C=IE, St=Warszawa, O=Ditorpolish Bot, Ou=St

Total Page:16

File Type:pdf, Size:1020Kb

C=IE, St=Warszawa, O=Ditorpolish Bot, Ou=St CONTENTS 1. Introduction ............................................................................................................................................................... 5 1.1. Fungal succession and old-fields ....................................................................................................................... 5 1.2. Scheme of spontaneous secondary succession on abandoned fields near the Białowieża old-growth forest ....................................................................................................................................................... 8 2. Subject and aims of study ....................................................................................................................................... 12 3. Study area ................................................................................................................................................................ 13 4. Material and methods ............................................................................................................................................. 15 5. Results ...................................................................................................................................................................... 25 5.1. Fungi in permanent plots ................................................................................................................................ 25 5.2. Changes in species and sporocarp distribution along successional gradient .............................................. 34 5.2.1. Species richness and diversity ............................................................................................................... 34 5.2.2. Species abundance patterns .................................................................................................................. 39 5.2.3. Spatial frequency patterns .................................................................................................................... 53 5.2.4. Ectomycorrhizal carpophore production ............................................................................................ 53 5.3. Similarity structure of macrofungi .................................................................................................................. 56 5.4. Quantitative changes in ectomycorrhizal roots along successional gradient ............................................. 60 6. Discussion ................................................................................................................................................................ 61 6.1. Macrofungi in the scheme of spontaneous secondary succession on the abandoned fields near Białowieża ................................................................................................................................................ 62 6.2. Patterns of fungal succession in post-agricultural land ................................................................................ 66 7. Summary of results and conclusions ...................................................................................................................... 81 8. References ............................................................................................................................................................... 85 Appendix 1. Soil analysis in the permanent plots ..................................................................................................... 95 Appendix 2. Vegetation description in the permanent plots ................................................................................. 101 Appendix 3. Macrofungi in the plots representing subsequent phases of vegetation succession in the old-fields near the Białowieża old-growth forest .................................................................. 115 Appendix 4. Results of k-mean analysis of fungi .................................................................................................... 141 Appendix 5. List of Basidiomycota in the old-field successional series near the Białowieża old-growth forest (Jelonka reserve and Czechy Orlańskie reserve) with notes on distribution and substrates ...................................................................................................................................... 145 ABStract Izabela Ka ł u c K a . Macrofungi in the secondary succession on the abandoned farmland near the Białowieża old- growth forest. Monogr. Bot., Vol. 99, 155 pp., 2009. the paper deals with the succession of basidiomycete macrofungi on abandoned farmland. The research was carried out in the unique complex of old fields of different age located on the southwest edge of the Białowieża old-growth forest (NE Poland). These lands undergo spontaneous secondary succession leading to formation of a continental fresh pine forest. Regular observations of basidiomata in 16 permanent plots (11 plots of 1000 m2, 5 plots of 400 m2) representing initial, optimal and terminal stage of vegetation development from psammophil- ous grassland to a pine forest with 100-year-old tree stand were conducted for three years. Soil and vegetation analyses were also carried out as well as quantitative examination of ectomycorrhizae in root samples. the series yielded 300 species of macromycetes (including 6 collective taxa) found in permanent plots plus 18 species outside the plots. The species composition, spatial distribution of sporocarps, and quantitative struc- ture of fungal communities changed along the successional gradient. Increasing diversity of fungi resulted from persistence of species typical of open areas and species associated with younger trees, as well as accumulation of species associated with older trees and more developed stands. Some species typical of younger phases were re- placed with species arriving later in the chronosequence. Species usually occurred long before and after attaining maximum abundance and frequency. Species associated with certain periods of vegetation development could be distinguished, as well as species accompanying the phytocoenoses regardless of their developmental stage. Patterns in structural changes of the fungal community, e.g., in number of species, abundance, frequency and production of carpophores, could also be recognised. They were different in ectomycorrhizal and in saprotrophic fungi. The occurrence of the former was influenced mainly by the presence of symbiotic trees and their age, stand structure and soil properties, while occurrence of the latter was affected by microclimatic factors and by diversity of accessible substrates. Changes in fungal communities were consistent with vegetation changes, but were also specific to this group of organisms. Key words: old-field succession, fungal succession, ectomycorrhizal fungi, saprotrophic fungi, sporocarp production, NE Poland 1. INTRODUCTION the influence of fungi on the formation and functioning of ecosystems is more complex and diverse than usually appreciated. Fungi take part in all major ecological processes, either in direct or indirect ways, and the existence of a great variety of other organisms and whole ecosystems depends on their activity. As decomposers, they drive the global carbon cycle by preventing an excessive accumulation of organic matter and its breakdown into the compounds which can be utilized by other organisms. As mycorrhizal partners fungi enhance plants water uptake and mineral nutrition, they supply regulatory substances and protect against pathogens and environmental stress. They interconnect individual plants via common mycorrhizal networks and build extensive sink-source relationships affecting the process of primary production as well as the composition and dynamics of vegeta- tion. Fungal endophytes inhabiting tissues of most plants can considerably influence their condition and alter adaptation capabilities. As lichen compounds, fungi contribute to the colonization of most pioneer habitats on earth and they provide a shelter for the important nitrogen-fixing organisms – cyanobacteria. As parasites they strongly influence popula- tions of their hosts and act as biological control. Also, fungi serve as a habitat or food for different organisms including bacteria, other fungi, nematodes, insects and mammals (Ra y n e R 1992; TR a p p e & Lu o m a 1992; Di g h T o n 2003). According to RAYNE R (1992) In short, fungi demand the attention of anyone eager to understand the complex interactions and feedback governing life processes in the biosphere. 1.1. Fungal succession and old-fields One of the key life processes is succession. It is a process of initiation and development of a community (and whole biocoenosis) within the confines of a potential biochore and relatively uniform environmental conditions (Fa L i ń s K i 1998). Succession of both plants and fungi can be defined as a directional change in the composition, relative abundance and spatial pattern of species comprising communities (FR ANKLAND 1992, 1998). In strict mycological sense it is a sequential occupation of the same site by thalli (normally myc- elia), either of different fungi, or of different associations of fungi (Ra y n e R & To dd 1979). The term fungal community is frequently used in this context meaning assemblage of fungi living together in the same time and space (Be g o n et al. 1996) or occurring within a certain uniform habitat (aR n o ld s 1992a). two different types of fungal succession can be distinguished depending
Recommended publications
  • Conservation of Ectomycorrhizal Fungi: Exploring the Linkages Between Functional and Taxonomic Responses to Anthropogenic N Deposition
    fungal ecology 4 (2011) 174e183 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition E.A. LILLESKOVa,*, E.A. HOBBIEb, T.R. HORTONc aUSDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, Houghton, MI 49931, USA bComplex Systems Research Center, University of New Hampshire, Durham, NH 03833, USA cState University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA article info abstract Article history: Anthropogenic nitrogen (N) deposition alters ectomycorrhizal fungal communities, but the Received 12 April 2010 effect on functional diversity is not clear. In this review we explore whether fungi that Revision received 9 August 2010 respond differently to N deposition also differ in functional traits, including organic N use, Accepted 22 September 2010 hydrophobicity and exploration type (extent and pattern of extraradical hyphae). Corti- Available online 14 January 2011 narius, Tricholoma, Piloderma, and Suillus had the strongest evidence of consistent negative Corresponding editor: Anne Pringle effects of N deposition. Cortinarius, Tricholoma and Piloderma display consistent protein use and produce medium-distance fringe exploration types with hydrophobic mycorrhizas and Keywords: rhizomorphs. Genera that produce long-distance exploration types (mostly Boletales) and Conservation biology contact short-distance exploration types (e.g., Russulaceae, Thelephoraceae, some athe- Ectomycorrhizal fungi lioid genera) vary in sensitivity to N deposition. Members of Bankeraceae have declined in Exploration types Europe but their enzymatic activity and belowground occurrence are largely unknown.
    [Show full text]
  • Mycelial Compatibility in Amylostereum Areolatum
    Mycelial compatibility in Amylostereum areolatum Magrieta Aletta van der Nest © University of Pretoria © University of Pretoria Mycelial compatibility in Amylostereum areolatum by Magrieta Aletta van der Nest Promotor: Prof. B.D. Wingfield Co-promotor: Prof. M.J. Wingfield Prof. B. Slippers Prof. J. Stenlid Submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctor in the Faculty of Natural and Agricultural Sciences, Department of Genetics at the University of Pretoria. September 2010 © University of Pretoria DECLARATION I, Magrieta Aletta van der Nest, declare that this thesis, which I hereby submit for the degree Philosophiae Doctor at the University of Pretoria, is my own work and has not been submitted by me at this or any other tertiary institution. SIGNATURE: DATE: © University of Pretoria TABLE OF CONTENTS ACKNOWLEDGEMENTS ................................................................................................... i PREFACE ............................................................................................................................... ii CHAPTER 1 ........................................................................................................................... 1 LITERATURE REVIEW: The molecular basis of vegetative incompatibility in fungi, with specific reference to Basidiomycetes CHAPTER 2 ......................................................................................................................... 44 Genetics of Amylostereum species associated with Siricidae
    [Show full text]
  • Checklist of Argentine Agaricales 4
    Checklist of the Argentine Agaricales 4. Tricholomataceae and Polyporaceae 1 2* N. NIVEIRO & E. ALBERTÓ 1Instituto de Botánica del Nordeste (UNNE-CONICET). Sargento Cabral 2131, CC 209 Corrientes Capital, CP 3400, Argentina 2Instituto de Investigaciones Biotecnológicas (UNSAM-CONICET) Intendente Marino Km 8.200, Chascomús, Buenos Aires, CP 7130, Argentina CORRESPONDENCE TO *: [email protected] ABSTRACT— A species checklist of 86 genera and 709 species belonging to the families Tricholomataceae and Polyporaceae occurring in Argentina, and including all the species previously published up to year 2011 is presented. KEY WORDS—Agaricomycetes, Marasmius, Mycena, Collybia, Clitocybe Introduction The aim of the Checklist of the Argentinean Agaricales is to establish a baseline of knowledge on the diversity of mushrooms species described in the literature from Argentina up to 2011. The families Amanitaceae, Pluteaceae, Hygrophoraceae, Coprinaceae, Strophariaceae, Bolbitaceae and Crepidotaceae were previoulsy compiled (Niveiro & Albertó 2012a-c). In this contribution, the families Tricholomataceae and Polyporaceae are presented. Materials & Methods Nomenclature and classification systems This checklist compiled data from the available literature on Tricholomataceae and Polyporaceae recorded for Argentina up to the year 2011. Nomenclature and classification systems followed Singer (1986) for families. The genera Pleurotus, Panus, Lentinus, and Schyzophyllum are included in the family Polyporaceae. The Tribe Polyporae (including the genera Polyporus, Pseudofavolus, and Mycobonia) is excluded. There were important rearrangements in the families Tricholomataceae and Polyporaceae according to Singer (1986) over time to present. Tricholomataceae was distributed in six families: Tricholomataceae, Marasmiaceae, Physalacriaceae, Lyophyllaceae, Mycenaceae, and Hydnaginaceae. Some genera belonging to this family were transferred to other orders, i.e. Rickenella (Rickenellaceae, Hymenochaetales), and Lentinellus (Auriscalpiaceae, Russulales).
    [Show full text]
  • LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
    Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005.
    [Show full text]
  • Pecoraro, L., Perini, C., Salerni, E. & De Dominicis, V
    L. Pecoraro, C. Perini, E. Salerni & V. De Dominicis Contribution to the knowledge of the mycological flora of the Pigelleto Nature Reserve, Mt. Amiata (Italy) Abstract Pecoraro, L., Perini, C., Salerni, E. & De Dominicis, V.: Contribution to the knowledge of the mycological flora of the Pigelleto Nature Reserve, Mt. Amiata (Italy). — Fl. Medit 17: 143-163. 2007. — ISSN 1120-4052. The Pigelleto Nature Reserve, situated to the south-east of Mt. Amiata (Tuscany, Italy), is char- acterized by a relict nucleus of Abies alba Mill. at low altitude, which is probably an autochtho- nous ecotype. The mycoflora list reported here is the result of past studies and observations car- ried out during 2005-2006. Among the species of macrofungi accounted for (426, belonging to 144 genera), 158 entities were collected for the first time during this recent study. Introduction This work represents a contribution to the mycological knowledge of Pigelleto Nature Reserve (Mt. Amiata, central-southern Tuscany, Italy, Fig. 1). It constitutes part of the “Life04NAT IT/000191” Project concerning the conservation of Abies alba Miller, which includes many different studies to analyze the various natural components of the area under investigation (Pecoraro & al. in press). The woods in the Amiata area are characterized by the alternation of Quercus cerris L. and Fagus sylvatica L., even though there are also mixed areas of mostly Carpinus betu- lus L. or Fraxinus sp. pl. (De Dominicis & Loppi 1992). Moreover, all of the forested areas have been subject to reforestation, mainly carried out in the first half of the 1900s due to the passage of the forestry law in 1923.
    [Show full text]
  • Coprinellus Andreorum: a New Species from Malta and South America
    IJM - Italian Journal of Mycology ISSN 2531-7342 - Vol. 50 (2021): 21-29 Journal homepage: https://italianmycology.unibo.it/ Short note Coprinellus andreorum: a new species from Malta and South America Carmel Sammut1, Alexander Karich2 1 - 216 Flat 1 St. Joseph Flts., Rue d´Argens, Gzira, GZR 1367, Malta 2 - Technische Universität Dresden - International Institut Zittau, Markt 23, 02763 Zittau, Germany Corresponding author e-mail: [email protected] ARTICLE INFO Received 22/2/2021; accepted 14/4/2021 https://doi.org/10.6092/issn.2531-7342/12445 Abstract Coprinellus andreorum sp. nov. is described for the first time from Malta. A full description with illustrations of the macro- and micromorphological characters, as well as its phylogenetic position is provided. This species differs from Coprinellus aureogranulatus by the large pleurocystidia, the narrower spores and multidigitate caulocystidia. Some species from sect. Domestici are discussed and compared. Keywords Agaricales, Psathyrellaceae, Aureogranulati, morphology, taxonomy Introduction Following a recent clearing of a small area in Buskett (Siggiewi, Malta) several large dead branches of Ceratonia siliqua L. were torn down to smaller pieces and dispersed above the soil together with other dead branches from Quercus ilex L. The sudden abundance, on the soil, of degraded lignicolous material coupled with abundant rain in the early weeks of October 2020 has resulted in a number of fast growing coprinii appearing over a few days towards the end of October. The list of lignicolous fungi noted in the area were both previously encountered as well as new records for the area and include Parasola conopilea (Fr.) Örstadius & E. Larss., Coprinopsis melanthina (Fr.) Örstadius & E.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Fundliste Der 34. Internationalenmykologischen Dreiländertagung in Litschau 2009. Irmgard Krisai-Greilhuber, Anton Hausknecht, Wolfgang Klofac
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Österreichische Zeitschrift für Pilzkunde Jahr/Year: 2011 Band/Volume: 20 Autor(en)/Author(s): Krisai-Greilhuber Irmgard, Hausknecht Anton, Klofac Wolfgang Artikel/Article: Fundliste der 34. InternationalenMykologischen Dreiländertagung in Litschau 2009. 73-102 ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 20 (2011) 73 Fundliste der 34. Internationalen Mykologischen Dreiländertagung in Litschau 2009 IRMGARD KRISAI-GREILHUBER ANTON HAUSKNECHT Fakultätszentrum für Biodiversität der Universität Wien Rennweg 14 A-1030 Wien, Österreich Emails: [email protected]; [email protected] WOLFGANG KLOFAC Mayerhöfen 28 A-3074 Michelbach, Österreich Email: [email protected] Angenommen am 20. 11. 2011 Key words: Agaricales, Aphyllophorales, Ascomycota, Myxomycetes. – Mycoflora of Lower Austria. Abstract: A list of almost all fungi collected and identified during the 34. Mykologische Dreiländer- tagung in Litschau, Lower Austria, 2009 is presented. Altogether, 754 fungal taxa were collected, viz. 500 Agaricales s. l., 180 Aphyllophorales s. l., 63 Ascomycota and 11 others. Comments on and de- scriptions of some interesting finds and a colour photograph of some rare species are given. Zusammenfassung: Eine Liste fast aller Pilze, die während der 34. Mykologischen Dreiländertagung in Litschau, Niederösterreich, 2009, gesammelt und bestimmt wurden, wird vorgestellt. Insgesamt wurden 754 Pilztaxa gesammelt, davon 500 Agaricales, Russulales und Boletales, 180 Aphyllophora- les s. l., 63 Ascomycota und 11 Sonstige. Kommentare und Beschreibungen zu einigen interessanten Funden und Farbfotos von einigen seltenen Arten werden gegeben. Die 34. Mykologische Dreiländertagung wurde gemeinsam vom Verein Erlebnis Waldviertel und der Österreichischen Mykologischen Gesellschaft organisiert und fand vom 13.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Fungal Diversity in the Mediterranean Area
    Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I.
    [Show full text]
  • Macromycetes Determined in Çamburnu Nature Park and Close Environs (Trabzon)
    MANTAR DERGİSİ/The Journal of Fungus Nisan(2021)12(1)71-79 Geliş(Recevied) :10.01.2021 Research Article Kabul(Accepted) :04.03.2021 Doi: 10.30708.mantar.857729 Macromycetes Determined in Çamburnu Nature Park and Close Environs (Trabzon) Yılmaz ORUÇ1, Ali KELEŞ2, Yasin UZUN3, Abdullah KAYA4* *Sorumlu yazar: [email protected] 1Yüzüncü Yıl University, Department of Strategy Development, 65080 Van, Turkey Orcid ID: 0000-0002-1238-481X / [email protected] 2Yüzüncü Yıl University, Education Faculty, Department of Mathematics and Science Education, 65080 Van, Turkey Orcid ID: 0000-0002-9087-0805 / [email protected] 3Karamanoğlu Mehmetbey University, Ermenek Uysal & Hasan Kalan Health Services Vocational School, Department of Pharmacy Services, 70400, Karaman, Turkey Orcid ID:0000-0002-6423-6085 / [email protected] 4Gazi University, Science Faculty, Department of Biology, 06500 Ankara, Turkey Orcid ID: 0000-0002-4654-1406 / [email protected] Abstract: This study was carried out the macrofungi samples collected from Çamburnu Nature Park (Sürmene/Trabzon). As a result of field and laboratory studies, 109 macromycete species belonging to four classes, 12 orders, 41 families and 64 genera within Ascomycota and Basidiomycota were determined. The species are presented in alphabetical order together with their habitats and localities. Key words: Biodiversity, macrofungi, Black Sea Region, Turkey Çamburnu Tabiat Parkı ve Yakın Çevresinde (Trabzon) Belirlenen Makromantarlar Öz: Bu çalışma Çamburnu Tabiat Parkı (Sürmene/Trabzon)’ndan toplanan makromantar örnekleri üzerinde gerçekleştirilmiştir. Arazi ve laboratuvar çalışmaları sonucunda Askomikota ve Bazidiyomikota bölümleri içinde yer alan dört sınıf, 12 takım, 41 familya ve 64 cinse ait 109 makromantar türü belirlenmiştir. Türler habitat ve lokaliteleri ile birlikte alfabetik sırada verilmiştir.
    [Show full text]
  • Bacău Preliminary Research
    COMPLEXUL MUZEAL DE ŞTIINŢELE NATURII „ION BORCEA” BACĂU STUDII ŞI COMUNICĂRI 2010 Vol. 23: 14 – 23 PRELIMINARY RESEARCH CONCERNING THE DIVERSITY OF MACROMYCETES IN PRALEA BROOK BASIN (BACĂU COUNTY) OTILIA CARMEN PAVEL * ABSTRACT Mycological research conducted in the Pralea brook basin (Bacău County) showed the diversity of the macromycete species in the phytocenoses of the following associations: Hieracio transsilvanico – Piceetum Pawlowski et Br.-Bl. 1939, Pulmonario rubrae - Fagetum (Soó 1964) Täuber 1987, Leucanthemo waldsteinii – Fagetum (Soó 1964) Täuber 1987, Symphyto cordati – Fagetum Vida 1959. There have been identified 205 taxa from Fungi kingdom out of which 20 species belong to the Ascomycota phylum and 185 species to the Basidiomycota phylum. Key words: fungi, macromycetes, museum, Pralea, Căiuţ, Bacău, Romania Introduction Material and method The Pralea brook is an important tributary to The mycological material was collected in Trotuş river, with 22 km length and is situated on the phytocenoses of the associations: Hieracio territory of the Căiuţi commune, Bacău County (fig. transilvanico-Piceetum Pawlowski et Br.-Bt. 1939, 1, 2). The hydrographical basin occupies a 65 km2 Pulmonario rubrae - Fagetum (Soó 1964) Täuber surface and it stretches between 46°11' N and 26°46' 1987, Leucanthemo waldsteinii – Fagetum E, at altitudes varying from 155 m (at emptying (Soó1964) Täuber 1987, Symphyto cordati – point in Trotuş river) to 771 m (at Coada Văii Baba Fagetum Vida 1959. summit). The mycological research was conducted From a geological point of view, the whole during 2009 – 2010 in 4 forests situated in the basin of Pralea brook is included in the superior basin of Pralea brook: Ursoaia Mică forest Subcarpathian piedmont developed East to Ouşorul (PUm), Coconaşi forest (PC), Bourului forest (PB), summit which is the northernmost sector of Vrancea Pralea Ursoaia Mare forest (PUM) (tab.
    [Show full text]