Device and Method for Producing Sodium Hydride

Total Page:16

File Type:pdf, Size:1020Kb

Device and Method for Producing Sodium Hydride Europäisches Patentamt *EP001277700A2* (19) European Patent Office Office européen des brevets (11) EP 1 277 700 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C01B 6/04, B01J 19/08 22.01.2003 Bulletin 2003/04 (21) Application number: 02077752.0 (22) Date of filing: 09.07.2002 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Agnew, Stephen F. IE IT LI LU MC NL PT SE SK TR San Diego, California 92117 (US) Designated Extension States: • Putvinski, Sergei AL LT LV MK RO SI La Jolla, California 92037 (US) (30) Priority: 10.07.2001 US 903321 (74) Representative: Gates, Marie Christina Esther et al (71) Applicant: Archimedes Technology Group, Inc. c/o Tomkins & Co. San Diego, CA 92121 (US) 5 Dartmouth Road Dublin 6 (IE) (54) Device and method for producing sodium hydride (57) A device and method for producing sodium the plasma torch, the plasma jet is introduced into a (Na) from a feed material such as a mixture of methane chamber where a magnetic field has been established. (CH4) and sodium hydroxide (NaOH) includes a plasma Once inside the chamber the heated mixture of ions and torch configured to heat the feed material to a temper- neutrals interacts with the magnetic field in the chamber ature sufficient to reduce and ionize sodium (Na). As to cause the sodium ions to travel substantially along such, a plasma jet is created by the plasma torch that the magnetic field lines while the neutrals travel on paths contains ionized sodium (Na) and non-ionized neutrals that are essentially unaffected by the magnetic field. A such as hydrogen (H) and carbon monoxide (CO). From collector is positioned to receive and accumulate sodi- um (Na). EP 1 277 700 A2 Printed by Jouve, 75001 PARIS (FR) EP 1 277 700 A2 Description FIELD OF THE INVENTION 5 [0001] The present invention pertains generally to devices and methods for chemical separation. More particularly, the present invention pertains to devices and methods for the extraction of sodium from sodium compounds. The present invention is particularly, but not exclusively, useful for recovering sodium hydride from a mixture of methane and sodium hydroxide. 10 BACKGROUND OF THE INVENTION [0002] Recently, there has been an abundant interest in the use of sodium hydride (NaH) as a portable energy source to produce hydrogen as a replacement for fossil fuels such as gasoline. For example, engines similar to the standard gasoline engines that are now used in automobiles can be manufactured that use hydrogen gas as a fuel. Unfortunately, 15 the bulk amount of actual hydrogen gas that is needed for vehicle applications would require either an extremely large tank or a high-pressure vessel. Both of these requirements can be expensive and impractical for use on a vehicle. Thus, to avoid these requirements, devices have been proposed to produce hydrogen gas at relatively low pressures. Importantly, the gas can be produced as demanded by the hydrogen engine, by reacting sodium hydride with water according to the reaction: 20 NaH + H20 ⇒ NaOH + H2. (Reaction 1) [0003] For example, U.S. Patent No. 5,728,464 entitled "Hydrogen Generation Pelletized Fuel" which issued to 25 Checketts on March 17, 1998 discloses sodium hydride pellets for a hydrogen demand system. Specifically, Checketts discloses sodium hydride pellets that are coated with a water impervious barrier. The barrier can be removed either mechanically or electrically to expose the sodium hydride core for reaction with water to produce hydrogen. [0004] As indicated by Reaction 1 above, a by-product of the reaction is sodium hydroxide (NaOH). It has been proposed elsewhere to recover sodium hydride (NaH) from the by-product sodium hydroxide (NaOH) by heating the 30 sodium hydroxide (NaOH) in a methane (CH4) atmosphere. Specifically, at a reaction temperature of approximately 900 C (1173 K), the reaction: NaOH + CH4 ⇒ CO + 2.5 H2 + Na(g) (Reaction 2) 35 can be used to produce sodium gas Na(g). Unfortunately, when the hot, reaction products of Reaction 2 are sent to a cold collector under modest pressures, sodium hydroxide (NaOH) rather than liquid sodium Na(I) condenses on the collector. Specifically, in accordance with the following analysis, pressures exceeding approximately 4200 atmospheres are required to condense liquid sodium Na(I) rather than sodium hydroxide (NaOH) on the cold collector. 40 [0005] Before concluding that impractical pressures are required to condense liquid sodium, attempts to shift the equilibrium by introducing other compounds into the mixture were considered. After consideration, this approach ap- pears to be futile. Specifically, the following compounds (all in the gas phase) have been considered; H, Na, O, Na+, H2,O2, OH, NaH, CO, NaO, NaOH, CO2,H2O, H2CO, CH4. Carbon has very low vapor pressure and, therefore, carbon vapor has been excluded from the above list. Fig. 1 shows the concentrations of the different compounds as a function 45 of temperature at a total pressure of 1 atm. Fig. 1 was obtained theoretically by minimizing free energy and using balance equations for the different elements. Compounds having a concentration less then 10-8 are not shown. [0006] Referring to Fig. 1, it can be seen that at low temperatures, T < 600 K, the major components are NaOH and CH4. In the temperature range, 1000 K < T < 2000 K, the major compounds are indeed CO, H2, and Na vapor as predicted by Reaction 2. At T > 3000 K, Na becomes ionized and H2 molecules dissociate. The other compounds 50 considered and listed above are not essential. Atomic and molecular oxygen is not present in the full temperature range. Therefore, at low temperatures, when Na is not ionized and hydrogen is in molecular form, a simple model based on Reaction 2 can be used. The partial pressures of methane, carbon monoxide and hydrogen can be expressed in terms of the partial pressures of NaOH and Na, using Reaction 2 as follows: 55 pCH4 = pNaOH, pCO = pNa, pH2 = 2.5pNa. (eq. 1) 2 EP 1 277 700 A2 As such, the total pressure will be: P = pNaOH + pCH4 + pNa + pCO + pH2 = 4.5pNa + 2pNaOH. (eq. 2) 5 Thus, the equilibrium equation for Reaction 2 can be written as follows: 2.5 (pNapCOpH2 )/(pNaOHpCH4) = K(T) 10 or using equation (1): 2.5 4.5 2 2.5 pNa /pNaOH = K(T). (eq. 3) 15 [0007] Equations 2 and 3 allow the partial pressures of Na and NaOH to be evaluated as function of total pressure, p, and temperature, T. Thus, the full model revealed by Fig. 1 comports closely with the simple model (Reaction 2) at low temperatures, T < 2000 K. Further, equations 2 and 3 show that at higher pressures, higher temperatures are required to reduce sodium. 20 [0008] Next, an analysis can be conducted to determine the temperature range in which the gaseous model is valid. Specifically, the gaseous model is valid when the partial pressures of Na or NaOH are less then the saturated pressures for these compounds. The other major compounds such as H2, CO and CH4 have very high vapor pressures, and accordingly, do not condense. Fig. 2 shows the saturated pressure to partial pressure ratios for the case presented in Fig. 1. It can be seen that at a total pressure of p = 1 atm, the condensation point (psat = p) for NaOH occurs at a higher 25 temperature than for Na. Thus, at this pressure, Na will be collected in the form of NaOH rather then metallic Na. An increase in the total pressure can shift the reaction and in principle can create a condition where Na has a condensation point at a higher temperature than NaOH. The total pressure necessary to condense Na rather than NaOH can be derived from equation 3 by replacing the partial pressures of each constituent by their corresponding saturated pres- sures: 30 2.5 4.5 2 2.5 ps,Na /psNaOH < K(T). [0009] The above condition is satisfied at T > 3000 K and a total pressure of approximately: 35 p > 4.5ps,Na + 2ps,NaOH = 4200 atm which is simply not practical. Thus, the above analysis indicates that at moderate pressures, the equilibrium conden- 40 sation of Na does not take place. [0010] The present invention contemplates separation of Na from the other gases by ionization. For example, con- sider a mixture of NaOH and CH4 heated to a temperature of 3000-4000 K rather than to 1000 K. This heating can be accomplished using a plasma torch. At these higher temperatures, Na atoms will be fully ionized. The present invention further contemplates separating the ionized Na component from the non-ionized neutrals (i.e. CO and H2) by introducing 45 the mixture in the form of a plasma jet into a strong magnetic field. In the magnetic field that is directed along the jet, sodium ions will move predominantly along the magnetic field lines and neutrals will diffuse from the plasma jet radially, where the neutrals can be pumped from the device. As such, an increase of sodium concentration along the plasma jet can be expected. Specifically, the following analysis estimates the increase in sodium concentration along the plasma jet. 50 [0011] First, consider a comparison between the magnetic pressure and the gas pressure. Magnetic pressure, pm, can be found using the equation: 2 pm = B /8π, 55 or in practical units 3 EP 1 277 700 A2 2 pm [Pa] = BG /80π. 4 For example, for B = 3 kG, pm = 3.6 10 Pa = 270 Torr which is larger then the expected gas pressure in the plasma 5 jet, p = 1-5 kPa.
Recommended publications
  • Suplementary Information
    Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2011 SUPLEMENTARY INFORMATION Shedding the hydrophobic mantel of polymersomes René P. Brinkhuis, Taco R. Visser, Floris P. J. T. Rutjes, Jan C.M. van Hest* Radboud University Nijmegen,, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; E-mail: [email protected]; [email protected] Contents: Experimental General note Materials Instrumentation α- methoxy ω-methyl ester poly(ethylene glycol) α- methoxy ω-hydrazide poly(ethylene glycol) α- azido ω-methoxy poly(ethylene glycol) Aldehyde terminated polybutadiene Alkyne terminated polybutadiene Polybutadiene-Hz-poly(ethylene glycol) Polybutadiene-b-poly(ethylene glycol) Vesicle preparation Stability studies Notes and References Figures Figure 1: GPC traces of polymer 1 and its constituents. Figure 2: GPC traces of polymer 2 and its constituents. Figure 3: GPC traces of polymer 3 and its constituents. Figure 4: GPC traces of polymer 4 and its constituents. Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2011 Experimental section General note: All reactions are described for the lower molecular weight analogue, polyethylene glycol 1000, indicated with an A. The procedures for the polyethylene glycol 2000 analogues, indicated with B, are the same, starting with equimolar amounts. Materials: Sec-butyllithium (ALDRICH 1.4M in hexane), 1,3 butadiene (SIGMA ALDRICH, 99+%), 3- bromo-1-(trimethylsilyl-1-propyne) (ALDRICH, 98%), tetrabutylammonium fluoride (TBAF) (ALDRICH, 1.0M in THF), polyethylene glycol 1000 monomethyl ether (FLUKA), polyethylene glycol 2000 monomethyl ether (FLUKA), methanesulfonyl chloride (MsCl) (JANSSEN CHIMICA, 99%), sodium azide (ACROS ORGANICS, 99% extra pure), sodium hydride (ALDRICH, 60% dispersion in mineral oil), copper bromide (CuBr) (FLUKA, >98%), N,N,N’,N’,N”-penta dimethyldiethylenetriamine (PMDETA) (Aldrich,99%), hydrazine (ALDRICH, 1M in THF) were used as received.
    [Show full text]
  • The Reaction of Sodium Borohydride
    THE REACTION OF SODIUM BOROHYDRIDE WITH N-·ACYLANILINES By ROBERT FRA.."\\JK LINDEl"J.ANN Ir Bachelor of Arts Wittenberg College Springfield, Ohio 1952 Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MA.STER OF SCIENCE August, 19.54 i THE REACTION OF SODIUM BOROHYDRIDE WITH N-ACYLANILINES Thesis Approved: ~ - Dean of the Graduate School ii l!l Al C! 0~ 11J/~~. 2t"'I'Ii .ACKN01rJLEDGEMENT The author-wishes to express his gratitude to Dr. H. Po Johnston for the invaluable assistance and guidance given. This project was made possible by the Chemistry Department in the form of a Graduate Fellowship and by an unnamed sponsor through the Research Foundation. iii TABLE OF CONTENTS Page · I. .Introduction ...................................... ., o ••••••·· .... 1 II o Historical ... o o • .,, • (I .. ., •.••• G ••••.•••••••• .is •••••••• "' •. o o •••••• o '°. 2 Preparation of Sodium Borohydride ........................... 2 Physical Properties ofSodium Borohydrj.de ................... 3 Chemical Properties of · Sodium Borohydride .............. " •••• 3 III. Experimental. 0 ·• •• ·•. 0 •••• 0 ·• •••• 0. (I •••• 0 0 • 0 Q • .., ••• Q e. 0. 0. 0 D. 0 e 8 Purification of Sodium Borohydride ........................... 8 Reaction of Sodium Borohydride w:i. th Acetanilide ..........._ •• 9 Reaction of Sodium Borohydride w:i. th For.manilide oo •• oe.,. .... 27 Discussion ••• o o. o. o o o o. o ·O fl o • .e. o o ........ o. o. o o • ., o ~. o" o (Io o o o .29 IV. S11ITil11ary •• 0. Cl Ct. 0 0 0. 0. 0 -0 DO O O O C. c,.. 0. 0 4 11) 0 0 0 -0 0 0 0 -0 a O O .0 0 0 .0.
    [Show full text]
  • Sodium Hydride-Based Hydrogen Storage System
    Analysis of the Sodium Hydride-based Hydrogen Storage System being developed by PowerBall Technologies, LLC Prepared for The US Department of Energy Office of Power Technologies Hydrogen Program Prepared by J. Philip DiPietro and Edward G. Skolnik, Energetics, Incorporated October 29, 1999 v Analysis of the Sodium Hydride-Based Hydrogen Storage System being developed by PowerBall Technologies, LLC We considered the viability of a system for storing hydrogen on-board a vehicle in the form of plastic-encapsulated sodium hydride (NaH) pellets. Hydrogen is produced when the pellets are cut and immersed in water. The exposed NaH surface reacts with water, releasing hydrogen and forming sodium hydroxide (NaOH) as a byproduct. Later, in an off-board activity, the hydroxide is recycled to hydride via a multi-step regeneration process that relies on methane as both a fuel and a reactant. This is a preliminary analysis that required the development of conceptual designs for several of the process steps and the need to make several assumptions in order to complete the overall systems analysis. The analysis was peer reviewed by several members of their hydrogen community, and their comments were taken into account in the preparation of this document. Executive Summary The reaction of sodium hydride with water to form hydrogen and sodium hydroxide can be utilized onboard a vehicle to deliver hydrogen to an onboard power system. PowerBall Technologies, LLC has developed a novel means of controlling the reaction: they encapsulate small amounts of sodium hydride in plastic balls. These balls are sliced open one at a time onboard the vehicle to deliver hydrogen as needed.
    [Show full text]
  • Metal Hydride Materials for Solid Hydrogen Storage: a Reviewଁ
    International Journal of Hydrogen Energy 32 (2007) 1121–1140 www.elsevier.com/locate/ijhydene Review Metal hydride materials for solid hydrogen storage: A reviewଁ Billur Sakintunaa,∗, Farida Lamari-Darkrimb, Michael Hirscherc aGKSS Research Centre, Institute for Materials Research, Max-Planck-Str. 1, Geesthacht D-21502, Germany bLIMHP-CNRS (UPR 1311), Université Paris 13, Avenue J. B. Clément, 93430 Villetaneuse, France cMax-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany Received 31 July 2006; received in revised form 21 November 2006; accepted 21 November 2006 Available online 16 January 2007 Abstract Hydrogen is an ideal energy carrier which is considered for future transport, such as automotive applications. In this context storage of hydrogen is one of the key challenges in developing hydrogen economy. The relatively advanced storage methods such as high-pressure gas or liquid cannot fulfill future storage goals. Chemical or physically combined storage of hydrogen in other materials has potential advantages over other storage methods. Intensive research has been done on metal hydrides recently for improvement of hydrogenation properties. The present review reports recent developments of metal hydrides on properties including hydrogen-storage capacity, kinetics, cyclic behavior, toxicity, pressure and thermal response. A group of Mg-based hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on-board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system and as well as by ball-milling that introduces defects with improved surface properties.
    [Show full text]
  • Syntheses of Poly(Ethylene Oxide) Macromonomers Carrying Tertiary Amine and Quaternary Ammonium End Groups
    Polymer Journal, Vol.35, No. 6, pp 513—518 (2003) Syntheses of Poly(ethylene oxide) Macromonomers Carrying Tertiary Amine and Quaternary Ammonium End Groups † Takamichi SENYO, Yuji ATAGO, Huanan LIANG, Renhua SHEN, and Koichi ITO Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan (Received January 23, 2003; Accepted March 30, 2003) ABSTRACT: p-Vinylbenzyl alcohol, partially alkoxidated with potassium naphthalene, was used successfully to initiate living polymerization of ethylene oxide to afford α-p-vinylbenzyl-ω-hydroxy poly(ethylene oxide) (PEO) macromonomers. The ω-hydroxy end-groups were quantitatively transformed to tertiary amines either by tosylation followed by reaction with potassium 2-dimethylaminoethoxide or by Williamson synthesis with 2-dimethylaminoethyl chloride in the presence of sodium hydride. ω-Quaternary ammonium-ended PEO macromonomers were also quantita- tively obtained by reaction with iodomethane. KEY WORDS Poly(ethylene oxide) / Macromonomers / p-Vinylbenzyl End-Group / Tertiary Amine End-Group / Quaternary Ammonium End-Group / End-Group Transformation / Hetero- telechelics / Poly(ethylene oxide) (PEO) is one of well- ion to afford F– and –OH end-functionalized PEO, known, water-soluble, nonionic polymers, and its F–O[CH2CH2O]n–H, after acidification. In fact, we macromonomers have also been a subject of consid- could readily have α-p-vinylphenylalkyl-ω-hydroxy- erable interest because of their unique amphiphilic ended PEO macromonomers in one step.13 On the other properties as well as their many potential applica- hand, the ω-hydroxy-end may be transformed to intro- tions in various fields, including coatings, cosmetics, duce another functionality, F , to F–O[CH2CH2O]n–F .
    [Show full text]
  • Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage
    energies Review Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage Kasper T. Møller 1 ID , Drew Sheppard 1,2, Dorthe B. Ravnsbæk 3 ID , Craig E. Buckley 2, Etsuo Akiba 4,5,6, Hai-Wen Li 1,4,5,7,* and Torben R. Jensen 1,* 1 Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus, Denmark; [email protected] (K.T.M.); [email protected] (D.S.) 2 Department of Physics and Astronomy, Fuels and Energy Technology Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; [email protected] 3 Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; [email protected] 4 International Research Center for Hydrogen Energy, Kyushu University, Fukuoka 819-0395, Japan; [email protected] 5 WPI International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan 6 Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan 7 Kyushu University Platform of Inter/Transdisciplinary Energy Research, Fukuoka 819-0395, Japan * Correspondence: [email protected] (H.-W.L.); [email protected] (T.R.J.) Academic Editor: Haolin Tang Received: 18 September 2017; Accepted: 12 October 2017; Published: 18 October 2017 Abstract: Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field.
    [Show full text]
  • United States Patent Office Patented May 9, 1961
    2,983,574 United States Patent Office Patented May 9, 1961 2 moved under vacuum and a substantial amount of solid remained which was purified by crystallization from liq 2,983,574 uid ammonia. The solid was analyzed for sodium, boron and hydrogen and found to be NaBH4. The compound PREPARATION OF SGDIUM BOROHYDRDE. s was further subjected to chemical and X-ray analysis Joseph P. Nigon, Washington, D.C., assignor to Callery which confirmed the fact that it was sodium borohy Chemical Company, Pittsburgh, Pa., a corporation of dride. Pennsylvania Other solvents for NaBH4 may be used as reaction media for this process. Such solvents include poly No Drawing. Filed Sept. 23, 1955, Ser. No. 536,268 O ethylene glycol dimethyl ethers, CH3(OCH)OCHs, and 5 Claims. (C. 23-14) other known solvents for NaBH4 which are not reactive with diborane. The process is operable over a range of temperatures from moderately above room tempera ture i.e., about 20° C., to the boiling point of the solvent This invention relates to the preparation of sodium 15 used. The process is also operable at pressures as low borohydride and more particularly it relates to a direct as 350 p.s.i.g. There is no apparent upper limit of pres method for preparing sodium borohydride by the reac Sc. tion of sodium, diborane and hydrogen under pressure. Although only one embodiment of this invention has There are several known methods for preparing so been described, it will be apparent to those skilled in the dium borohydride among which are the following: (1) 20 art that other variations are possible.
    [Show full text]
  • Technical Data Sheet Page 1 of 3
    Technical Data Sheet revision: 24-Jun-09 Product Information: Product: Sodium hydride, 60% dispersion in mineral oil, in soluble bags, in resealable cans Acros code number: 33214-0000 CAS number: 7646-69-7 EINECS number: 231-587-3 TSCA: listed MDL code number: MFCD00003471 Molecular formula: HNa Molecular weight: 23.99 g/mol Typical Properties: Appearance: light grey tacky powder Package: Assay: 57 – 63 % NaH Melting point of NaH: 425 °C (decomposition) Flash point of mineral oil: 165 °C Particle size: 5 – 50 µm Bulk density: approx. 0.60 g/cm3 Solubility: reacts with water, and ethanol Stability: stable in dry air up to 230 °C General Information: Sodium hydride is a very strong base used for condensation reactions like Claisen1,2,3 and Dieckmann4,5 condensation, for C, N, O-alkylation, acylation, Aldol addition, synthesis of sodium alcoholates and sodium borohydride, etc.. Since NaH is sensitive to air and humidity, this product has been packaged in bags* which are soluble in common aprotic organic solvents (see below table), and which makes it easy to bring it directly into a chemical reactor without any complicate handling procedure before. page 1 of 3 Technical Data Sheet revision: 24-Jun-09 * Material: Poly(styrene-co-butadiene); Thickness: ~60 µm Solvent Appearance of the Result solution at 25 °C Cyclohexane clear suitable tert-Butyl methyl ether clear suitable Diethyl ether turbid suitable N,N-Dimethylacetamide turbid suitable N,N-Dimethylformamide turbid suitable Ethylene glycol dimethyl ether clear suitable Heptane bigger parts moderately (turbid at 60 °C) suitable Hexane bigger parts moderately (clear at 60 °C) suitable 2-Methyltetrahydrofuran clear suitable Tetrahydrofuran clear suitable Toluene clear suitable Please notice that Sodium hydride reacts vigorously with water evolving hydrogen (H298 = -132 kJ/mole).
    [Show full text]
  • Supplementary Information
    Supplementary Information Direct Synthesis of NaBH4 Nanoparticles from NaOCH3 for Hydrogen Storage Ting Wang† and Kondo-Francois Aguey-Zinsou*,† †MERLin, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, Australia, E-mail: f.aguey-unsw.edu.au Table S1. Synthesis methods of NaBH4. Reaction Synthesis and products Yield Ref. Synthesis: React in ether, such as ethyl ether in which NaBH4 is not soluble. 2Na+2B2H6 → NaBH4+NaB3H6 Products: Mixture of NaBH4 and NaB3H6 -- [1,2] with intermediates of empirical composition Na2B2H6 and NaB2H6. Synthesis: Stir approximate proportions of 4Na+2H2+B(OCH3)3 → Na and B(OCH3)3 under H2 pressure at 15% [3,4] NaBH4+3NaOCH3 about 250 °C Synthesis: Disperse Na on finely divided NaCl, add H2 and BCl3, then heat the mixture to 150-170 °C 4Na+2H2+BCl3 → NaBH4+3NaCl Products: NaBH4 is recovered in 75% yield 75% [1] after heating for 3 h. Some diborane and pentaborane are also present as side products. Synthesis: React in ethereal solvents, such as Quantitative 2NaH+B2H6 diglyme 2NaBH4 the glymes, especially diglyme in which [1] yields NaH is more soluble. NaH+B(OCH3)3 → NaBH(OCH3)3 Synthesis: B2H6 react rapidly and Quantitative 2NaBH(OCH3)3+ B2H6 → quantitatively with NaH in the presence of [1] yields 2NaBH4+2B(OCH3)3 B(OCH3)3 90-96% Synthesis: Add methyl borate slowly to an purity excess of a well stirred mass of sodium 4NaH+B(OCH3)3 → NaBH4+3NaOCH3 hydride powder at 225-275 °C. 86-94% Products: NaBH4 may be extracted by liquid yields ammonia or primary amines, such as [1,3, isopropylamine.
    [Show full text]
  • Mechanism of Β-Hydrogen Elimination from Square Planar Iridium(I)
    7220 J. Am. Chem. Soc. 2001, 123, 7220-7227 Mechanism of â-Hydrogen Elimination from Square Planar Iridium(I) Alkoxide Complexes with Labile Dative Ligands Jing Zhao, Heather Hesslink, and John F. Hartwig* Contribution from the Department of Chemistry, Yale UniVersity, P.O. Box 208107, New HaVen, Connecticut 06520-8017 ReceiVed February 16, 2001 Abstract: Mechanistic studies were conducted on â-hydrogen elimination from complexes of the general formula [Ir(CO)(PPh3)2(OR)], which are square planar alkoxo complexes with labile ligands. The dependence of rate, isotope effect, and alkoxide racemization on phosphine concentration revealed unusually detailed information on the reaction pathway. The alkoxo complexes were remarkably stable, including those with a variety of electronically and sterically distinct groups at the â-carbon. These complexes were much more stable than the corresponding alkyl complexes. Thermolysis of these complexes in the presence of PPh3 yielded the iridium hydride [Ir(CO)(PPh3)3H] and the corresponding aldehyde or ketone with rate constants that were affected little by the groups at the â-carbon. The reactions were first order in iridium complexes. At low [PPh3], the reaction rate was nearly zero order in PPh3, but reactions at high [PPh3] revealed an inverse dependence of reaction rate on PPh3. The rate constants were similar in toluene, THF, and chlorobenzene. The y-intercept of a1/kobs vs [PPh3] plot displayed a primary isotope effect, indicating that the y-intercept did not simply correspond to phosphine dissociation. These data and a dependence of alkoxide racemization on [PPh3] showed that the elementary â-hydrogen elimination step was reversible.
    [Show full text]
  • Molecular Transformations Using a Sodium Hydride‑Iodide Composite
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Molecular transformations using a sodium hydride‑iodide composite Chan, Guo Hao 2018 Chan, G. H. (2018). Molecular transformations using a sodium hydride‑iodide composite. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/103312 https://doi.org/10.32657/10220/47383 Downloaded on 04 Oct 2021 04:31:56 SGT MOLECULAR TRANSFORMATIONS USING A SODIUM HYDRIDE-IODIDE COMPOSITE CHAN GUO HAO SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES 2018 MOLECULAR TRANSFORMATIONS USING A SODIUM HYDRIDE-IODIDE COMPOSITE ‘ CHAN GUO HAO SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES A thesis submitted to the Nanyang Technological University in fulfillment of the requirement for the degree of Doctor of Philosophy 2018 Acknowledgements First and foremost, I would like to express my deepest gratitude to my supervisor, Professor Chiba Shunsuke, whose patient guidance, insightful discussion, and strict training enabled me to complete my PhD course study. His discipline and perspectives toward chemistry and in life will continue to motivate and inspire me. Completing a Ph.D. is not a simple task for me who began with minimal skills and knowledge. I would also like to thank my company supervisor, Jolyon Perkins who always gave great insights to the chemistry process in the industry and encouragement during tough times. I would also like to thank him for giving me the opportunity to participate in some of the company projects for process improvement. I would like to sincerely thank my mentor, Dr. Too Pei Chui, who took her time to teach me the practical skills and the troubleshooting process in the lab.
    [Show full text]
  • Uli1 BOROHYDRIDE with SIMPLE A.ND SUBSTITUTED AMIDES By
    THE REACTIONS OF S0D!Uli1 BOROHYDRIDE . WITH SIMPLE A.ND SUBSTITUTED AMIDES By Wo DON BEAVER 11 Bachelor of Arts Bethany-Peniel College Bethanyj Oklahoma 1946 Master of Science Oklahoma Agricultural and Mechanical College Stillwater, Oklahoma 1953 Submitted to the faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May, 1955 i THE REACTIONS OF SODIUM BOROHYDRIDE WITH SIMPLE AND SUBSTITUTED AMIDES Thesis Approved: z~ M»t4A Dean of the Graduate School 349807 ii ACKNOWLEDGEivlENT The author expresses his thanks to Dr. H.P. Johnston for his gen= erous help and guidance throughout every aspect of this investigationo The contributions of Dr. T. E. Moore and Dr. 0. C. Dermer through helpful criticisms and suggestions are also greatly appreciated. This study was made using the facilities of the Chemistry Depart= ment and was supported by an unnamed sponsor through the Research Found= ation. iii TABLE OF CONTENTS Page I .. INTRODUCTION .. • • 0 • 0 • .. • 0 0 0 O . " 1 IL HISTORICAL • • 0 • 0 • 0 0 .0 0 • 0 o 0 • 0 • • 0 • 0 0 0 2 Preparation of Sodium Borohydride o Ct 0- -0 0 0 0 2 Physical Properties of Sodium Borohydride 0-00000-0 3 Chemical Properties of Sodium Borohydride (I O O O 0 4 Reduction of Amides .. • .. • • • 0(1.P000()0 10 Hydrogenolysis of Amides .. .. • • • • • " • • • • ., • .. o 10 III.. EXPERDIIENT!L I. Reagents and Analytical Procedures 0 0 11 Reagents •••••••••••• 0 o Q 0 11 Analytical Procedures ....... Q00000-00 12 IV. EXPERD11ENTAL IL Reactions .
    [Show full text]