Elementary Particles, Dark Matter, and Dark Energy: Descriptions That
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dark Energy and Dark Matter As Inertial Effects Introduction
Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved. -
Wimps and Machos ENCYCLOPEDIA of ASTRONOMY and ASTROPHYSICS
WIMPs and MACHOs ENCYCLOPEDIA OF ASTRONOMY AND ASTROPHYSICS WIMPs and MACHOs objects that could be the dark matter and still escape detection. For example, if the Galactic halo were filled –3 . WIMP is an acronym for weakly interacting massive par- with Jupiter mass objects (10 Mo) they would not have ticle and MACHO is an acronym for massive (astrophys- been detected by emission or absorption of light. Brown . ical) compact halo object. WIMPs and MACHOs are two dwarf stars with masses below 0.08Mo or the black hole of the most popular DARK MATTER candidates. They repre- remnants of an early generation of stars would be simi- sent two very different but reasonable possibilities of larly invisible. Thus these objects are examples of what the dominant component of the universe may be. MACHOs. Other examples of this class of dark matter It is well established that somewhere between 90% candidates include primordial black holes created during and 99% of the material in the universe is in some as yet the big bang, neutron stars, white dwarf stars and vari- undiscovered form. This material is the gravitational ous exotic stable configurations of quantum fields, such glue that holds together galaxies and clusters of galaxies as non-topological solitons. and plays an important role in the history and fate of the An important difference between WIMPs and universe. Yet this material has not been directly detected. MACHOs is that WIMPs are non-baryonic and Since extensive searches have been done, this means that MACHOS are typically (but not always) formed from this mysterious material must not emit or absorb appre- baryonic material. -
Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics . -
Dark Energy and Dark Matter
Dark Energy and Dark Matter Jeevan Regmi Department of Physics, Prithvi Narayan Campus, Pokhara [email protected] Abstract: The new discoveries and evidences in the field of astrophysics have explored new area of discussion each day. It provides an inspiration for the search of new laws and symmetries in nature. One of the interesting issues of the decade is the accelerating universe. Though much is known about universe, still a lot of mysteries are present about it. The new concepts of dark energy and dark matter are being explained to answer the mysterious facts. However it unfolds the rays of hope for solving the various properties and dimensions of space. Keywords: dark energy, dark matter, accelerating universe, space-time curvature, cosmological constant, gravitational lensing. 1. INTRODUCTION observations. Precision measurements of the cosmic It was Albert Einstein first to realize that empty microwave background (CMB) have shown that the space is not 'nothing'. Space has amazing properties. total energy density of the universe is very near the Many of which are just beginning to be understood. critical density needed to make the universe flat The first property that Einstein discovered is that it is (i.e. the curvature of space-time, defined in General possible for more space to come into existence. And Relativity, goes to zero on large scales). Since energy his cosmological constant makes a prediction that is equivalent to mass (Special Relativity: E = mc2), empty space can possess its own energy. Theorists this is usually expressed in terms of a critical mass still don't have correct explanation for this but they density needed to make the universe flat. -
Effective Description of Dark Matter As a Viscous Fluid
Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Effective Description of Dark Matter as a Viscous Fluid Nikolaos Tetradis University of Athens Work with: D. Blas, S. Floerchinger, M. Garny, U. Wiedemann . N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Distribution of dark and baryonic matter in the Universe Figure: 2MASS Galaxy Catalog (more than 1.5 million galaxies). N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions Inhomogeneities Inhomogeneities are treated as perturbations on top of an expanding homogeneous background. Under gravitational attraction, the matter overdensities grow and produce the observed large-scale structure. The distribution of matter at various redshifts reflects the detailed structure of the cosmological model. Define the density field δ = δρ/ρ0 and its spectrum hδ(k)δ(q)i ≡ δD(k + q)P(k): . N. Tetradis University of Athens Effective Description of Dark Matter as a Viscous Fluid 31 timation method in its entirety, but it should be equally valid. 7.3. Comparison to other results Figure 35 compares our results from Table 3 (modeling approach) with other measurements from galaxy surveys, but must be interpreted with care. The UZC points may contain excess large-scale power due to selection function effects (Padmanabhan et al. 2000; THX02), and the an- gular SDSS points measured from the early data release sample are difficult to interpret because of their extremely broad window functions. -
Who Is the Inflaton ?
View metadata, citation and similar papers at core.ac.uk Who is the Inflaton ? brought to you by CORE provided by CERN Document Server R. Brout Service de Physique Th´eorique, Universit´e Libre de Bruxelles, CP 225, Bvd. du Triomphe, B-1050 Bruxelles, Belgium, (email: [email protected]). It is proposed that the inflaton field is proportional to the fluctuation of the number density of degrees of freedom of the fields of particle physics. These possess cut-off momenta at O (mP lanck), but this fluctuates since the fields propagate in an underlying space-time transplanckian substratum. If the latter is modeled as an instanton fluid in the manner of Hawking's space-time foam, then this identification, in the rough, is equivalent to the inflaton being the fluctuation of the spatial density of instantons. This interpretation is suggested by Volovik's analogy between space-time and the superfluid. (However, unlike for the latter, one cannot argue from the analogy that the cosmological constant vanishes). In our interpretation Linde's phenomenology of inflation takes on added luster in this way to look at things, since inflation and particle production follow quite naturally from familiar physical concepts operating on a "cisplanckian" level. I. INTRODUCTION In his lectures on cosmology at Erice 1999, Professor E. Kolb in extolling the virtues of the inflaton scenario of inflation closed his inspiring lesson with the resounding question : "Who is the inflaton ?" In the foregoing I shall hazard an answer. My intention, in the present paper, is to introduce more a theoretical framework of conjectural character than any quantitative realization. -
Supersymmetry and Inflation
Supersymmetry and Inflation Sergio FERRARA (CERN – LNF INFN) July 14 , 2015 Fourteenth Marcel Grossmann Meeting, MG14 University of Rome “La Sapienza”, July 12-18 2015 S. Ferrara - MG14, U. Rome "La Sapienza" 1 July 2015 Contents 1. Single field inflation and Supergravity embedding 2. Inflation and Supersymmetry breaking 3. Minimal models for inflation: a. One chiral multiplet (sgoldstino inflation) b. Two chiral multiplets: T (inflaton), S (sgoldstino) 4. R + R2 Supergravity 5. Nilpotent inflation (sgoldstino-less models) 6. Models with two Supersymmetry breaking scales S. Ferrara - MG14, U. Rome "La Sapienza" July 2015 2 We describe approaches to inflaton dynamics based on Supergravity, the combination of Supersymmetry with General Relativity (GR). Nowadays it is well established that inflationary Cosmology is accurately explained studying the evolution of a single real scalar field, the inflaton, in a Friedmann, Lemaître, Robertson, Walker geometry. A fundamental scalar field, which described the Higgs particle, was also recently discovered at LHC, confirming the interpretation of the Standard Model as a spontaneously broken phase (BEH mechanism) of a non-abelian Yang-Mills theory (Brout, Englert, Higgs, 1964). S. Ferrara - MG14, U. Rome "La Sapienza" July 2015 3 There is then some evidence that Nature is inclined to favor, both in Cosmology and in Particle Physics, theories which use scalar degrees of freedom, even if in diverse ranges of energy scales. Interestingly, there is a cosmological model where the two degrees of freedom, inflaton and Higgs, are identified, the Higgs inflation model (Bezrukov, Shaposhnikov, 2008), where a non-minimal coupling 2 h R of the Higgs field h to gravity is introduced. -
Can an Axion Be the Dark Energy Particle?
Kuwait53 J. Sci.Can 45 an(3) axion pp 53-56, be the 2018 dark energy particle? Can an axion be the dark energy particle? Elias C. Vagenas Theoretical Physics Group, Department of Physics Kuwait University, P.O. Box 5969, Safat 13060, Kuwait [email protected] Abstract Following a phenomenological analysis done by the late Martin Perl for the detection of the dark energy, we show that an axion of energy can be a viable candidate for the dark energy particle. In particular, we obtain the characteristic length and frequency of the axion as a quantum particle. Then, employing a relation that connects the energy density with the frequency of a particle, i.e., , we show that the energy density of axions, with the aforesaid value of mass, as obtained from our theoretical analysis is proportional to the dark energy density computed on observational data, i.e., . Keywords: Axion, axion-like particles, dark energy, dark energy particle 1. Introduction Therefore, though the energy density of the electric field, i.e., One of the most important and still unsolved problem in , can be detected and measured, the dark energy density, contemporary physics is related to the energy content of the i.e., , which is much larger has not been detected yet. universe. According to the recent results of the 2015 Planck Of course, one has to avoid to make an experiment for the mission (Ade et al., 2016), the universe roughly consists of detection and measurement of the dark energy near the 69.11% dark energy, 26.03% dark matter, and 4.86% baryonic surface of the Earth, or the Sun, or the planets, since the (ordinary) matter. -
Dark Energy and CMB
Dark Energy and CMB Conveners: S. Dodelson and K. Honscheid Topical Conveners: K. Abazajian, J. Carlstrom, D. Huterer, B. Jain, A. Kim, D. Kirkby, A. Lee, N. Padmanabhan, J. Rhodes, D. Weinberg Abstract The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group \Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv. arXiv:1309.5386v2 [astro-ph.CO] 24 Sep 2013 2 1 Cosmology and New Physics Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy. Cosmologists have historically turned to fundamental physics to understand the early Universe, successfully explaining phenomena as diverse as the formation of the light elements, the process of electron-positron annihilation, and the production of cosmic neutrinos. -
Modified Newtonian Dynamics
J. Astrophys. Astr. (December 2017) 38:59 © Indian Academy of Sciences https://doi.org/10.1007/s12036-017-9479-0 Modified Newtonian Dynamics (MOND) as a Modification of Newtonian Inertia MOHAMMED ALZAIN Department of Physics, Omdurman Islamic University, Omdurman, Sudan. E-mail: [email protected] MS received 2 February 2017; accepted 14 July 2017; published online 31 October 2017 Abstract. We present a modified inertia formulation of Modified Newtonian dynamics (MOND) without retaining Galilean invariance. Assuming that the existence of a universal upper bound, predicted by MOND, to the acceleration produced by a dark halo is equivalent to a violation of the hypothesis of locality (which states that an accelerated observer is pointwise inertial), we demonstrate that Milgrom’s law is invariant under a new space–time coordinate transformation. In light of the new coordinate symmetry, we address the deficiency of MOND in resolving the mass discrepancy problem in clusters of galaxies. Keywords. Dark matter—modified dynamics—Lorentz invariance 1. Introduction the upper bound is inferred by writing the excess (halo) acceleration as a function of the MOND acceleration, The modified Newtonian dynamics (MOND) paradigm g (g) = g − g = g − gμ(g/a ). (2) posits that the observations attributed to the presence D N 0 of dark matter can be explained and empirically uni- It seems from the behavior of the interpolating function fied as a modification of Newtonian dynamics when the as dictated by Milgrom’s formula (Brada & Milgrom gravitational acceleration falls below a constant value 1999) that the acceleration equation (2) is universally −10 −2 of a0 10 ms . -
Arxiv:2107.01683V1 [Hep-Ph] 4 Jul 2021 Ai Prxmto Nte2 Oe Hog H Higgs-Dilat the field
Communications in Physics, Vol. 0, No. 0 (0), pp. 1-15 CONSTRAINT ON THE HIGGS-DILATON POTENTIAL VIA WARM INFLATION IN TWO-TIME PHYSICS VO QUOC PHONG AND NGO PHUC DUC LOC Department of Theoretical Physics, University of Science, Ho Chi Minh City, Vietnam Vietnam National University, Ho Chi Minh City, Vietnam Abstract. Within the SP (2, R) symmetry, the Two-time model (2T model) has six dimensions with two dimensions of time and the dilaton field that can be identified as inflaton in a warm inflation scenario with potential of the form ∼ φ4. From that consideration, we derive the range of parameters for the Higgs-Dilaton potential, the coupling constant between Higgs and Dialton − (α) is lager than 1.598 or smaller than 2.13 × 10 7 when the mass of Dilaton is lager than 200 GeV. Therefore, the 2T-model indirectly suggests that extra-dimension can also be a source of inflation. I. Introduction The 2T model [1, 2, 3, 4, 5, 6, 7] could be a well known choice. The model presents us with an unusual vision of time that advances on a plane, i.e., it has two dimensions of time. This model’s spontaneous symmetry breakdown is also different from the SM’s. The 2T physics is a combination of the standard model’s extended theory and the space-time or gravity theory. This theory has proposed expanding the number of spacetime dimensions to represent the whole cosmos, as well as the introduction of dilaton and its properties, for more than a decade (since 2008). -
Dark Radiation from the Axino Solution of the Gravitino Problem
21st of July 2011 Dark radiation from the axino solution of the gravitino problem Jasper Hasenkamp II. Institute for Theoretical Physics, University of Hamburg, Hamburg, Germany [email protected] Abstract Current observations of the cosmic microwave background could confirm an in- crease in the radiation energy density after primordial nucleosynthesis but before photon decoupling. We show that, if the gravitino problem is solved by a light axino, dark (decoupled) radiation emerges naturally in this period leading to a new upper 11 bound on the reheating temperature TR . 10 GeV. In turn, successful thermal leptogenesis might predict such an increase. The Large Hadron Collider could en- dorse this opportunity. At the same time, axion and axino can naturally form the observed dark matter. arXiv:1107.4319v2 [hep-ph] 13 Dec 2011 1 Introduction It is a new opportunity to determine the amount of radiation in the Universe from obser- vations of the cosmic microwave background (CMB) alone with precision comparable to that from big bang nucleosynthesis (BBN). Recent measurements by the Wilkinson Mi- crowave Anisotropy Probe (WMAP) [1], the Atacama Cosmology Telescope (ACT) [2] and the South Pole Telescope (SPT) [3] indicate|statistically not significant|the radi- ation energy density at the time of photon decoupling to be higher than inferred from primordial nucleosynthesis in standard cosmology making use of the Standard Model of particle physics, cf. [4,5]. This could be taken as another hint for physics beyond the two standard models. The Planck satellite, which is already taking data, could turn the hint into a discovery. We should search for explanations from particle physics for such an increase in ra- diation [6,7], especially, because other explanations are missing, if the current mean values are accurate.