The Atacama Pathfinder Experiment Sunyaev–Zel'dovich Instrument

Total Page:16

File Type:pdf, Size:1020Kb

The Atacama Pathfinder Experiment Sunyaev–Zel'dovich Instrument Telescopes and Instrumentation APEX–SZ: The Atacama Pathfinder EXperiment Sunyaev–Zel’dovich Instrument Daniel Schwan1 9 Materials Sciences Division, phenomena in great detail, for example, Rüdiger Kneissl2, 3 Lawrence Berkeley National Labo- cluster formation and dynamics, cluster Peter Ade4 ratory, Berkeley, USA mergers and their associated shock Kaustuv Basu 5 10 Department of Physics, McGill waves (which are sites of cosmic ray Amy Bender 6 University, Montreal, Canada acceleration), the cosmic ratio of dark Frank Bertoldi 5 11 Department of Physics, University of matter to baryonic matter density, active Hans Böhringer7 Colorado, Boulder, USA galactic nuclei feedback, the evolution of Hsaio-Mei Cho 8 12 Department of Earth and Space galaxies in the ICM, heat transport pro- Gayoung Chon7 Sciences, Onsala Space Observatory, cesses, and plasma instabilities (Sarazin, John Clarke1, 9 Chalmers University of Technology, 1988). Matt Dobbs10 Sweden Daniel Ferrusca1 13 Department of Physics, Columbia In addition, galaxy clusters offer a unique Daniel Flanigan1 University, New York, USA probe into the composition and evolu- Nils Halverson 6,11 14 Physics Division, Lawrence Berkeley tion of the Universe. They are the most William Holzapfel1 National Laboratory, Berkeley, USA massive gravitationally-collapsed objects Cathy Horellou12 15 Max-Planck-Institut für Radioastro- and directly map large-scale structure Daniel Johansson12 nomie, Bonn, Germany over a large range of redshifts. Conse- Bradley Johnson1,13 16 I. Physikalisches Institut, Universität zu quently, measuring the evolution of the James Kennedy10 Köln, Germany cluster number density places powerful Zigmund Kermish1 constraints on the parameters that Matthias Klein 5 govern the growth of structure. These Trevor Lanting10 The APEX–SZ instrument was a milli- parameters are, notably, the mass energy Adrian Lee1,14 metre-wave (150 GHz) cryogenic re­­ density and dark energy density of Martin Lueker1 ceiver for the APEX telescope designed the Universe, the dark energy equation of Jared Mehl1 to observe galaxy clusters via the state, and the matter power spectrum Karl Menten15 Sunyaev–Zel’dovich Effect (SZE). The normalisation (Carlstrom et al., 2002). Dirk Muders15 receiver contained a focal plane of Florian Pacaud 5 280 superconducting transition-edge The hot ICM is observable at millimetre- Thomas Plagge1 sensor bolometers equipped with a wavelengths via the SZE (Sunyaev & Christian Reichardt1 frequency-domain-multiplexed readout Zel’dovich, 1970). In the SZE, about 1% Paul Richards1 system, and it played a key role in the of cosmic microwave background (CMB) Reinhold Schaaf 5 introduction of these new, robust, and photons incident on the cluster are Peter Schilke16 scalable technologies. With 1-arcminute scattered by free intracluster electrons. Martin Sommer 5,15 resolution, the instrument had a higher The resulting signal distorts the CMB Helmuth Spieler 14 instantaneous sensitivity and covered a blackbody spectrum and is visible as a Carole Tucker 4 larger field of view (22 arcminutes) than temperature decrement (increment) at Axel Weiss15 earlier generations of SZE instruments. frequencies below (above) 217 GHz. The Benjamin Westbrook1 During its period of operation from 2007 SZE surface brightness is proportional Oliver Zahn1 to 2010, APEX–SZ was used to image to the integrated gas pressure along the over 40 clusters and map fields overlap- line of sight through the cluster. Since ping with external datasets. This paper the SZE is a scattering effect seen rela- 1 Department of Physics, University of briefly describes the instrument and tive to the CMB, and the scattered and California, Berkeley, USA data reduction procedure and presents unscattered photons are redshifted 2 ESO a cluster image gallery, as well as results together, the SZE signal is independent 3 Joint ALMA Observatory, Vitacura, for the Bullet cluster, Abell 2204, Abell of the redshift of the scattering cluster. Santiago, Chile 2163, and a power spectrum analysis in In contrast, X-ray and optical surface 4 School of Physics and Astronomy, the XMM-LSS field. brightness dim with increasing redshift. Cardiff University, Wales, United The redshift independence makes the Kingdom SZE a uniquely sensitive method for dis- 5 Argelander Institute for Astronomy, Galaxy clusters covering and observing distant clusters. Bonn University, Germany 6 Center for Astrophysics and Space Galaxy clusters comprise dark matter Astronomy, Department of Astophysical and constituent galaxies with hot, low Instrument overview and Planetary Sciences, University of density ionised gas filling the space Colorado, Boulder, USA between the galaxies. This gas, known APEX–SZ observations were performed at 7 Max-Planck-Institut für extraterres- as the intracluster medium (ICM), domi- 150 GHz (2 mm) from the 12-metre APEX trische Physik, Garching, Germany nates the baryonic mass in clusters. telescope (Güsten et al., 2006). Technical 8 National Institute of Standards and Thus, galaxy clusters are important labo- details of the receiver can be found in Technology, Boulder, USA ratories for studying various astrophysical Schwan et al. (2011). The telescope was The Messenger 147 – March 2012 7 Telescopes and Instrumentation Schwan D. et al., APEX–SZ: The APEX Sunyaev–Zel’dovich Instrument dent on the absorber are measured by the TES mounted at its centre. The TES is a thin superconducting film with a tran­ sition temperature higher than the reser- voir temperature. A constant bias voltage is applied across the TES so that the total applied power (the electrical power dissipated in the TES plus optical power incident on the absorber) raises 1 mm the temperature of the sensor to pre- cisely the transition temperature. An increase (decrease) in the incident optical power produces a cancelling decrease (increase) in electrical power. Since the 25 mm voltage bias is held constant, the change in electrical power is measured as a change in current through the sensor. Figure 1. The TES bolometer array, with inset show- machined from a single aluminium block ing three spiderweb bolometers. Six identical trian- and mounted above the planar focal The bolometers are fabricated using gular sub-arrays are assembled into a single planar array, 133 mm in diameter, containing 330 bolome- surface. Each bolometer was centred standard photolithographic techniques. ters. Each bolometer has two leads which run from behind a cylindrical waveguide in the horn The absorber, the TES and the leads the spiderweb to bonding pads at the edge of its tri- array. There was a small gap between to bias the TES are deposited onto a 1 μm angle, visible as light traces between the bolometers. the horn array and the bolometers to pro- thick, low-stress silicon nitride (LSN) vide thermal isolation. Radiation not spiderweb membrane. The LSN spider- commissioned by the Max-Planck-Institut absorbed by a detector could leak radi- web is suspended by eight LSN legs für Radioastronomie, ESO and the ally to neighbouring detectors or be above a ~ 20 μm vacuum gap etched in Swedish Onsala Space Observatory for reflected back through the horns. This the silicon. The gap thermally isolates use with bolometric and heterodyne leakage resulted in a small, ~ 1%, optical the absorber from the silicon substrate. receivers. It is located near the ALMA site cross-talk between adjacent bolometers. The thermal conductance of the bo- at an altitude of 5107 metres on Llano lom eter is set by a gold thermal link that de Chajnantor in the Atacama desert in The TES bolometers and frequency- runs from the TES to the thermal reser- Chile, which has exceptionally low water domain multiplexed (fMUX) readout sys- voir, parallel to the bias leads. The vapour conditions. In addition, the low tem used in the APEX–SZ focal plane APEX–SZ detector array is assembled latitude of the site (23 degrees south) have low noise, but require a cryogenic from six identical 55-element, triangular allows targeted observation of clusters system for their operation. The receiver subarrays (Figure 1). with rich multi-frequency datasets. Over- interior was cooled by a closed cycle lapping observations at different wave- pulse­tube cooler with cold stages at 60 K The APEX–SZ TES bolometers are read lengths enable a more complete study and 4 K. The mechanical cooler elimi- out with a SQUID (Superconducting and characterisation of clusters. nated the need for open reservoirs of liq- Quantum Interference Device) amplifier uid cryogens, greatly simplifying the fMUX, which allows several detectors to The telescope beam was coupled to the design and construction of the cryostat be read out by a single 4 K SQUID ampli- APEX receiver by a series of reimaging while reducing the cost and difficulty fier connected through a single pair of optics inside the Cassegrain cabin. The of remote observations. The bolometers wires (Lanting et al., 2004). Readout mul- full optical system had 58-arcsecond were further cooled to 280 mK by ti plexing enables the use of large detector FWHM (Full Width at Half Maximum) a three-stage helium sorption fridge. arrays by greatly reducing the thermal beams, diffraction-limited performance, load on the low temperature stage, the over a 22­arcminute field of view (FoV). complexity of cold wiring and the system This large FoV enabled APEX–SZ to map Detectors and readout cost. The APEX–SZ system uses seven the large angular size of low redshift detectors read out by one SQUID ampli- clusters, where the SZE signal can extend Each APEX–SZ bolometer consists of fier in each multiplexer module. beyond a 10-arcminute radius. an optical absorber coupled to a TES that is connected to a thermal reservoir by In the fMUX system, the bolometers are Within the receiver, the APEX–SZ focal a weak thermal link. The absorbing ele- biased with alternating voltages at carrier plane was 133 mm across and consisted ment is a 3 mm diameter gold spiderweb frequencies (0.3–1 MHz) that are much of 330 feedhorn-coupled TES (transition- (Figure 1).
Recommended publications
  • Arxiv:1903.02002V1 [Astro-Ph.GA] 5 Mar 2019
    Draft version March 7, 2019 Typeset using LATEX twocolumn style in AASTeX62 RELICS: Reionization Lensing Cluster Survey Dan Coe,1 Brett Salmon,1 Maruˇsa Bradacˇ,2 Larry D. Bradley,1 Keren Sharon,3 Adi Zitrin,4 Ana Acebron,4 Catherine Cerny,5 Nathalia´ Cibirka,4 Victoria Strait,2 Rachel Paterno-Mahler,3 Guillaume Mahler,3 Roberto J. Avila,1 Sara Ogaz,1 Kuang-Han Huang,2 Debora Pelliccia,2, 6 Daniel P. Stark,7 Ramesh Mainali,7 Pascal A. Oesch,8 Michele Trenti,9, 10 Daniela Carrasco,9 William A. Dawson,11 Steven A. Rodney,12 Louis-Gregory Strolger,1 Adam G. Riess,1 Christine Jones,13 Brenda L. Frye,7 Nicole G. Czakon,14 Keiichi Umetsu,14 Benedetta Vulcani,15 Or Graur,13, 16, 17 Saurabh W. Jha,18 Melissa L. Graham,19 Alberto Molino,20, 21 Mario Nonino,22 Jens Hjorth,23 Jonatan Selsing,24, 25 Lise Christensen,23 Shotaro Kikuchihara,26, 27 Masami Ouchi,26, 28 Masamune Oguri,29, 30, 28 Brian Welch,31 Brian C. Lemaux,2 Felipe Andrade-Santos,13 Austin T. Hoag,2 Traci L. Johnson,32 Avery Peterson,32 Matthew Past,32 Carter Fox,3 Irene Agulli,4 Rachael Livermore,9, 10 Russell E. Ryan,1 Daniel Lam,33 Irene Sendra-Server,34 Sune Toft,24, 25 Lorenzo Lovisari,13 and Yuanyuan Su13 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2Department of Physics, University of California, Davis, CA 95616, USA 3Department of Astronomy, University of Michigan, 1085 South University Ave, Ann Arbor, MI 48109, USA 4Physics Department, Ben-Gurion University of the Negev, P.O.
    [Show full text]
  • PUBLICATIONS Publications (As of Dec 2020): 335 on Refereed Journals, 90 Selected from Non-Refereed Journals. Citations From
    PUBLICATIONS Publications (as of Sep 2021): 350 on refereed journals, 92 selected from non-refereed journals. Citations from ADS: 32263, H-index= 97. Refereed 350. Caminha, G.B.; Suyu, S.H.; Grillo, C.; Rosati, P.; et al. 2021 Galaxy cluster strong lensing cosmography: cosmological constraints from a sample of regular galaxy clusters, submitted to A&A 349. Mercurio, A..; Rosati, P., Biviano, A. et al. 2021 CLASH-VLT: Abell S1063. Cluster assembly history and spectroscopic catalogue, submitted to A&A, (arXiv:2109.03305) 348. G. Granata et al. (9 coauthors including P. Rosati) 2021 Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: the case of Abell S1063, submitted to A&A, (arXiv:2107.09079) 347. E. Vanzella et al. (19 coauthors including P. Rosati) 2021 High star cluster formation efficiency in the strongly lensed Sunburst Lyman-continuum galaxy at z = 2:37, submitted to A&A, (arXiv:2106.10280) 346. M.G. Paillalef et al. (9 coauthors including P. Rosati) 2021 Ionized gas kinematics of cluster AGN at z ∼ 0:8 with KMOS, MNRAS, 506, 385 6 crediti 345. M. Scalco et al. (12 coauthors including P. Rosati) 2021 The HST large programme on Centauri - IV. Catalogue of two external fields, MNRAS, 505, 3549 344. P. Rosati et al. 2021 Synergies of THESEUS with the large facilities of the 2030s and guest observer opportunities, Experimental Astronomy, 2021ExA...tmp...79R (arXiv:2104.09535) 343. N.R. Tanvir et al. (33 coauthors including P. Rosati) 2021 Exploration of the high-redshift universe enabled by THESEUS, Experimental Astronomy, 2021ExA...tmp...97T (arXiv:2104.09532) 342.
    [Show full text]
  • THE DISTRIBUTION of ACTIVE GALACTIC NUCLEI in CLUSTERS of GALAXIES ABSTRACT We Present a Study of the Distribution of AGN In
    APJ ACCEPTED [18 APRIL 2007] Preprint typeset using LATEX style emulateapj v. 12/14/05 THE DISTRIBUTION OF ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES PAUL MARTINI Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, [email protected] JOHN S. MULCHAEY, DANIEL D. KELSON Carnegie Observatories, 813 Santa Barbara St., Pasadena, CA 91101-1292 ApJ accepted [18 April 2007] ABSTRACT We present a study of the distribution of AGN in clusters of galaxies with a uniformly selected, spectroscop- ically complete sample of 35 AGN in eight clusters of galaxies at z = 0:06 ! 0:31. We find that the 12 AGN 42 −1 with LX > 10 erg s in cluster members more luminous than a rest-frame MR < −20 mag are more centrally concentrated than typical cluster galaxies of this luminosity, although these AGN have comparable velocity and substructure distributions to other cluster members. In contrast, a larger sample of 30 cluster AGN with 41 −1 LX > 10 erg s do not show evidence for greater central concentration than inactive cluster members, nor evidence for a different kinematic or substructure distribution. As we do see clear differences in the spatial and kinematic distributions of the blue Butcher-Oemler and red cluster galaxy populations, any difference in the AGN and inactive galaxy population must be less distinct than that between these two pairs of popula- tions. Comparison of the AGN fraction selected via X-ray emission in this study to similarly-selected AGN in the field indicates that the AGN fraction is not significantly lower in clusters, contrary to AGN identified via visible-wavelength emission lines, but similar to the approximately constant radio-selected AGN fraction in clusters and the field.
    [Show full text]
  • Imaging Non-Thermal X-Ray Emission from Galaxy Clusters: Results and Implications
    Journal of The Korean Astronomical Society 37: 299 » 305, 2004 IMAGING NON-THERMAL X-RAY EMISSION FROM GALAXY CLUSTERS: RESULTS AND IMPLICATIONS Mark Henriksen and Danny Hudson Joint Center for Astrophysics, Physics Department, University of Maryland, Baltimore, MD 21250, USA E-mail: [email protected] ABSTRACT We ¯nd evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best ¯t by a steep powerlaw indicative of a signi¯cant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 keV emission. We analyze the dynamical state of each cluster and ¯nd evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post- shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front. Key words : clusters of galaxies { inverse-Compton emission { mergers I. INTRODUCTION with energy. For example, the e®ective area of the Bep- poSax PDS (15 - 300 keV) is 10 times lower than the Inverse-Compton measurements for galaxy clusters RXTE PCA (2 - 60 Kev).
    [Show full text]
  • INVESTIGATING ACTIVE GALACTIC NUCLEI with LOW FREQUENCY RADIO OBSERVATIONS By
    INVESTIGATING ACTIVE GALACTIC NUCLEI WITH LOW FREQUENCY RADIO OBSERVATIONS by MATTHEW LAZELL A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics & Astronomy College of Engineering and Physical Sciences The University of Birmingham March 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Low frequency radio astronomy allows us to look at some of the fainter and older synchrotron emission from the relativistic plasma associated with active galactic nuclei in galaxies and clusters. In this thesis, we use the Giant Metrewave Radio Telescope to explore the impact that active galactic nuclei have on their surroundings. We present deep, high quality, 150–610 MHz radio observations for a sample of fifteen predominantly cool-core galaxy clusters. We in- vestigate a selection of these in detail, uncovering interesting radio features and using our multi-frequency data to derive various radio properties. For well-known clusters such as MS0735, our low noise images enable us to see in improved detail the radio lobes working against the intracluster medium, whilst deriving the energies and timescales of this event.
    [Show full text]
  • CMB S4 Stage-4 CMB Experiment
    Cosmic Microwave Background past and future June 3rd, 2016 28th Rencontres de Blois Akito KUSAKA Lawrence Berkeley National Laboratory Light New TeV Particle? Higgs 5th force? Yukawa Inflation n Dark Dark Energy 퐵 /퐵 Matter My summary of “Snowmass Questions” 2014 2.7K blackbody What is CMB? Light from Last Scattering Surface LSS: Boundary between plasma and neutral H COBE/FIRAS Mather et. al. (1990) Planck Collaboration (2014) The Universe was 1100 times smaller Fluctuations seeding “us” 2015 Planck Collaboration (2015) Wk = 0 0.005 (w/ BAO) Gaussian Planck Collaboration (2014) Polarization Quadrupole anisotropy creates linear polarization via Thomson scattering http://background.uchicago.edu/~whu/polar/webversion/polar.html Polarization – E modes and B modes E modes: curl free component 푘 B modes: divergence free component 푘 CMB Polarization Science Inflation / Gravitational Waves Gravitational Lensing / Neutrino Mass Light Relativistic Species And more… B-mode from Inflation It’s about the stuff here A probe into the Early Universe Hot High Energy ~3000K (~0.25eV) Photons 1016 GeV ? ~1010K (~1MeV) Neutrinos Gravitational waves Sound waves Source of GW? : inflation Inflation › Rapid expansion of universe Quantum fluctuation of metric during inflation › Off diagonal component (T) primordial gravitational waves Unique probe into gravity quantum mechanics connection Ratio to S (on-diagonal): r=T/S Lensing B-mode Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes It’s about the stuff here Lensing B-mode Abazajian et. al. (2014) Deflection by lensing (Nearly) Gaussian Non-Gaussian (Nearly) pure E modes Non-zero B modes Accurate mass measurement may resolve neutrino mass hierarchy.
    [Show full text]
  • Counting Gamma Rays in the Directions of Galaxy Clusters
    A&A 567, A93 (2014) Astronomy DOI: 10.1051/0004-6361/201322454 & c ESO 2014 Astrophysics Counting gamma rays in the directions of galaxy clusters D. A. Prokhorov1 and E. M. Churazov1,2 1 Max Planck Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany e-mail: [email protected] 2 Space Research Institute (IKI), Profsouznaya 84/32, 117997 Moscow, Russia Received 6 August 2013 / Accepted 19 May 2014 ABSTRACT Emission from active galactic nuclei (AGNs) and from neutral pion decay are the two most natural mechanisms that could establish a galaxy cluster as a source of gamma rays in the GeV regime. We revisit this problem by using 52.5 months of Fermi-LAT data above 10 GeV and stacking 55 clusters from the HIFLUCGS sample of the X-ray brightest clusters. The choice of >10 GeV photons is optimal from the point of view of angular resolution, while the sample selection optimizes the chances of detecting signatures of neutral pion decay, arising from hadronic interactions of relativistic protons with an intracluster medium, which scale with the X-ray flux. In the stacked data we detected a signal for the central 0.25 deg circle at the level of 4.3σ. Evidence for a spatial extent of the signal is marginal. A subsample of cool-core clusters has a higher count rate of 1.9 ± 0.3 per cluster compared to the subsample of non-cool core clusters at 1.3 ± 0.2. Several independent arguments suggest that the contribution of AGNs to the observed signal is substantial, if not dominant.
    [Show full text]
  • Metallicity Variations and Conduction in the Intracluster Medium
    Metallicity Variations and Conduction in the Intracluster Medium THIS DISSERTATION IS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY March 2003 Roger Glenn Morris INSTITUTE OF ASTRONOMY & ROBINSON COLLEGE UNIVERSITY OF CAMBRIDGE For J. A. M. and J. K. M. DECLARATION I hereby declare that my thesis entitled Metallicity Variations and Conduction in the Intracluster Medium is not substantially the same as any that I have submitted for a degree or diploma or other qualification at any other University. I further state that no part of my thesis has already been or is being concurrently submitted for any such degree, diploma or other qualification. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. Those parts of this thesis which have been published or accepted for publication are as follows. Sections of Chapters 2 and 4 were published as: • Morris R. G., Fabian A. C., 2003, MNRAS, 338, 824. Some of the issues discussed in Chapter 4 were presented in preliminary form in: • Morris R. G., Fabian A. C., 2002, in Matteucci and Fusco-Femiano (2002), pp. 85–90. Work on thermal conduction (Chapter 5) has benefited from discussions with Lisa Voigt, published • as: Fabian A. C., Voigt L. M., Morris R. G., 2002b, MNRAS, 335, L71. Various figures throughout the text are reproduced from the work of other authors, for illustration or discussion. Such figures are always credited in the associated caption. This thesis contains fewer than 60,000 words. R.
    [Show full text]
  • Design and Performance of the Spider Instrument
    Design and performance of the Spider instrument M. C. Runyana, P.A.R. Adeb, M. Amiric,S.Bentond, R. Biharye,J.J.Bocka,f,J.R.Bondg, J.A. Bonettif, S.A. Bryane, H.C. Chiangh, C.R. Contaldii, B.P. Crilla,f,O.Dorea,f,D.O’Deai, M. Farhangd, J.P. Filippinia, L. Fisseld, N. Gandilod, S.R. Golwalaa, J.E. Gudmundssonh, M. Hasselfieldc,M.Halpernc, G. Hiltonj, W. Holmesf,V.V.Hristova, K.D. Irwinj,W.C.Jonesh , C.L. Kuok,C.J.MacTavishl,P.V.Masona,T.A.Morforda, T.E. Montroye, C.B. Netterfieldd, A.S. Rahlinh, C.D. Reintsemaj, J.E. Ruhle, M.C. Runyana,M.A.Schenkera, J. Shariffd, J.D. Solerd, A. Trangsruda, R.S. Tuckera,C.Tuckerb,andA.Turnerf aDivision of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA, USA; bSchool of Physics and Astronomy, Cardiff University, Cardiff, UK; cDepartment of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; dDepartment of Physics, University of Toronto, Toronto, ON, Canada; eDepartment of Physics, Case Western Reserve University, Cleveland, OH, USA; fJet Propulsion Laboratory, Pasadena, CA, USA; gCanadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, Canada; hDepartment of Physics, Princeton University, Princeton, NJ, USA; iDepartment of Physics, Imperial College, University of London, London, UK; jNational Institute of Standards and Technology, Boulder, CO, USA; kDepartment of Physics, Stanford University, Stanford, CA, USA; lKavli Institute for Cosmology, University of Cambridge, Cambridge, UK ABSTRACT Here we describe the design and performance of the Spider instrument. Spider is a balloon-borne cosmic microwave background polarization imager that will map part of the sky at 90, 145, and 280 GHz with sub- degree resolution and high sensitivity.
    [Show full text]
  • Active Galactic Nucleus Feedback in Clusters of Galaxies
    Active galactic nucleus feedback in clusters of galaxies Elizabeth L. Blantona,1, T. E. Clarkeb, Craig L. Sarazinc, Scott W. Randalld, and Brian R. McNamarad,e aInstitute for Astrophysical Research and Astronomy Department, Boston University, 725 Commonwealth Avenue, Boston, MA 02215; bNaval Research Laboratory, 455 Overlook Avenue SW, Washington, DC 20375; cDepartment of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325; dHarvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138; eDepartment of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 2G1, Canada; and Perimeter Institute for Theoretical Physics, 31 Caroline Street, North Waterloo, Ontario N2L 2Y5, Canada Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved February 22, 2010 (received for review December 3, 2009) Observations made during the last ten years with the Chandra there is little cooling. This is seen in the temperature profiles as X-ray Observatory have shed much light on the cooling gas in well as high resolution spectroscopy. An important early result the centers of clusters of galaxies and the role of active galactic from XMM-Newton high resolution spectra from cooling flows nucleus (AGN) heating. Cooling of the hot intracluster medium was that the emission lines from cool gas were not present at in cluster centers can feed the supermassive black holes found the expected levels, and the spectra were well-fitted by a cooling in the nuclei of the dominant cluster galaxies leading to AGN out- flow model with a low temperature cutoff (7, 8). This cutoff is bursts which can reheat the gas, suppressing cooling and large typically one-half to one-third of the average cluster temperature, amounts of star formation.
    [Show full text]
  • Lecture 22 Clusters of Galaxies II
    Difficult Job ! • Abell 2319 Optical Sky Survey ! • Despite the high degree of difficulty Abell did a fantastic job- but catalog suffers from incompleteness and projection effects ! X-ray image! 26! • FR I radio galaxies (low power radio Radio Selection ! galaxies, which possess an edge- Galaxies around high z FRI candidates ! darkened radio morphology) occur more frequently in clusters than in the field because their hosts are always luminous ellipticals ! • Similar 'tailed' radio galaxies(a subset of FRIs) 'only' occur in clusters (Giacintucci et al 2009) Fomalont & Bridle 1978; Burns & Owen 1979; more recently Blanton et al. 2000, 2001 and 2003; Smolcic et al. 2007; Kantharia et al. 2009).! These radio techniques enable ! clusters to be found, but there is no relation! Between radio properties and other properties of the cluster ! 27! Cluster Formation ! • Cluster mergers are thought to be the prime mechanism of massive cluster formation in a hierarchical universe (White and Frenk 1991) ! • the most energetic events in the universe since the big bang. These mergers with infall velocities of ~2000 15 km/s and total masses of 10 M! have a kinetic energy of 1065 ergs. ! • The shocks and structures generated in the merger have a important influence on cluster shape, luminosity and evolution and may generate large fluxes of relativistic particles! 28! Numerical Simulation of a Merger ! • X-ray contours with kT in color, dark matter distribution, velocity vectors and how the two gas components mix (0.3 and 3.5Gyr after closest approach) ! •Roettiger, Stone and Mushotzky 1998 first detailed simulations of a merger- trying to match A754! 29! X-ray Images of Mergers ! A85! • A754 (Henry et al 2004) pressure and x-ray intensity images ! 30! • Movie from http:// www.mult idark.org/ MultiDark /pages/ ImagesMo vies.jsp! • made by G.
    [Show full text]
  • Selected Galaxy Clusters at 0 < Z <
    THE EVOLUTION OF THE INTRACLUSTER MEDIUM METALLICITY IN SUNYAEV ZEL’DOVICH- SELECTED GALAXY CLUSTERS AT 0 < Z < 1.5 The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation McDonald, M., et al. “THE EVOLUTION OF THE INTRACLUSTER MEDIUM METALLICITY IN SUNYAEV ZEL’DOVICH-SELECTED GALAXY CLUSTERS AT 0 < z < 1.5.” The Astrophysical Journal, vol. 826, no. 2, July 2016, p. 124. © 2016. The American Astronomical Society As Published http://dx.doi.org/10.3847/0004-637X/826/2/124 Publisher American Astronomical Society Version Final published version Citable link http://hdl.handle.net/1721.1/116266 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 826:124 (11pp), 2016 August 1 doi:10.3847/0004-637X/826/2/124 © 2016. The American Astronomical Society. All rights reserved. THE EVOLUTION OF THE INTRACLUSTER MEDIUM METALLICITY IN SUNYAEV ZEL’DOVICH-SELECTED GALAXY CLUSTERS AT 0<z<1.5 M. McDonald1, E. Bulbul1, T. de Haan2, E. D. Miller1, B. A. Benson3,4,5, L. E. Bleem4,6, M. Brodwin7, J. E. Carlstrom4,5, I. Chiu8,9, W. R. Forman10, J. Hlavacek-Larrondo11, G. P. Garmire12, N. Gupta8,9,13, J. J. Mohr8,9,13, C. L. Reichardt14, A. Saro8,9, B. Stalder15, A. A. Stark10, and J. D. Vieira16 1 Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; [email protected] 2 Department of Physics, University of California, Berkeley, CA 94720, USA 3 Fermi National Accelerator Laboratory, Batavia, IL 60510-0500, USA 4 Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA 5 Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA 6 Argonne National Laboratory, 9700 S.
    [Show full text]