Part I: 1865-1898
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematics Is a Gentleman's Art: Analysis and Synthesis in American College Geometry Teaching, 1790-1840 Amy K
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 Amy K. Ackerberg-Hastings Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Higher Education and Teaching Commons, History of Science, Technology, and Medicine Commons, and the Science and Mathematics Education Commons Recommended Citation Ackerberg-Hastings, Amy K., "Mathematics is a gentleman's art: Analysis and synthesis in American college geometry teaching, 1790-1840 " (2000). Retrospective Theses and Dissertations. 12669. https://lib.dr.iastate.edu/rtd/12669 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margwis, and improper alignment can adversely affect reproduction. in the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E
BOOK REVIEW Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity Reviewed by David E. Rowe Einstein’s Italian modern Italy. Nor does the author shy away from topics Mathematicians: like how Ricci developed his absolute differential calculus Ricci, Levi-Civita, and the as a generalization of E. B. Christoffel’s (1829–1900) work Birth of General Relativity on quadratic differential forms or why it served as a key By Judith R. Goodstein tool for Einstein in his efforts to generalize the special theory of relativity in order to incorporate gravitation. In This delightful little book re- like manner, she describes how Levi-Civita was able to sulted from the author’s long- give a clear geometric interpretation of curvature effects standing enchantment with Tul- in Einstein’s theory by appealing to his concept of parallel lio Levi-Civita (1873–1941), his displacement of vectors (see below). For these and other mentor Gregorio Ricci Curbastro topics, Goodstein draws on and cites a great deal of the (1853–1925), and the special AMS, 2018, 211 pp. 211 AMS, 2018, vast secondary literature produced in recent decades by the world that these and other Ital- “Einstein industry,” in particular the ongoing project that ian mathematicians occupied and helped to shape. The has produced the first 15 volumes of The Collected Papers importance of their work for Einstein’s general theory of of Albert Einstein [CPAE 1–15, 1987–2018]. relativity is one of the more celebrated topics in the history Her account proceeds in three parts spread out over of modern mathematical physics; this is told, for example, twelve chapters, the first seven of which cover episodes in [Pais 1982], the standard biography of Einstein. -
Lecture Notes for Felix Klein Lectures
Preprint typeset in JHEP style - HYPER VERSION Lecture Notes for Felix Klein Lectures Gregory W. Moore Abstract: These are lecture notes for a series of talks at the Hausdorff Mathematical Institute, Bonn, Oct. 1-11, 2012 December 5, 2012 Contents 1. Prologue 7 2. Lecture 1, Monday Oct. 1: Introduction: (2,0) Theory and Physical Mathematics 7 2.1 Quantum Field Theory 8 2.1.1 Extended QFT, defects, and bordism categories 9 2.1.2 Traditional Wilsonian Viewpoint 12 2.2 Compactification, Low Energy Limit, and Reduction 13 2.3 Relations between theories 15 3. Background material on superconformal and super-Poincar´ealgebras 18 3.1 Why study these? 18 3.2 Poincar´eand conformal symmetry 18 3.3 Super-Poincar´ealgebras 19 3.4 Superconformal algebras 20 3.5 Six-dimensional superconformal algebras 21 3.5.1 Some group theory 21 3.5.2 The (2, 0) superconformal algebra SC(M1,5|32) 23 3.6 d = 6 (2, 0) super-Poincar´e SP(M1,5|16) and the central charge extensions 24 3.7 Compactification and preserved supersymmetries 25 3.7.1 Emergent symmetries 26 3.7.2 Partial Topological Twisting 26 3.7.3 Embedded Four-dimensional = 2 algebras and defects 28 N 3.8 Unitary Representations of the (2, 0) algebra 29 3.9 List of topological twists of the (2, 0) algebra 29 4. Four-dimensional BPS States and (primitive) Wall-Crossing 30 4.1 The d = 4, = 2 super-Poincar´ealgebra SP(M1,3|8). 30 N 4.2 BPS particle representations of four-dimensional = 2 superpoincar´eal- N gebras 31 4.2.1 Particle representations 31 4.2.2 The half-hypermultiplet 33 4.2.3 Long representations 34 -
Karl Weierstraß – Zum 200. Geburtstag „Alles Im Leben Kommt Doch Leider Zu Spät“ Reinhard Bölling Universität Potsdam, Institut Für Mathematik Prolog Nunmehr Im 74
1 Karl Weierstraß – zum 200. Geburtstag „Alles im Leben kommt doch leider zu spät“ Reinhard Bölling Universität Potsdam, Institut für Mathematik Prolog Nunmehr im 74. Lebensjahr stehend, scheint es sehr wahrscheinlich, dass dies mein einziger und letzter Beitrag über Karl Weierstraß für die Mediathek meiner ehemaligen Potsdamer Arbeitsstätte sein dürfte. Deshalb erlaube ich mir, einige persönliche Bemerkungen voranzustellen. Am 9. November 1989 ging die Nachricht von der Öffnung der Berliner Mauer um die Welt. Am Tag darauf schrieb mir mein Freund in Stockholm: „Herzlich willkommen!“ Ich besorgte das damals noch erforderliche Visum in der Botschaft Schwedens und fuhr im Januar 1990 nach Stockholm. Endlich konnte ich das Mittag- Leffler-Institut in Djursholm, im nördlichen Randgebiet Stockholms gelegen, besuchen. Dort befinden sich umfangreiche Teile des Nachlasses von Weierstraß und Kowalewskaja, die von Mittag-Leffler zusammengetragen worden waren. Ich hatte meine Arbeit am Briefwechsel zwischen Weierstraß und Kowalewskaja, die meine erste mathematikhistorische Publikation werden sollte, vom Inhalt her abgeschlossen. Das Manuskript lag in nahezu satzfertiger Form vor und sollte dem Verlag übergeben werden. Geradezu selbstverständlich wäre es für diese Arbeit gewesen, die Archivalien im Mittag-Leffler-Institut zu studieren. Aber auch als Mitarbeiter des Karl-Weierstraß- Institutes für Mathematik in Ostberlin gehörte ich nicht zu denen, die man ins westliche Ausland reisen ließ. – Nun konnte ich mir also endlich einen ersten Überblick über die Archivalien im Mittag-Leffler-Institut verschaffen. Ich studierte in jenen Tagen ohne Unterbrechung von morgens bis abends Schriftstücke, Dokumente usw. aus dem dortigen Archiv, denn mir stand nur eine Woche zur Verfügung. Am zweiten Tag in Djursholm entdeckte ich unter Papieren ganz anderen Inhalts einige lose Blätter, die Kowalewskaja beschrieben hatte. -
Downloaded from Brill.Com09/24/2021 10:06:53AM Via Free Access 268 Revue De Synthèse : TOME 139 7E SÉRIE N° 3-4 (2018) Chercheur Pour IBM
REVUE DE SYNTHÈSE : TOME 139 7e SÉRIE N° 3-4 (2018) 267-288 brill.com/rds A Task that Exceeded the Technology: Early Applications of the Computer to the Lunar Three-body Problem Allan Olley* Abstract: The lunar Three-Body problem is a famously intractable problem of Newtonian mechanics. The demand for accurate predictions of lunar motion led to practical approximate solutions of great complexity, constituted by trigonometric series with hundreds of terms. Such considerations meant there was demand for high speed machine computation from astronomers during the earliest stages of computer development. One early innovator in this regard was Wallace J. Eckert, a Columbia University professor of astronomer and IBM researcher. His work illustrates some interesting features of the interaction between computers and astronomy. Keywords: history of astronomy – three body problem – history of computers – Wallace J. Eckert Une tâche excédant la technologie : l’utilisation de l’ordinateur dans le problème lunaire des trois corps Résumé : Le problème des trois corps appliqué à la lune est un problème classique de la mécanique newtonienne, connu pour être insoluble avec des méthodes exactes. La demande pour des prévisions précises du mouvement lunaire menait à des solutions d’approximation pratiques qui étaient d’une complexité considérable, avec des séries tri- gonométriques contenant des centaines de termes. Cela a très tôt poussé les astronomes à chercher des outils de calcul et ils ont été parmi les premiers à utiliser des calculatrices rapides, dès les débuts du développement des ordinateurs modernes. Un innovateur des ces années-là est Wallace J. Eckert, professeur d’astronomie à Columbia University et * Allan Olley, born in 1979, he obtained his PhD-degree from the Institute for the History and Philosophy of Science Technology (IHPST), University of Toronto in 2011. -
Halloweierstrass
Happy Hallo WEIERSTRASS Did you know that Weierestrass was born on Halloween? Neither did we… Dmitriy Bilyk will be speaking on Lacunary Fourier series: from Weierstrass to our days Monday, Oct 31 at 12:15pm in Vin 313 followed by Mesa Pizza in the first floor lounge Brought to you by the UMN AMS Student Chapter and born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstrass 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 born in Ostenfelde, Westphalia, Prussia. sent to University of Bonn to prepare for a government position { dropped out. studied mathematics at the M¨unsterAcademy. University of K¨onigsberg gave him an honorary doctor's degree March 31, 1854. 1856 a chair at Gewerbeinstitut (now TU Berlin) professor at Friedrich-Wilhelms-Universit¨atBerlin (now Humboldt Universit¨at) died in Berlin of pneumonia often cited as the father of modern analysis Karl Theodor Wilhelm Weierstraß 31 October 1815 { 19 February 1897 sent to University of Bonn to prepare for a government position { dropped out. -
List of Members
LIST OF MEMBERS, ALFRED BAKER, M.A., Professor of Mathematics, University of Toronto, Toronto, Canada. ARTHUR LATHAM BAKER, C.E., Ph.D., Professor of Mathe matics, Stevens School, Hpboken., N. J. MARCUS BAKER, U. S. Geological Survey, Washington, D.C. JAMES MARCUS BANDY, B.A., M.A., Professor of Mathe matics and Engineering, Trinit)^ College, N. C. EDGAR WALES BASS, Professor of Mathematics, U. S. Mili tary Academy, West Point, N. Y. WOOSTER WOODRUFF BEMAN, B.A., M.A., Member of the London Mathematical Society, Professor of Mathe matics, University of Michigan, Ann Arbor, Mich. R. DANIEL BOHANNAN, B.Sc, CE., E.M., Professor of Mathematics and Astronomy, Ohio State University, Columbus, Ohio. CHARLES AUGUSTUS BORST, M.A., Assistant in Astronomy, Johns Hopkins University, Baltimore, Md. EDWARD ALBERT BOWSER, CE., LL.D., Professor of Mathe matics, Rutgers College, New Brunswick, N. J. JOHN MILTON BROOKS, B.A., Instructor in Mathematics, College of New Jersey, Princeton, N. J. ABRAM ROGERS BULLIS, B.SC, B.C.E., Macedon, Wayne Co., N. Y. WILLIAM ELWOOD BYERLY, Ph.D., Professor of Mathematics, Harvard University, Cambridge*, Mass. WILLIAM CAIN, C.E., Professor of Mathematics and Eng ineering, University of North Carolina, Chapel Hill, N. C. CHARLES HENRY CHANDLER, M.A., Professor of Mathe matics, Ripon College, Ripon, Wis. ALEXANDER SMYTH CHRISTIE, LL.M., Chief of Tidal Division, U. S. Coast and Geodetic Survey, Washington, D. C. JOHN EMORY CLARK, M.A., Professor of Mathematics, Yale University, New Haven, Conn. FRANK NELSON COLE, Ph.D., Assistant Professor of Mathe matics, University of Michigan, Ann Arbor, Mich. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Chasles' Bad Relations
Chasles' bad relations Christophe Ritzenthaler September 10, 2004 Michel Chasles (1793-1880) 1 Introduction We give here a very atypical orientation to Chasles' life. In particular we will not deal with the ordinary aspects of his life and work. This can be found in many places (in particular [1]). We mention only that, as a mathemati- cian, he synthesized and generalized the whole geometric knowledge of his time (projective geometry, conic sections, duality and homography) - even if sometimes, (as he didn't speak German), he merely rediscovered some of these results - ([3]). Also, as a historian of mathematics, he wrote a history of geometry ([5] and two controversial essays ( [2],[4]). The following list of honors should convince us of the seriousness of this character : Membre de l'Institut, professeur de Géométrie supérieure à la faculté des Sciences de Paris, membre de la Société royale de Londres, membre honoraire de la Société royale d'Irlande, de la Société philosophique de Cambridge, de l'Académie impériale des Sciences de Saint-Pétersbourg, associé de l'Académie royale des Sciences de Brux- elles,correspondant de l'académie ponticale des Nuovi Lincei de Rome, membre de lAcadémie royale de Berlin, de l'Académie royale des Sciences de Turin, de l'Académie royale des Sciences de Naples, de l'Académie de Lincei de Rome, de la Société royale danoise des Sciences de Copenhague, de l'Académie royale des Sciences de Stockholm, de l'Académie des Sciences de l'Institut de Bologne, de l'Institut roual lombard de Milan, de la Société italienne des Sciences de Modène, correspondant de l'Académie royale des Sciences de Madrid, de l'Institut vénitien des Sciences, Lettres et Arts, membre honoraire de l'Académie royale des Sciences, Lettres et Arts de Modène, de l'Athénée vénitien des Sciences et Lettres, de l'Université d'Odessa, de l'Académie américaine des Sciences et Arts de Boston, de l'Académie nationale des sciences d'Amérique. -
Count Down: Six Kids Vie for Glory at the World's Toughest Math
Count Down Six Kids Vie for Glory | at the World's TOUGHEST MATH COMPETITION STEVE OLSON author of MAPPING HUMAN HISTORY, National Book Award finalist $Z4- 00 ACH SUMMER SIX MATH WHIZZES selected from nearly a half million EAmerican teens compete against the world's best problem solvers at the Interna• tional Mathematical Olympiad. Steve Olson, whose Mapping Human History was a Na• tional Book Award finalist, follows the members of a U.S. team from their intense tryouts to the Olympiad's nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical. In the process he provides fascinating insights into the creative process, human intelligence and learning, and the nature of genius. Brilliant, but defying all the math-nerd stereotypes, these athletes of the mind want to excel at whatever piques their cu• riosity, and they are curious about almost everything — music, games, politics, sports, literature. One team member is ardent about water polo and creative writing. An• other plays four musical instruments. For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty. Though driven by the glory of winning this ultimate math contest, in many ways these kids are not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the Olympiad, Steve Olson sheds light on such questions as why Americans feel so queasy about math, why so few girls compete in the subject, and whether or not talent is innate. Inside the cavernous gym where the competition takes place, Count Down reveals a fascinating subculture and its engaging, driven inhabitants. -
View Front and Back Matter from The
TRANSACTIONS OF THE American Mathematical Society EDITED BY ElilAKIM HASTINGS MOOBE EDWARD BURR VAN VLECK HENRY SEELY WHITE WITH THE COOPERATION OF CHARLES LEONARD BOTJTON LEONARD EUGENE DICKSON JOHN IHWIN HUTCHINSON EDWARD KASNEH EDWIN BLDWELL WILSON J'UBLIWHEll QCABTEILT BI THE tSOCIKTT WITH THB BUPPOBT OF Yale University Nobthwestekn University Columbia University The University of Illinois Wesleyan University Cornell University ilavehfobd college the university of chicago The University of Missouri Stanford University Volume 8 1907 Lancaster, Pa., and New Yobk THE MACMIIXAN COMPANY Agents fob the Society 1907 Reprinted with the permission of The American Mathematical Society Johnson Reprint Corporation 111 Fifth Avenue, New York 3, N. Y. Johnson Reprint Company Limited Berkeley Square House, London, W. 1 First Reprinting, 1963, Johnson Reprint Corporation TABLE OF CONTENTS VOLUME 8 1907 PAGES Blichfeldt, H. F., of Stanford University, Cal. On modular groups isomorphic with a given linear group.30- 32 Bliss, Gilbert Ames, of Princeton, N. J. A new form of the simplest problem of the calculus of variations.405—414 Bolza, Oskar, of Chicago, 111. Existence proof for a field of extremals tangent to a given curve.399-404 Dickson, Leonard Eugene, of Chicago, 111. Invariants of binary forms under modular transformations.205-232 _Modular theory of group-matrices.389—398 Eisenhart, Luther Pfahler, of Princeton, N. J. Applicable surfaces with asymptotic lines of one surface corresponding to a conjugate system of another.113—134 Fite, William Benjamin, of Ithaca, N. Y. Irreducible linear homogeneous groups whose orders are powers of a prime . 107—112 Fréchet, Maurice, of Paris, France. -
A History of Mathematics in America Before 1900.Pdf
THE BOOK WAS DRENCHED 00 S< OU_1 60514 > CD CO THE CARUS MATHEMATICAL MONOGRAPHS Published by THE MATHEMATICAL ASSOCIATION OF AMERICA Publication Committee GILBERT AMES BLISS DAVID RAYMOND CURTISS AUBREY JOHN KEMPNER HERBERT ELLSWORTH SLAUGHT CARUS MATHEMATICAL MONOGRAPHS are an expression of THEthe desire of Mrs. Mary Hegeler Carus, and of her son, Dr. Edward H. Carus, to contribute to the dissemination of mathe- matical knowledge by making accessible at nominal cost a series of expository presenta- tions of the best thoughts and keenest re- searches in pure and applied mathematics. The publication of these monographs was made possible by a notable gift to the Mathematical Association of America by Mrs. Carus as sole trustee of the Edward C. Hegeler Trust Fund. The expositions of mathematical subjects which the monographs will contain are to be set forth in a manner comprehensible not only to teach- ers and students specializing in mathematics, but also to scientific workers in other fields, and especially to the wide circle of thoughtful people who, having a moderate acquaintance with elementary mathematics, wish to extend their knowledge without prolonged and critical study of the mathematical journals and trea- tises. The scope of this series includes also historical and biographical monographs. The Carus Mathematical Monographs NUMBER FIVE A HISTORY OF MATHEMATICS IN AMERICA BEFORE 1900 By DAVID EUGENE SMITH Professor Emeritus of Mathematics Teacliers College, Columbia University and JEKUTHIEL GINSBURG Professor of Mathematics in Yeshiva College New York and Editor of "Scripta Mathematica" Published by THE MATHEMATICAL ASSOCIATION OF AMERICA with the cooperation of THE OPEN COURT PUBLISHING COMPANY CHICAGO, ILLINOIS THE OPEN COURT COMPANY Copyright 1934 by THE MATHEMATICAL ASSOCIATION OF AMKRICA Published March, 1934 Composed, Printed and Bound by tClfe QlolUgUt* $Jrr George Banta Publishing Company Menasha, Wisconsin, U.