<<

Index

absorption dips, 111 emission, 8, 16, 18, 19, 120, 205 acceptance probability, 199 external irradiation, 16, 164, 165, accreted–matter nuclear–burning 167, 174 timescale, 98, 245, 247 geometry, xii, 113 accreting black holes, 4, 10, 13, 15, 18, heating, 162, 174 20 in cataclysmic variables, 137, 162ff accreting neutron , xii, 11, 87, 88, as dominant CV source, 150 90 , 18, 101, 105 accreting white dwarfs, 142 Lyα emission, 140, 141 flow(s), xii, 16–18, 87ff models, 9, 18, 143, 161, 162, 165, 169 models, 14, 126 annulus model calculation, 163 from secondary wind, 126, 144 “standard model”, 162, 169, 170 low rates, 137, 139, 140 optical depth, 118, 164–167, 171, 172 of , 236 polarization, 16, 210 rates in LARPS, 144 properties table, 165 spin equilibrium, 95, 97 radius, 16, 114, 116, 119, 165 spin–up, 91, 95–97 shadowing effects, 120, 121, 167 states, 139, 143, 151 synthetic spectrum, 162ff torques, 94, 96 thermal structure, 9, 19, 94, 161, 162, accretion column(s), 111, 112, 116ff, 170, 172 123, 137, 138, 144, 148, 150 viscosity parameter, 163, 166, 172 model, 123 accretion–powered systems, 87ff, 111ff (s), xii, xiii, 6, 7, 9, 10, MSPs (millisecond ), 88ff 16, 20, 87ff, 102, 112, 137ff, 147ff, 161ff, 205 QPOs (quasi-periodic oscillations), and Reynolds number, 171, 172 7ff, 93, 94, 99, 103 annulus line spectrum synthesis, 163 brightness oscillations, 90 clumpiness, 101–103 X-ray MSPs, 91 continuum, 7–9, 15ff, 138ff, 161, Active Galactic Nuclei (AGN), 16 166ff Adaptive Random Search algorithm, database, 162, 164 198 effective temperature, 162 adjustable 3–body parameters, 194 259 260 Index

Algol(s), 154 Penrose process, 15 cool, 154 scale length, 65 mass loss, 231, 232, 244, 246, 247 Schwarzschild black holes, 4, 16, 17 model, 208, 219 spin, 14ff,64 paradox, xi, 154, 208, 231, 233 stellar sized, 3, 5, 13, 20, 21 systems, 153, 154, 208, 219, 234, 244 X–ray spectrum, 6, 7 as progenitors of non–magnetic bloating factor of secondary stars, 152 CV s, 154, 158 as merger product, 237 temperature, 154 boundary layer emission, 14, 139, 141, All Sky Monitor on RXTE, 184 144, 174 angular momentum, x, xi, 4, 87, 128, broken–contact states, 215–217 129, 235, 245, 247 brown dwarfs, 207 accreted, 87 as secondary stars, 137, 144, 157 black hole, 4, 65 Burgess Shale, 206 constraint, 87 burning front thickness, 97 coupling radius, 94, 95 Burst and Transient Source Experiment gravitational lenses, 64, 65 (BATSE), 121, 126, 184 , 93, 97 burst tail oscillations, 98 losses, 234–237 from magnetic braking, 139 cataclysmic variable(s) (CV’s), xii, xiii, orbital, 55 135ff, 147ff, 161ff, 231, 233, 236, total, 56 242 transfer, 93 accretion disks, xiii, 162ff ATLAS, 209 circumbinary disk, 157, 158 ATM2000, 195 components, 137, 150, 234 Balmer jumps disk models, 139, 162, 168, 172 in dwarf novae, 161 emission lines, 170, 171 in CV s, 161 calculated from irradiated Binary Maker, 193, 196, 197 secondaries, 154 BINSYN, 163, 165, 167–170, 174, 209 cyclotron emission, 137, 144 bipolar structure, 235 evolution, 139, 147, 149, 154 black hole(s), xi, 3, 7, 87 dynamically stable, 162 accreting, 4, 9, 10, 13, 15, 18 IR spectroscopy, 151–154 angular momentum, 4, 65 K band diagnostic features, 151 binaries, xi, 3, 4, 6, 7, 10, 11, 13–17, long-period, 255 26, 33, 65, 74, 75, 80, 100, 154, low transfer rates, 139 191 model visibility key, 168 immersed in magnetic fields, 83 orbital periods, 147, 148 in globular clusters, 83 minimum periods, 140, 148 in the Milky Way, 6 secondary star, 137, 147 list of, 5 age at contact onset, 149 scale drawings, 6 core mass-radius relation, 149 vs. neutron star binaries, 14 internal energy generation, 148 candidates, 3, 6, 11 secondary Roche Lobe, 152 event horizon, 4 variability, 137, 147 Kerr black holes, 4, 15, 16 magnetic systems, 137, 144, 147, 148, spin, 4, 14, 15, 18, 20, 21 153, 156 minimum mass, 5 field induced currents, 156 Index 261

spectral energy distributions, 138, phases, 238, 243, 254 139, 142, 144, 151 duration, 4 synthetic spectra, 167, 168 Compton Gamma Ray Observatory, 184 TOAD class, 157 condensed polytrope models, 235 X-ray emission, 137 conservative mass transfer, 242, 243, Chandra X–ray Observatory, 14 245, 247 Chandrasekhar limit, 25, 248 contact vs. over–contact designations, x channeled polar flow, 93 continuum–fitting method, 18 circumbinary disk(s), 157, 158 cool Algols, 154 in CV s, 157 Coriolis effects on neutron star, 97, 98 in interacting binaries, 158 coronae in CV s, 139, 144, 174 in short–period magnetic CV s, 157 critical surface of asymptotic clusters (stellar) giants, 250 47 Tuc, 193, 211 cyclotron emission in CV’s, 137, 144 Hyades, 234, 237 M67, 240 detached binary (s), x NGC 6440, 89 evolution phase, 233 CNO processing, 141, 149, 153, 154 differential corrections, 181, 182, 192, onset of burning, 149, 150 193, 195, 197 CO emission in CV systems, 157 direct distance estimation method, 181, coalescing compact systems, 23 183, 194 black holes, 15, 21 direction set method(s), 191, 192 neutron stars, 24, 27, 38, 44, 45, 48 disk instability model (DIM ), 166, coherent X-ray oscillations, 10, 98 169–173 colliding black holes, 33 parameters, 114, 163 common envelope(s), precession, xii, 114, 115, 117, 118 ejection, 234ff Doppler modeling, xi, 168, 207, 208, 210 efficiencies, 234, 236, 238, 248 double system, xii, 24, 53ff, 63, energy content, 236, 250, 251 65, 74, 78–81 energy density, 251 mass-mass diagram, 60 gravitational potential energy, double systems, 233, 242ff 250–252 first transfer phase, 233, 242, 243, evolution, 231ff 245, 254 alternative, 242 median orbital period, 243 constraints, 237, 254 system formation, 254 energetics, 235–237 dwarf novae, 142, 148, 161, 162, 170 entropy differences, 236, 250 outbursts, 154, 162, 170, 173 final orbital energy, 234ff dynamical time scale mass exchange, flaw, 242 233 recombination energy, 233, 250ff dynamically stable CV s, 161ff second phase, 245 time scales, 234 eccentric orbit(s) initial conditions circularization of, 34 angular momentum, 235, 236, 254 in systems, 58 envelope energy, 235 in X-ray binary GX301-2, 126, 129 orbital eccentricity, 237 modeling of, 179, 182, 185, 194, 225 orbital energy, 235 of PSR J0737-3039, 54, 63, 79 particle vs. photon pressures, 251, usefulness of, 54 252 eclipse mapping, 162, 205 262 Index

Eddington approximation, 164 light bending, 123 Eddington critical rate, 93 microlensing, 64 Eddington flux units, 167 of pulsars, xii, 64, 65, 70, 73, 82 Eddington limit, 10 weak, 64 ellipsoidal variation gravitational radiation, xii, 33, 96, 139, in GP Vel, 183, 184 147 in T CrB, 248 excitation of r-waves, 96 envelope ejection, 250 gravitational waves, 13, 21, 23ff equatorial rings, 235 quadrupole, 59 equilibrium spin search parameters, 37–39, 42 frequency, 94 spin-breaking effects, 87, 96, 139 period, 95 torques, 96 ESPaDOnS, 210 event horizon, 4, 13, 14 Hall effect in CV s, 174 EXOSAT, 16, 112, 126 helium enriched objects expanding shell model, 207 degenerate objects, 147, 154, 243, 247 extra–solar , 191 sub–dwarfs, 242 extreme ultraviolet, 120 white dwarfs, 242, 243 Extreme Ultraviolet Explorer (EUVE), white dwarf remnants, 247 112 helium ignition, 238, 240 High Mass X-ray Binaries (HMXBs), fan beam, 115, 123, 125, 126 126, 179, 186, 188 Fe K fluorescence line, 7, 8, 15, 16, 20, high state (high mass transfer rate), 10, 21 112, 120, 143, 148, 162, 170, 171, fluid ocean on neutron stars, 97 173 flux calibrations, 181 high–frequency timing noise, 14 hot spot gamma–ray bursts, 3, 47 on secondary stars, 224, 225 gas stream, 127–129, 148 retention in white dwarfs, 137–139, Gemini Telescopes, 157 144, 168, 224 general relativity (GR), 4–7 visibility, 139 predictions, 53, 54, 105 hybrid white dwarfs, 242 polarization, effects on, 16 hydrogen ionization zone, 250 ray–tracing methods, 17 hypernovae, 3 resonances, 11, 17 ignition on neutron star surface, 97 Shapiro delay, 59, 75–77 impact parameter, 64, 65 strong–field limit, 6, 87 incident flux at secondary CV probes of, 10, 87 components, 155 test of, 54, 58–60 inner accretion disks, xii, 7, 9, 17 genetic algorithms (GA), 191, 205, 206 inner disk edge, xii, 114–119 (s), x, 83, 89, 97, 193, innermost stable orbit(s), 104 211 circular orbit(s), 4, 18, 87, 95, 105 Gould, Stephen J., 206 interacting binary stars, ix, 147, 154, graphical user interface, 197 233 gravitational lensing, 63 intermediate polars (IPs), 138, 148 attenuation, 80, 81 inverse compton emission, 10 by black holes, 64, 74 IRWG infrared passbands, 209, 210 geometry, 66 intensity enhancement, 77 Jeans–mode mass loss, 243 Index 263

Keck Telescope, 157 interacting binaries, 233 Kerr solution post–common envelope binaries, 248 black hole, 4, 16, 83 Low Accretion Rate Polars (LARPs), metric tensor, 13, 15 144 Kerr spacetime, 64 low mass KERRBB, 20, 21 giants, 234, 240, 250 secondaries, 148, 154, 156, 158 1 norm, 192 transfer rates, 138 2 norm, 192 low mass systems Lagrangian point(s), 196 cataclysmic variables, 148, 156, 158, L1, 147, 148 234 Lens-Thirring metric, 64 helium star remnants, 245, 247 Levenberg-Marquardt (damped X-ray binaries (LMXBs), xii, 87ff, least-squares) program, 192, 200, 111, 154 201, 205 low state(s) (low mass transfer rate), convergence engine, 192 139, 152 method, 192 polar depiction, 156, 157 (s), x, xii, 7, 79, 180, 181, in –like variables, 173 183, 184, 191, 206, 217, 222 Lyα line in cataclysmic variables, 140 35-day duration, 113 analysis, x, xi, 184, 191, 194, 207, MACHOS,69 209, 222 magnetic accretion annulus, 147 broken contact, 216 magnetic and non–magnetic CV CV, xiii, 137–139, 144, 162, 167 secondary star differences, 153 disk precession, xii magnetic braking, 147 distorted, 217, 218 by dipole field, 95 double pulsar, 74, 79–83 in cataclysmic variables, 139 ellipsoidal, 183 of accretion torque, 87 infrared, 209 magnetic field(s), 91, 94, 103, 144, 150 LMXB, 112–119, 122, 128, 129 around black holes, 83 observables, 192, 193, 208, 209 decrease timescales, 94 parameters, 5, 180ff, 191ff, 218ff disk, 123, 173 solutions, 205, 217–219, 223, 226, 240 in cataclysmic variables, 137, 144ff, synthetic, 167, 168, 196ff, 222 156, 173, 174 W UMa type, 216 of neutron stars, 54, 87ff X-ray, 7, 183, 184, 188 of pulsars, 54, 80, 95–97 Light Synthesis Program, 192 of secondary star, 174 light-time effect, 182 magnetically funnelled accretion LIGO, 13, 30ff streams, 148 limb–darkening coefficients, 195 magnetically-induced stellar activity in applications, 167 CV secondaries, 158 limit cycle instability model, 162 magneto-rotational instability (MRI ), line–broadening effects, 163 162, 173, 174 line profile(s), 15, 16, 21, 155, 171, 198 magnification factor, 63ff line profile asymmetries, 16 mass constraints, 130, 131 LISA, 13, 30, 50 mass function, 4, 60, 68, 75, 126, 248 long–period mass loss cataclysmic variables (CV s), 255 in Algol systems, 232, 244 double white dwarf binaries, 254 in CVs, 149 264 Index

in double white dwarfs, 233, 254 missions mechanisms, xi Compton Gamma Ray Observatory, via stellar winds, 128, 137, 247 184 mass ratio reversal, 241 EUVE (Extreme Ultraviolet mass transfer Explorer), 122 conservative, 217, 245, 247 EXOSAT, 16, 112 core helium burning, 236 FUSE, 137, 139, 140, 143–145, 164, dynamical time-scale, 245 170, 173 in Algols, 231 GALEX, 137, 144 in CVs, 137ff, 172–174 GINGA, 123 in double white dwarfs, 243 HST, 137, 139–142, 144, 164, 170 in dwarf novae, 162 IUE (International Ultraviolet in neutron star-white dwarf binaries, Explorer), 240 94 ROTSE–1 sky patrol, 216 in polars, 137, 144 RXTE (Rossi X-ray Timing in W UMa systems, 225 Explorer), xii, 7, 10, 112ff, 123, nuclear timescale, 143, 247 127–129, 184, 185 onset, 139, 235ff TENMA, 127 quasi-conservative, 242, 243, 254, 255 modeling of disk systems, 143 rates, large, 142, 144, 148, 162, 170, molecular features in CV s, 151, 157, 171 158, 251 rates in nova–like systems, 140, 162, Monte Carlo 173 search methods, 33, 46, 206 second-phase, 245, 254 simulations, 43, 59 slow episode, 233 stream direction, 137 natural selection, 205, 206 terminal phase, 243ff near–contact binaries, 217 thermal timescale, 243 Nelder & Mead simplex algorithm tidal, 248, 255 (NMS), 198 mass–radius diagram, 238, 241, 245 neural networks, 193, 206 mass–radius relation neutron star(s), xi, xii, 5, 14, 87ff, calculated, 125 96–100, 103, 105 for CV secondaries, 148, 149 accretion luminosity, 87, 101, 104, 141 for non-rotating stars, 104 binaries, xi, xiii, 14, 23ff, 46, 54, 65, massive white dwarfs, 233, 234, 245, 255 120 matched filtering, 36, 38, 40 burning front, 97 maximum entropy techniques, 209 colliding, 33, 35, 46, 48 maximum likelihood estimator, 192 double, 54 mean density at RLO constrained by emission, 14, 114ff, 123 orbital period, 238 equation of state, 38, 47, 60, 104 Metropolis criterion, 199 flares, 126 microlensing, 63ff, 77, 83 gamma ray burst association, 47 Milky Way black hole binaries, 6 gravitational lensing, 63ff, 123 millisecond pulsar(s) (MSPs), 88ff gravitational waves, 23ff magnetic fields, 88, 91ff in common envelope systems, 54 production, 54, 92ff light curve models, 111ff, 183, 184, progenitor spin rates, 87, 91, 92, 97 209 spin frequency, 88ff, 184 magnetic fields, 54, 88, 91ff spin–relaxation timescale, 94 mass, 5, 53, 59, 83 Index 265

mass-radius constraint, 47, 103, 104, over–contact (or ‘contact’) binaries, vi, 125, 126, 128 x, 180, 205, 207, 209, 215 pulsars, 54 as merging stars, x quadrupole configuration, 34 designation, x radius, 53, 64, 103, 104, 116, 125 in hierarchical systems, x recycled, 54 P Cygni features (absence), 173 side–view, 93 pencil beam, 115, 123, 125, 126 size effects, 47 Penrose Process, 15 spin rates, 54, 87, 88, 90, 96 period evolution time–scale, 96, 140, spin–up, 94 255 surface period–radius relation for CV fluid ocean, 97 secondaries, 152 phenomena, 14 phased–locked oscillations, 93 r-waves, 98 PHOEBE, 192, 193, 197 variable-frequency QPOs, 11, 13 PHOENIX, 208, 209 vertical oscillations, 101 photometry calibration, 181 neutron-star–white-dwarf binary photon index, 7, 8 systems, 94 Pikaia gracilens, 206 nova–like (NL) systems, 142, 143, 161, (e), 234, 235, 248, 250 162, 173 bipolar structure, 235 nova(e), ix, xi eclipsing systems, 234 dwarf, 139, 142, 148, 150, 154, 161, ejection, 234, 248, 250 162, 170, 173 planetary systems recurrent, 233, 248 eclipses, 191 transits, 210, 211 X-ray, 3, 4,7, 10, 14 polar jets, 235 nuclear evolution energy source, 247, polarimetry, 15–18, 20 250, 252, 254 Polar(s), 137, 144, 145, 148, 150, 151, nuclear time–scale, 243, 245, 247, 254 156 nuclear–powered X-ray sources, 88, 89, artist’s view, 156 90 emitting components, 150, 205 emissions, 93 Intermediate, 138, 148 oscillations, 88ff,97ff low-accretion rate (LARP), 144 pulsars, 89, 90, 94 models, 114ff, 144, 145 prototype (AM Her), 144 short–period systems, 157 occultation(s), 115ff, 211 synthetic spectrum, 169 oldest white dwarfs in CV s, 145 post–Algol systems optically thick accretion disks, 161, 164, binary examples, 240, 242 166, 171–174 evolution, 153 optically thin accretion disks, 151, 164, post-common-envelope evolution, 238 170–173, 208 post-Keplerian parameters, 58, 59, 60 orbital power density spectrum, 7 elements/parameters, 58, 64, 65, 70, pre-cataclysmic variables, 238, 243 79, 126, 148, 205 precession inclination, 5, 60, 65, 83, 130, 168, neutron star model, 123 169, 242 of disk, 114ff orbital angular momentum, 55, 234, of jets; model, 207, 208 236, 243, 254 of pulsar spin axis, 56 266 Index prograde orbits, 4 overflow, xi, 235 pulsar(s) (see also neutron star(s)) radius, 130, 152, 155, 234ff in globular clusters, 89, 97 Roche model used for CV s, 168 pulse profiles, 64ff, 112, 120, 123, Roche surface, 130 125, 184 Rossi X-ray Timing Explorer (RXTE), spin frequencies, 55, 57, 58, 87ff xii, 87, 88, 184 pulsating white dwarfs, 137, 142 rotation–powered pulsars, 91, 92, 95, 97 , 137, 142 emission spin–down, 91, 92 pulse shape (X–ray sources) MSP production, 92ff changes, 122, 123 radio sources, 91 evolution, 115 pulse-arrival times, 65, 182 Schwarzschild black hole, 4, 16, 17 quasi–conservative mass transfer, 240, horizon, 72 241, 252 lens, 66, 67, 71 quasi–periodic gravitational waves, 23, spacetime, 64, 66, 73 33 second dredge-up phase, 238 quasi–periodic oscillations (QPOs), xii, secondary star(s) 7, 10ff, 89, 90–93, 99–105 adiabatic expansion, 247 quiescent as mass transfer, 137, 147, 207 accretion disks, 139, 171, 174 as seen from a CV ’s white dwarf, 155 CV systems, 172, 173 CNO processing, 153 dwarf novae, 170 degeneracy, 139 radio–emitting pulsars, 87, 96 envelope expulsion, 54 recombination Hα emission, 155 energy, 233, 250ff in CV s, 147ff in common envelope, 233, 250, 251, IR spectroscopy, 151, 153 254, 255 irradiation by accretion disk, 167 trigger, 250 irradiation effects, 154–156 red shift parameter, 58 , 150 reflection effect, xi, 180 magnetic field effects, 174 relativistic jets, 13, 15, 19, 20 properties, 149, 150 Reynolds number, 163, 166, 171, 172, mass function provider, 5 175 mass-period relation, 148, 149 in accretion disks, 163, 166, 172 mass-radius relation, 148 relation to viscosity parameter α, 175 model, 209 Roche lobe, xi, 130, 153, 230, 258 nuclear evolution, 54 constraints on radial velocities, 228 density of secondary, 238 radius-period relations, 152 evolution, 238ff spectral features, 138 inclination, 131 spectral types, 151–153, 158, 162 period, 238–240 starspot activity, 148, 156, 225 expansion into, by synthetic spectrum, 166, 168 companion, 250 wind, 144 filling by primary, 235–237 semi–detached system, xi, filling by secondary, 121, 122, 131, 180 147, 152, 168, 207, 208, 235–238 shadowing by accretion disk, 167 limits on secondary, 152, 153, 238 Shapiro delay, 58, 59, 69ff,83 Index 267 shell–burning GX 5−1, 91 helium star remnants, 247 H 1705–250 (Nova Oph 77), 5, 6 hypothesis in asymptotic giants, 250 H 1743–322, 11, 12 SHELLSPEC, 207–209 Hercules X-1, 111ff short-period binary creation, 63, 233 HETE J1900.1–2455, 89 signal template, 38 HS 2331+3905, 142 simplex IGR J00291+5934, 89 algorithm, 192ff IGR J17191–2821, 89 method, 191ff KS 1731-260, 89 program, 200ff LMC X–1, 5, 6 simulated annealing, 191ff LMC X–3, 4–6, 19, 20 Sloan Digital Sky Survey (SDSS), 137, M33 X–7, 5 138, 142, 170 MXB 1659–298, 89 sonic–point model PG 1115+166, 254 beat frequency model, 101, 103, 105 PSR (B) 1913+16, xii, 24, 54 modifications, 101–103 PSR J0737-3039AB, xii, 53ff, 63, 65, radius, 101 74, 78ff with spin–resonance, 101 RX J0806.3+1527, xiii sources (see also stars/individual) RX J1914.4+2456, xiii 4U 0614+09, 90, 104 Sanders 1040 (in M67), 240 4U 1223−62, 126 SAX J1748.9−2021, 89 4U 1543–475, 5, 6, 20, 89, 104 SAX J1750.8−2900, 89 4U 1608−52, 89, 96, 101 SAX J1808.4−3658, 88–93, 99, 100 4U 1630–12, 47 SAX J1819.3−2525, 5, 6 4U 1636−53, 89, 90, 100 Sco X–1, 100, 101 4U 1702–429, 89 SDSS J0131, 138, 142 4U 1728–34, 89 SDSS J0748, 138 4U 1916–05, 89 SDSS A 0620–003, 5, 6 J0809, 169, 170, 173 A 1744–316, 89 SDSS J1553, 138, 144 Abell 63, 234 SWIFT J1756.9–2508, 89 Aql X-1, 89 Vela X-1/GP Vel, 179, 183–185, 187 B1820−30A, 97 pulse arrival variation, 185 B1821−24, 97 X 1743–29, 89 − Cir X–1, 90, 91, 100 XTE J0929 314, 89, 103 Cyg X–1, 5, 6, 11, 16 XTE J1118+480, 5, 6, 9 EXO 0748–676, 89, 96 XTE J1550–564, 5, 6, 11, 12, 17 Fin 381, 225 XTE J1650–500, 5, 17 GRO J0422+32, 5, 6 XTE J1655–40, 5, 6, 8, 9, 17, 19, 20 GRO J1655–40, 5ff, 19, 20 XTE J1739−285, 89, 96 GRS 1009–45, 5, 6 XTE J1751–305, 89, 103 GRS 1915+105, 5, 6, 11, 12, 17, 19, XTE J1807.4−294, 89–92, 96, 99, 100 20 XTE J1814−338, 88, 89, 93, 103 GS 1354–64, 5 XTE J1859+226, 5, 6 GS 1826–238, 89 Southeastern Association for Research GS 2000+251, 5, 6 Astronomy (SARA), 219, 222 GS 2023+25 (V404 Cyg), 5, 6 spectral resolution of IR spectrographs, GX 301–2, 111, 126ff 151 GX 339–4, 5–7, 10, 17 spectropolarimetry, 209, 210 268 Index spin–evolution HZ Her (Her X–1), 111ff diagram, 95 VW Hyi, 162 spin parameter, 17–21, 58, 65 AR Lac, 209 time scales, 96 RT Lac, 209 Spitzer Space Telescope, 157 SS Lac, 205 star(s) GW Lib, 141, 142 classes MV Lyr, 143, 170 δ Scuti, 205 V651 Mon, 154 Algol systems, 153, 154, 219, 234 Nova Mus 1991, 5, 6, 10 AM Her stars (polars ), 137, 144, RS Oph, 233, 248, 254, 255 145, 148ff V2388 Oph, 215, 218, 225–228 cataclysmic variables (q.v.) Nova Oph 1977 (H1705+250), 5 dwarf nova(e) (q.v.) IP Peg, 205 FK Comae stars, 210 WZ Sge, 140, 157, 171 (e), 3 V4641 Sgr (SAX J1819.3–2525), 5, intermediate polars, 138, 148 17 nova(e), ix, xi RW Sex, 161 nova-like systems, 142, 161, 162, SW Sex, 170 173 θ2 Tau, 205 polars (AM Her stars) (q.v.) V471 Tau, 155, 234, 237, 238 recurrent nova(e), 233, 248 V781 Tau, 199 RS CVn–type systems, 155 DW UMa, 143 (e), xi, xiii, 24 SW UMa, 140, 141 SU UMa–type systems, 140, 141, GP Vel (Vela X–1), 179, 183–185, 172 187, 188 SW Sex systems, 170 IX Vel, 161 symbiotic stars, 248 W UMa systems, ix, 215ff starspot–activity cycles, xi X-ray nova(e), 3, 4, 7, 10, 14 in CV’s, 148, 207 individual stellar activity in CV secondaries, HD 163151, 225 154–156, 158 HD 185510, 240 model(s), 18, 98, HD 199178, 210 161, 163, 167, 179, 180, 183, 186, HD 209458b, 211 194, 219 Procyon, 153 stellar envelope total energy, 251 Sirius, 153 , xi, 111, 126, 127, 129 FF Aqr, 154 accretion, 126 V1379 Aql (HD 185510), 240 burst signal source, 24 BH Cas, 205 mass loss, 237, 247, 254 HT Cas, 172 in double white dwarf progenitors, AY Cet, 154, 240 246, 247 T CrB, 81, 233, 248, 254, 255 reprocessing, 127 W Crv, 215ff structure, 111 SS Cyg, 139, 151 stochastic V404 Cyg (H2023+25), 5 background signals, 24, 25, 33 AB Dor, 210 effects of dynamic tides, 183 AS Eri, 234 methods, 205, 206 EF Eri, 144 noise, 74 AM Her, 144 Stokes parameters, 16 Index 269 supernova(e) effect on accretion disk temperature, core–collapse models, 33 164 explosions, xi, xiii, 53, 54, 56 kinematic, 163, 164 superoutburst, 157, 162 model options, 166 symbiotic stars, 248 parameterization, 162 SYNSPEC, 139, 163, 166–169, 209 shear in disks, vertical variation systemic losses effect, 174 angular momentum loss, 234, 236, visibility key, 68 247 visibility of low accretion rate systems, mass loss, 233, 234, 236, 238, 247, 255 137, 139, 140

Tabu search method, 206, 207 W UMa systems, x, xi, 215ff thermal catastrophe, 164, 174 A– and W–types, 216 thermal evaporative instability, 174 ages, x thermal relaxation oscillations binaries, ix (TRO’s), 216, 141, 162 frequency of occurrence, 216 model, 215 in multiple systems, x, 215, 218, 226 thermal timescale mass–luminosity relation, 216 mass transfer, 243, 247 white dwarf(s), xi, 147, 231 vs. common envelope evolution, 235, accreting, xii, 137, 140, 147 236 binaries, xiii, 138, 233, 234, 242 thermally–pulsing asymptotic giants, Chandrasekhar mass limit, 94, 140 237–239, 250 composition, 141, 242 thermonuclear bursts cool disk accretion, 140, 141 as X-ray sources, 92, 93 cooling age, 234, 237 in MSPs, 88 cooling curve, 145, 240 of accelerating neutron stars, 88 double, 243, 245, 247 type I, 14 heating with high accretion rates, 143 TLUSTY, 139, 163ff helium, 234, 242ff, 254 TOAD class of CV s, 157 hot spot models, 144 tomography, 207 hybrid, 242 tuning parameters, 199, 200 instability, strip(s), 137, 142 type I bursts, 14, 97, 98 magnetic fields, 137, 144, 147, X–ray bursts, 89, 93, 97 156–158 Type Ia supernova(e), xiii magnetic poles, 148 mass, 25, 147, 153, 237, 240, 245, 255 vertical energy transport in accretion mass-ratio relation, 139, 240 disks, 174 modeling, 137ff vertical viscosity profile, 174 primary star, 147 Very Large Telescope (VLT ), 157 progenitors, 149, 234, 237, 241, 254 virial theorem pulsating model, 142 constraint, 251 Roche lobe radius, 248 for stellar interiors, 251 rotation, 141 viscosity, 162ff spectra, 138ff, 156 dissipation source in accretion disks, SED models, 140, 141, 162 163 temperatures, 137ff, 154, 156, 162 due to magnetorotational instability, in Polars, 144 173 wind loss, 247 270 Index

Wilson–Devinney model, 184, 191 oscillations, 87, 88, 90, 93, 97ff program, 192–197, 200, 208, 210, 211 polarimetry, 15, 16 WD2007, 192ff, 204 pulsars, 90, 91, 123, 183–185 wd98k93, 194, 195, 211 distance estimation, 179ff modeling, xii X–ray(s) pulse(s), 111, 182, 183, 184 absorption by winds, 127 arrival times, 184 binary systems, 3, 87ff, 111ff profile(s), 112, 120 individual systems (see timing, 111 sources/stars) reflection, 116, 120, 121, 126 orbital elements, 182 spectrum, 16, 18, 19, 127 distances, 179 states, 8 burst(s), 89, 93, 97, 98 hard state, 9, 10, 16, 116, 119, 120 continuum fitting, 15 high and low states, 111, 112, 119, eclipse, 55, 131, 179ff 120 heating of accretion disk, 174 steep power law, 10 heating of secondary, 120 XSPEC, 16, 17, 20 irradiation of accretion disks, 174 jets, 15 line profiles, 16, 88 Yonsei–Yale isochrones, 193 luminosities, 16 neutron star emission, 126, 127 Zeeman , 210 novae, 3, 4, 7, 10, 14 modeling, 207 occultation by accretion disk, 123 zero–potential surface, xi