 Basic operations on polynomials ................ 30 1.5 Composition of polynomials (substitution) .......... 34 1.6 Differential calculus ........................ 40 1.7 Properties of polynomial functors ................ 43 2 Categories of polynomial functors in one variable 45 2.1 The category Set[X] of polynomial functors .......... 46 Cartesian morphisms ....................... 48 2.2 Sums, products .......................... 54 2.3 Algebra of polynomial functors: categorification and Burnside semirings 56 2.4 Composition ............................ 60 2.5 The subcategory Poly: only cartesian natural transformations 60 Products in Poly .......................... 63 Differentiation in Poly ...................... 65 [Rough draft, version 2009-10-15 20:38.] [Input file: polynomial.tex, 2009-10-15 20:38] vi CONTENTS 3 Aside: Polynomial functors and negative sets 67 3.1 Negative sets ............................ 67 3.2 The geometric series revisited .................. 74 3.3 Moduli of punctured Riemann spheres ............. 77 4 Algebras 81 4.1 Initial algebras, least fixpoints .................. 81 Functoriality of least fixpoints .................. 84 4.2 Natural numbers, free monoids ................. 84 4.3 Tree structures as least fixpoints ................. 89 4.4 Induction, well-founded trees .................. 93 4.5 Transfinite induction ....................... 95 4.6 Free-forgetful ........................... 99 Fixpoint construction via bar-cobar duality ..........104 5 Polynomial monads and operads 111 5.1 Polynomial monads ........................111 Cartesian monads .........................111 The free monad on a polynomial endofunctor (one variable) 116 Examples ..............................118 5.2 Classical definition of operads ..................120 5.3 The monoidal category of collections ..............121 5.4 Finitary polynomial functors and collections .........124 Equivalence of monoidal categories ..............126 5.5 The free operad on a collection .................127 5.6 P-operads .............................128 6 [Polynomial functors in computer science] 131 6.1 Data types .............................131 Shapely types ...........................139 6.2 Program semantics ........................141 7 [Species... ] 145 7.1 Introduction to species and analytical functors ........145 7.2 Polynomial functors and species ................146 [Rough draft, version 2009-10-15 20:38.] [Input file: polynomial.tex, 2009-10-15 20:38] CONTENTS vii II Polynomial functors in many variables 147 8 Polynomials in many variables 149 8.1 Introductory discussion .....................149 8.2 The pullback functor and its adjoints ..............152 Coherence .............................162 8.3 Beck-Chevalley and distributivity ................163 8.4 Further Beck-Chevalley gymnastics ...............173 The twelve ways of a square ...................173 The six ways of a pair of squares ................175 One more lemma .........................176 8.5 Composition ............................178 Rewrite systems and coherence .................183 8.6 Basic properties ..........................186 8.7 Examples ..............................188 The free-category functor on graphs with fixed object set . 190 9 Examples 193 9.1 Linear functors (matrices) ....................193 9.2 Finite polynomials: the Lawvere theory of comm. semirings 199 Lawvere theories .........................200 Proof of Tambara’s theorem ...................205 9.3 Differential calculus of polynomial functors ..........208 Introduction ............................208 Partial derivatives .........................208 Homogeneous functors and Euler’s Lemma ..........209 9.4 Classical combinatorics ......................214 9.5 Polynomial functors on collections and operads .......217 The free-operad functor .....................217 Linear differential operators are linear .............218 9.6 Bell polynomials ..........................222 10 Categories and bicategories of polynomial functors 229 10.1 Natural transformations between polynomial functors . 229 Basic properties of PolyFun(I, J): sums and products . 238 Misc .................................238 Polyc(I, J): the cartesian fragment ...............239 Sums and products in Polyc(I, J) ................239 [Rough draft, version 2009-10-15 20:38.] [Input file: polynomial.tex, 2009-10-15 20:38] viii CONTENTS 10.2 Horizontal composition and the bicategory of polynomial functors240 Some preliminary exercises in the cartesian fragment . 241 Horizontal composition of 2-cells ................244 11 Double categories of polynomial functors 251 11.1 Summary ..............................251 Reminder on double categories .................253 The double category of polynomial functors ..........254 Lifts .................................260 old calculations ..........................261 11.2 Horizontal composition .....................267 11.3 Cartesian ..............................270 Horizontal composition of cartesian 2-cells ..........271 Misc issues in the cartesian fragment ..............273 Surjection-injection factorisation in Poly ............273 Sums and products in the variable-type categories ......274 Coherence problems .......................275 12 Trees (1) 277 12.1
Recommended publications
  • Introduction
    Pr´e-Publica¸c~oesdo Departamento de Matem´atica Universidade de Coimbra Preprint Number 19{32 CATEGORICAL ASPECTS OF CONGRUENCE DISTRIBUTIVITY MARINO GRAN, DIANA RODELO AND IDRISS TCHOFFO NGUEFEU Abstract: We give new characterisations of regular Mal'tsev categories with dis- tributive lattice of equivalence relations through variations of the so-called Tri- angular Lemma and Trapezoid Lemma in universal algebra. We then give new characterisations of equivalence distributive Goursat categories (which extend 3- permutable varieties) through variations of the Triangular and Trapezoid Lemmas involving reflexive and positive (compatible) relations. Keywords: Mal'tsev categories, Goursat categories, congruence modular varieties, congruence distributive varieties, Shifting Lemma, Triangular Lemma, Trapezoid Lemma. Math. Subject Classification (2010): 08C05, 08B05, 08A30, 08B10, 18C05, 18B99, 18E10. Introduction Regular Mal'tsev categories [7] extend 2-permutable varieties of univer- sal algebras, also including many examples which are not necessarily vari- etal, such as topological groups, compact groups, torsion-free groups and C∗-algebras, for instance. These categories have the property that any pair of (internal) equivalence relations R and S on the same object permute: RS = SR (see [6], for instance, and the references therein). It is well known that regular Mal'tsev categories have the property that the lattice of equiva- lence relations on any object is modular, so that they satisfy (the categorical version of) Gumm's Shifting Lemma [16]. More generally, this is the case for Goursat categories [8], which are those regular categories for which the composition of equivalence relations on the same object is 3-permutable: RSR = SRS. In [13] we proved that, for a regular category, the property of being a Mal'tsev category, or of being a Goursat category, can be both characterised Received 23rd September 2019.
    [Show full text]
  • Poly: an Abundant Categorical Setting
    Poly: An abundant categorical setting for mode-dependent dynamics David I. Spivak Abstract Dynamical systems—by which we mean machines that take time-varying input, change their state, and produce output—can be wired together to form more complex systems. Previous work has shown how to allow collections of machines to reconfig- ure their wiring diagram dynamically, based on their collective state. This notion was called “mode dependence”, and while the framework was compositional (forming an operad of re-wiring diagrams and algebra of mode-dependent dynamical systems on it), the formulation itself was more “creative” than it was natural. In this paper we show that the theory of mode-dependent dynamical systems can be more naturally recast within the category Poly of polynomial functors. This category is almost superlatively abundant in its structure: for example, it has four interacting monoidal structures (+, ×, ⊗, ◦), two of which (×, ⊗) are monoidal closed, and the comonoids for ◦ are precisely categories in the usual sense. We discuss how the various structures in Poly show up in the theory of dynamical systems. We also show that the usual coalgebraic formalism for dynamical systems takes place within Poly. Indeed one can see coalgebras as special dynamical systems—ones that do not record their history—formally analogous to contractible groupoids as special categories. 1 Introduction We propose the category Poly of polynomial functors on Set as a setting in which to model very general sorts of dynamics and interaction. Let’s back up and say what exactly it is arXiv:2005.01894v2 [math.CT] 11 Jun 2020 that we’re generalizing.
    [Show full text]
  • Polynomials and Models of Type Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo Polynomials and Models of Type Theory Tamara von Glehn Magdalene College University of Cambridge This dissertation is submitted for the degree of Doctor of Philosophy September 2014 This dissertation is the result of my own work and includes nothing that is the outcome of work done in collaboration except where specifically indicated in the text. No part of this dissertation has been submitted for any other qualification. Tamara von Glehn June 2015 Abstract This thesis studies the structure of categories of polynomials, the diagrams that represent polynomial functors. Specifically, we construct new models of intensional dependent type theory based on these categories. Firstly, we formalize the conceptual viewpoint that polynomials are built out of sums and products. Polynomial functors make sense in a category when there exist pseudomonads freely adding indexed sums and products to fibrations over the category, and a category of polynomials is obtained by adding sums to the opposite of the codomain fibration. A fibration with sums and products is essentially the structure defining a categorical model of dependent type theory. For such a model the base category of the fibration should also be identified with the fibre over the terminal object. Since adding sums does not preserve this property, we are led to consider a general method for building new models of type theory from old ones, by first performing a fibrewise construction and then extending the base. Applying this method to the polynomial construction, we show that given a fibration with sufficient structure modelling type theory, there is a new model in a category of polynomials.
    [Show full text]
  • Of Polynomial Functors
    Joachim Kock Notes on Polynomial Functors Very preliminary version: 2009-08-05 23:56 PLEASE CHECK IF A NEWER VERSION IS AVAILABLE! http://mat.uab.cat/~kock/cat/polynomial.html PLEASE DO NOT WASTE PAPER WITH PRINTING! Joachim Kock Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona) SPAIN e-mail: [email protected] VERSION 2009-08-05 23:56 Available from http://mat.uab.cat/~kock This text was written in alpha.ItwastypesetinLATEXinstandardbook style, with mathpazo and fancyheadings.Thefigureswerecodedwiththetexdraw package, written by Peter Kabal. The diagrams were set using the diagrams package of Paul Taylor, and with XY-pic (Kristoffer Rose and Ross Moore). Preface Warning. Despite the fancy book layout, these notes are in VERY PRELIMINARY FORM In fact it is just a big heap of annotations. Many sections are very sketchy, and on the other hand many proofs and explanations are full of trivial and irrelevant details.Thereisalot of redundancy and bad organisation. There are whole sectionsthathave not been written yet, and things I want to explain that I don’t understand yet... There may also be ERRORS here and there! Feedback is most welcome. There will be a real preface one day IamespeciallyindebtedtoAndréJoyal. These notes started life as a transcript of long discussions between An- dré Joyal and myself over the summer of 2004 in connection with[64]. With his usual generosity he guided me through the basic theory of poly- nomial functors in a way that made me feel I was discovering it all by myself. I was fascinated by the theory, and I felt very privileged for this opportunity, and by writing down everything I learned (including many details I filled in myself), I hoped to benefit others as well.
    [Show full text]
  • Arxiv:1705.01419V4 [Math.AC] 8 May 2019 Eu Fdegree of Neous E ..[8.Freach for [18]
    TOPOLOGICAL NOETHERIANITY OF POLYNOMIAL FUNCTORS JAN DRAISMA Abstract. We prove that any finite-degree polynomial functor over an infi- nite field is topologically Noetherian. This theorem is motivated by the re- cent resolution, by Ananyan-Hochster, of Stillman’s conjecture; and a recent Noetherianity proof by Derksen-Eggermont-Snowden for the space of cubics. Via work by Erman-Sam-Snowden, our theorem implies Stillman’s conjecture and indeed boundedness of a wider class of invariants of ideals in polynomial rings with a fixed number of generators of prescribed degrees. 1. Introduction This paper is motivated by two recent developments in “asymptotic commuta- tive algebra”. First, in [4], Hochster-Ananyan prove a conjecture due to Stillman [23, Problem 3.14], to the effect that the projective dimension of an ideal in a poly- nomial ring generated by a fixed number of homogeneous polynomials of prescribed degrees can be bounded independently of the number of variables. Second, in [9], Derksen-Eggermont-Snowden prove that the inverse limit over n of the space of cubic polynomials in n variables is topologically Noetherian up to linear coordinate transformations. These two theorems show striking similarities in content, and in [16], Erman-Sam-Snowden show that topological Noetherianity of a suitable space of tuples of homogeneous polynomials, together with Stillman’s conjecture, implies a generalisation of Stillman’s conjecture to other ideal invariants. In addition to be- ing similar in content, the two questions have similar histories—e.g. both were first established for tuples of quadrics [3, 15]—but since [4] the Noetherianity problem has been lagging behind.
    [Show full text]
  • ROTA-BAXTER CATEGORIES Edmundo Castillo and Rafael Dıaz
    International Electronic Journal of Algebra Volume 5 (2009) 27-57 ROTA-BAXTER CATEGORIES Edmundo Castillo and Rafael D´ıaz Received: 11 March 2008; Revised: 12 October 2008 Communicated by A. C¸i˘gdem Ozcan¨ Abstract. We introduce Rota-Baxter categories and construct examples of such structures. Mathematics Subject Classification (2000): 05A30, 18A99, 81Q30 Keywords: Rota-Baxter algebras, categorification of rings, categorical inte- gration. 1. Introduction This work takes part in the efforts to understand the categorification of rings and other related algebraic structures. The idea of categorification of algebraic structures has been around for several decades and has gradually become better appreciated and understood. The expanding scope and applications of the notion of categorification has been greatly influenced by the works of Baez-Dolan [2,3], Crane-Frenkel [10], Crane-Yetter [11], Khovanov [24], among others. The basic idea is that it is worthwhile to look at the categorical foundations of set theoretical structures. Often sets arise as the equivalences classes of objects in a category. Going from a category to the set of equivalences classes of its objects is the pro- cess of decategorification. Categorification goes in the reverse direction, uncovering categories whose set of equivalences classes of objects reproduces a given set. Cat- egorifications always exist but are no unique. Thus two general problems arise: the classification of categorifications and the extraction of information regarding a given set theoretical construction from its categorical counterpart. Our approach to the categorification of rings, reviewed in Section 2, was first discussed in [17] with a view towards the categorification of the ring of functions on non-commutative spaces and the categorification of the algebra of annihilation and creation operators.
    [Show full text]
  • Locally Cartesian Closed Categories, Coalgebras, and Containers
    U.U.D.M. Project Report 2013:5 Locally cartesian closed categories, coalgebras, and containers Tilo Wiklund Examensarbete i matematik, 15 hp Handledare: Erik Palmgren, Stockholms universitet Examinator: Vera Koponen Mars 2013 Department of Mathematics Uppsala University Contents 1 Algebras and Coalgebras 1 1.1 Morphisms .................................... 2 1.2 Initial and terminal structures ........................... 4 1.3 Functoriality .................................... 6 1.4 (Co)recursion ................................... 7 1.5 Building final coalgebras ............................. 9 2 Bundles 13 2.1 Sums and products ................................ 14 2.2 Exponentials, fibre-wise ............................. 18 2.3 Bundles, fibre-wise ................................ 19 2.4 Lifting functors .................................. 21 2.5 A choice theorem ................................. 22 3 Enriching bundles 25 3.1 Enriched categories ................................ 26 3.2 Underlying categories ............................... 29 3.3 Enriched functors ................................. 31 3.4 Convenient strengths ............................... 33 3.5 Natural transformations .............................. 41 4 Containers 45 4.1 Container functors ................................ 45 4.2 Natural transformations .............................. 47 4.3 Strengths, revisited ................................ 50 4.4 Using shapes ................................... 53 4.5 Final remarks ................................... 56 i Introduction
    [Show full text]
  • Dirichlet Polynomials Form a Topos
    Dirichlet Polynomials form a Topos David I. Spivak David Jaz Myers November 5, 2020 Abstract One can think of power series or polynomials in one variable, such as %(y) = 2y3 + y + 5, as functors from the category Set of sets to itself; these are known as polynomial functors. Denote by PolySet the category of polynomial functors on Set and natural transformations between them. The constants 0, 1 and operations +, × that occur in %(y) are actually the initial and terminal objects and the coproduct and product in PolySet. Just as the polynomial functors on Set are the copresheaves that can be written ∞ y as sums of representables, one can express any Dirichlet series, e.g. ==0 = ,asa coproduct of representable presheaves. A Dirichlet polynomial is a finite Dirichlet series, that is, a finite sum of representables =y. We discuss how bothÍ polynomial functors and their Dirichlet analogues can be understood in terms of bundles, and go on to prove that the category of Dirichlet polynomials is an elementary topos. 1 Introduction Polynomials %(y) and finite Dirichlet series (y) in one variable y, with natural number coefficients 08 ∈ N, are respectively functions of the form = 2 1 0 %(y) = 0=y +···+ 02y + 01y + 00y , arXiv:2003.04827v2 [math.CT] 4 Nov 2020 y y y y (1) (y) = 0= = +···+ 022 + 011 + 000 . The first thing we should emphasize is that the algebraic expressions in (1) can in fact be regarded as objects in a category, in fact two categories: Poly and Dir. We will explain the morphisms later, but for now we note that in Poly, y2 = y × y is a product and 2y = y+y is a coproduct, and similarly for Dir.
    [Show full text]
  • Data Types with Symmetries and Polynomial Functors Over Groupoids
    Available online at www.sciencedirect.com Electronic Notes in Theoretical Computer Science 286 (2012) 351–365 www.elsevier.com/locate/entcs Data Types with Symmetries and Polynomial Functors over Groupoids Joachim Kock1,2 Departament de Matem`atiques Universitat Aut`onoma de Barcelona Spain Abstract Polynomial functors (over Set or other locally cartesian closed categories) are useful in the theory of data types, where they are often called containers. They are also useful in algebra, combinatorics, topology, and higher category theory, and in this broader perspective the polynomial aspect is often prominent and justifies the terminology. For example, Tambara’s theorem states that the category of finite polynomial functors is the Lawvere theory for commutative semirings [45], [18]. In this talk I will explain how an upgrade of the theory from sets to groupoids (or other locally cartesian closed 2-categories) is useful to deal with data types with symmetries, and provides a common generalisation of and a clean unifying framework for quotient containers (in the sense of Abbott et al.), species and analytic functors (Joyal 1985), as well as the stuff types of Baez and Dolan. The multi-variate setting also includes relations and spans, multispans, and stuff operators. An attractive feature of this theory is that with the correct homotopical approach — homotopy slices, homotopy pullbacks, homotopy colimits, etc. — the groupoid case looks exactly like the set case. After some standard examples, I will illustrate the notion of data-types-with-symmetries with examples from perturbative quantum field theory, where the symmetries of complicated tree structures of graphs play a crucial role, and can be handled elegantly using polynomial functors over groupoids.
    [Show full text]
  • Coexponentiability and Projectivity: Rigs, Rings, and Quantales
    Theory and Applications of Categories, Vol. 32, No. 36, 2017, pp. 1222{1228. COEXPONENTIABILITY AND PROJECTIVITY: RIGS, RINGS, AND QUANTALES S.B. NIEFIELD AND R.J. WOOD Abstract. We show that a commutative monoid A is coexponentiable in CMon(V) if and only if −⊗A: V /V has a left adjoint, when V is a cocomplete symmetric monoidal closed category with finite biproducts and in which every object is a quotient of a free. Using a general characterization of the latter, we show that an algebra over a rig or ring R is coexponentiable if and only if it is finitely generated and projective as an R-module. Omitting the finiteness condition, the same result (and proof) is obtained for algebras over a quantale. 1. Introduction Recall that an object A of a category A with finite products is exponentiable if and only if − × A: A / A has a right adjoint. In [Niefield, 1982], the first author showed that for an algebra A over a commutative ring R, the spectrum Spec(A) is exponentiable in the category of affine schemes over Spec(R) if and only if A is finitely generated and projective as an R-module, and later showed in [Niefield, 2016] that essentially the same proof gave a characterization of coexponentiable morphisms of quantales (with the finiteness condition omitted). After a presentation of the latter, Lawvere and Menni asked if this characterization also generalized to rigs and, in particular, idempotent rigs. A rig (or \ring without negatives") is another name for a commutative semiring, and an idempotent rig is one in which 1+1 = 1.
    [Show full text]
  • AUTONOMOUS CATEGORIES 1. Introduction
    COHERENCE OF THE DOUBLE INVOLUTION ON ∗-AUTONOMOUS CATEGORIES J.R.B. COCKETT, M. HASEGAWA AND R.A.G. SEELY ABSTRACT. We show that any free ∗-autonomous category is strictly equivalent to a free ∗-autonomous category in which the double-involution (−)∗∗ is the identity functor and the canonical isomorphism A A∗∗ is an identity arrow for all A. 1. Introduction Many formulations of proof nets and sequent calculi for Classical Linear Logic (CLL) [9, 10] take it for granted that a type A is identical to its double negation A⊥⊥.Onthe other hand, since Seely [16], it has been assumed that ∗-autonomous categories [1,2]are the appropriate semantic models of (the multiplicative fragment of) CLL. However, in general, in a ∗-autonomous category an object A is only canonically isomorphic to its double involution A∗∗. For instance, in the category of finite dimensional vector spaces and linear maps, a vector space V is only isomorphic to its double dual V ∗∗. This raises the questions whether ∗-autonomous categories do not, after all, provide an accurate semantic model for these proof nets and whether there could be semantically non-identical proofs (or morphisms), which must be identified in any system which assumes a type is identical to its double negation. Whether this can happen is not completely obvious even when one examines purely syntactic descriptions of proofs with the isomorphism between A and A⊥⊥ present such as [14, 11] or the alternative proof net systems of [5] which are faithful to the categorical semantics. Fortunately, there is no such semantic gap: in this paper we provide a coherence theorem for the double involution on ∗-autonomous categories, which tells us that there is no difference between the up-to-identity approach and the up-to-isomorphism approach, as far as this double-negation problem is concerned.
    [Show full text]
  • Polynomial Functors, a Degree of Generality
    Polynomial functors, a degree of generality tslil clingman February 2019 1. Introduction In their 2010 revision of the paper Polynomial Functors and Polynomial Monads, Gambino and Kock write: Notions of polynomial functor have proved useful in many areas of mathe- matics, ranging from algebra [41, 43] and topology [10, 50] to mathematical logic [17, 45] and theoretical computer science [24, 2, 20]. One of the primary differences between this document and theirs is that they have a bibliography. The other is that this document is an attempt at a motivating preamble for the early definitions and theorems of their one. This information might allow the reader to infer the content of the following two sections. 1.1. What this document is 1.2. What this document is not 1.3. Prerequisites In this document we will take for granted the internal language supported by a locally cartesian-closed category – a category equipped with a choice of pullback functor f ∗ for each arrow f , such that f ∗ has a right adjoint Πf , in addition to its automatic left adjoint Σf . Depending on the internet-time point of origin of this document, a supporting introduction to locally cartesian-closed categories may be related to my website math.jhu.edu/˜tclingm1 by at least one of the following fwill appear on, is available ong. The existence or availability of that other document notwithstanding, we will briefly remind the reader of the important aspects of our notation. 1 Objects X x of a slice category C=C are to be regarded as indexed collections of C j 2 objects (Xc c C).
    [Show full text]