University Microfilms, Inc., Ann Arbor, Michigan ADDITION of ELECTRON-DEFICIENT CARBON-CARBON

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms, Inc., Ann Arbor, Michigan ADDITION of ELECTRON-DEFICIENT CARBON-CARBON This dissertation has been mlcrolUmed exactly as received 6 9-15,953 RICHMOND, Gary Donald, 1942- ADDITION OF ELECTRON-DEFICIENT CARBON- CARBON MULTIPLE BONDS TO STRAINED POLYCYCLIC HYDROCARBONS; THE CHEMICAL AND PHYSICAL PROPERTIES OF fi -KETO SULFOXIDES. The Ohio State University, Ph.D., 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan ADDITION OF ELECTRON-DEFICIENT CARBON-CARBON MULTIPLE BONDS TO STRAINED POLYCYCLIC HYDROCARBONS; THE CHEMICAL AND PHYSICAL PROPERTIES OF P-KETO SULFOXIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gary Donald Richmond, B.A. ■JHHBHHJ- The Olio State University 1968 Approved by Adviser Department of Chemistry ACKNOWLEDGMENTS The author wishes to express his appreciation to Professor Paul G. Gassman for his guidance, assisteince, and personal influence throughout the course of this work. 11 VITA April 6, 19^2 Washington, Pennsylvania 1964 B.A. Washington and Jefferson College, Washington, Pennsylvania September, 1964 Entered the Graduate School of The Ohio State University 1965-1968 National Institutes of Health Predoctoral Fellow PUBLICATIONS The Alkylation of P-Keto Sulfoxides. A General Route to Ketones, J. Org. Chem., 2555 (1966). Backside Attack on Bent Sigma Bonds, J. Am. Chem. Soc., go, 5657 (1968). FIELD OF STUDY Major Field: Organic Chemistry iii COiraEKTS Page ACKNOWIEDGÏŒNTS..................................... il VITA ................................................ iii TABLES............................... ix PART OME. ADDITION OF ELECTRON-DEFICIENT CARBON- CARBON MULTIPLE BONDS TO STRAINED POLY­ CYCLIC HYDROCARBONS ....................... 1 I. Introduction and Historical Review ........... 1 II. Results.................................... 13 A. Tricyclo[U.1.0.0^’^heptane .............. 13 1. Preparation......................... 13 2. Reactions ...... ................ 13 a. Dimethyl Acetylenedicarboxylate . I3 b. Dicyanoacetylene ................ lU c. Benzyne .............. ...... I6 B. Tricyclo[4.1.0.0^'^]heptane .............. 20 1. Preparation............ 20 2. Reactions................... 21 a. Benzyne......................... 21 b. Dicyanoacetylene ................ 22 III. Mechanism and Stereochemistry............ 25 iv CONTENTS (continued) Page PART TWO. CHEMICAL AND PHYSICAL PROPERTIES OP p- KETO SULFOXIDES.......................... 57 I. Introduction and Historical Review .......... 57 II. Experimental Results ....................... 45 A. Ketone Synthesis - Alkylation and Cleavage of P-Keto Sulfoxides............ 4-5 B. Acidity of p-Keto Sulfoxides............ 48 C. Radical Anion Formation .................. 52 EXPERIMENTAL - PART ONE.............................. 62 Instrumental Techniques ......................... 62 Solvents....................................... 65 R e a g e n t s ..................... 65 7.7-Dibromonorcarane ( ^ ) ....................... 65 Tricyclo[4.1.0.0^ heptane jl ^ ) ................ 65 Reaction of Dimethyl Acetylenedicarboxylate (5.) with 1^ ....................................... 64 Acetylenedicarboxamide ......................... 65 Dicyanoacetylene (6 ) 66 Reaction of Dicyanoacetylene with ^ ............ 66 Addition of Benzyne (^) to ^ .................. 68 Hydrogenation of endo-2-phenyl-tricyclo[4.1.0.0^'^]- heptane (50) 69 1.7-DideuteriotricycloC4.1.0.0^ heptane (4^) . 70 Reaction of 1,7-Dide uteri otri cyclo[4.1.0.0^'^]- heptane with Benzene ................... 71 CONTENTS (continued) Page 7-t-Butoxynorbornadiene ( ^ ) ..................... 71 7-Acetoxynorbornadiene (5^) and anti-7- Norbornenol (^6)................................ 71 Tricyclo[U.1.0.0 ’ ]heptane {2Q) ................ 72 Attempted Reaction of ^ with Benzyne............ 75 Addition of Dicyanoacetylene (^) to 1 0 .......... 75 Conversion of endo-tricyclo[4.1.0.0^ ^]heptyl- 5-maleonitrile to endo-5-carbomethoxy- tricyclo[1^.1.0. O^T^Jheptane (h p ) ................. 75 Hydrogenation of endo-$-carbomethoxytricyclo- [U. 1.0.0® heptane (4^) to endo-2-carbomethoxy- norbornane (jjjjO................................. j6 Authentic endo-2-carbomethoxynorbornane ............ 77 . Attempted Reaction of Bicyclo[2.1.0]pentane (2) with Benzyne....................... 77 EXPERIMENTAL - PART T W O .............................. 79 A. AlRylation and Reduction of p-Keto Sulfoxides................................. 79 S o l v e n t s ................................... 79 o)-(Methylsulfinyl)acetcphenone and Methyl- sulfinylmethyl-n-Pentyl Ketone ................ 79 Méthylation of m-(Methylsulfinyl)acetophenone in D M E ..................................... 79 Méthylation of w-(Methylsulfinyl)acetophenone in D M S O ..................................... 80 Priophenone.......................... • . 8l General Procedure for Combined Alkylation and Cleavage Steps ................. 8l vi COKTENTS (continued) Page Dialkylation - The Preparation of Iso- butyrophenone - A. Two-Step Process .......... 82 Dialkylation - The Preparation of Iso- butyrophenone - B. One-Step Process .......... 82 Propiophenone .............................. 8j Butyrophenone .............................. 83 Valerophenone .............................. 83 Oct an one................................... 84 2-Methyl-3-0ctancne 84 4-Nonanone........ 84 4-Nonanone................................. 84 B. Acidity of p-Keto Sulfoxides................ 85 C. Radical Dianion Formation................... 89 u)-(Methylsulfinyl) acetophenone (79) .......... 89 u)-(Phenylsulfinyl)acetophenone (84) .......... 89 U)-(Phenylsulfinyl)benzylphenyl Ketone (83). 90 u)-(Methylsulfonyl) acetophenone { 0 0 .......... 90 u)-(Phenylsulfonyl)acetophenone (87) .......... 91 Deuteration of ui-(Phenylsulfonyl)acetophenone (81)....................................... 91 Solvents.................................. 92 Radical Dianion Generation .................. 92 Reductions in THF, DME, and Diglyme ....... 92 vii COMTENTS (continued) Page Reductions in HMPA.......................... 95 Recovery Attempts.......................... 9^ Calculation of g~Values .... .............. 95 viii t a b l e s Table Page 1. Alkylation of OgHsCOCHsSOCH^ and Cleavage of CeHsCOGRR'SOCIfe.................. k6 2. Alkylation of C % (CHg)^COCHaSOCH^ and Cleavage of CHg ( CHg) 4COCBE ' 8OCH3.............. 4? 5. pKa Values for Various S-Disubstituted Carbonyl, Sulfinyl, and Sulfonyl Compounds.................................. 50 4. pKa Measurements of p-Keto Sulfoxides........... 87 5. pKa Measurements of p-Keto Sulfoxides ......... 88 ix FART OME ADDITION OF ELECTRON-DEFICIENT CARBON-CARBON MULTIPLE BONDS TO STRAINED POLYCYCLIC HYDROCARBONS I. Introduction and Historical Review The unique chemical and physical properties of cyclopropane, the 1 simplest cyclic hydrocarbon, are well documented. As discussed in most elementary organic textbooks, ring cleavage resulting from the addition of hydrogen or electrophilic reagents is typical of cyclo­ propane s. This chemj.cal reactivity has been attributed to an in- 2,3 herent strain of 27*15 kcal/mole in cyclopropane, and to the struc­ tural requirements of bond deviations from normal spf orbital hy­ bridization. This initial interest in cyclopropane has led to a study of strain energy and bonding characteristics as a basis for chemical reactivity in a variety of small polycyclic hydrocarbons. Two such ring systems are bicyclo[l. 1.0]butane (].) and bicyclo[2.1.0]pentane (2). ' 1. For a review of cyclopropane chemistry see: M. Y. Kukina, Russ. Chem. Rev., U19 (1962). 2. R. B. Turner and P. Goebel, Tetrahedron Letters, 997 (19^5)' 3 . J. W. Khowlton and F. D. Rossini, J. Research Natl. Bur. Standards, II3 (19^9). 2 0 â The most recent determination of strain energy from heats of 4 hydrogenation assigned a total strain of 68.2 kcal/mole (17 kcal per carbon) to l,3-dimethylbicyclo[l.1.0]butane. This high degree of strain energy is probably not localized in the ring fusion bond, but is distributed over several bonds. The hydrogenation of the 1,3- bond produces a cyclobutane derivative and releases U3.6 kcal/mole. The cleavage of a 1,2-bond relieves k2.2 kcal/mole of the total strain energy. The measured strain energy of ]. itself is 63.9 kcal/ 4 mole. A previous value of 6?.^ kcal/mole was calculated from heats 5 of formation obtained from an SCF MO theoretical treatment. From a consideration of heats of hydrogenation and heats of formation, the total strain energy of 2 was found to be $4.1 kcal/ mole. Since hydrogenation of the 1,4-bond forms cyclopentane with a strain energy of 6.0 kcal/mole, the strain energy of this ring fusion bond must be 48.1 kcal/mole. This value is greater than that for .1 ,3 -bond cleavage of by approximately 10 kcal/mole, con- 4. R. B. Turner, P. Goebel, B. J. Mallon, W. von E. Doering, J. p. Coburn, Jr., and M. Pomerantz, J. Am. Chem. Soc., 90, 4315 (1968). See also W. von E. Doering and J. F. Coburn, Jr., Tetra- \ hedron Letters, 991 (1965). 5. N. Baird and M. J. S. Dewar, ibid., 8 9 , 5966 (1967). 6 sidering the strain energy of cyclobutane to be 25-8 kcal/mole. The 1,4-bond dissociation energy is ^O.J kcal/mole compared with 54.4 7 kcal/mole for cyclopropane. The strain energy of a related struc­ ture, quadricyclane, was found to be 95-1 kcal/mole (l$.6 kcal per carbofi). It will become apparent that much of the chemistry of these small ring hydrocarbons is explicable on the basis of bonding char­ acteristics in addition to strain energy. For example, the chemical reactivity
Recommended publications
  • Suplementary Information
    Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2011 SUPLEMENTARY INFORMATION Shedding the hydrophobic mantel of polymersomes René P. Brinkhuis, Taco R. Visser, Floris P. J. T. Rutjes, Jan C.M. van Hest* Radboud University Nijmegen,, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands; E-mail: [email protected]; [email protected] Contents: Experimental General note Materials Instrumentation α- methoxy ω-methyl ester poly(ethylene glycol) α- methoxy ω-hydrazide poly(ethylene glycol) α- azido ω-methoxy poly(ethylene glycol) Aldehyde terminated polybutadiene Alkyne terminated polybutadiene Polybutadiene-Hz-poly(ethylene glycol) Polybutadiene-b-poly(ethylene glycol) Vesicle preparation Stability studies Notes and References Figures Figure 1: GPC traces of polymer 1 and its constituents. Figure 2: GPC traces of polymer 2 and its constituents. Figure 3: GPC traces of polymer 3 and its constituents. Figure 4: GPC traces of polymer 4 and its constituents. Supplementary Material (ESI) for Polymer Chemistry This journal is (c) The Royal Society of Chemistry 2011 Experimental section General note: All reactions are described for the lower molecular weight analogue, polyethylene glycol 1000, indicated with an A. The procedures for the polyethylene glycol 2000 analogues, indicated with B, are the same, starting with equimolar amounts. Materials: Sec-butyllithium (ALDRICH 1.4M in hexane), 1,3 butadiene (SIGMA ALDRICH, 99+%), 3- bromo-1-(trimethylsilyl-1-propyne) (ALDRICH, 98%), tetrabutylammonium fluoride (TBAF) (ALDRICH, 1.0M in THF), polyethylene glycol 1000 monomethyl ether (FLUKA), polyethylene glycol 2000 monomethyl ether (FLUKA), methanesulfonyl chloride (MsCl) (JANSSEN CHIMICA, 99%), sodium azide (ACROS ORGANICS, 99% extra pure), sodium hydride (ALDRICH, 60% dispersion in mineral oil), copper bromide (CuBr) (FLUKA, >98%), N,N,N’,N’,N”-penta dimethyldiethylenetriamine (PMDETA) (Aldrich,99%), hydrazine (ALDRICH, 1M in THF) were used as received.
    [Show full text]
  • Transition Metal Complexes of Dicyanoacetylene
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1971 Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium. Gregory Lloyd Mcclure Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Mcclure, Gregory Lloyd, "Transition Metal Complexes of Dicyanoacetylene: a Study of the Reaction Chemistry of Low Valence States of the Transition Metals, Platinum, Palladium, Nickel, Rhodium, and Iridium." (1971). LSU Historical Dissertations and Theses. 2001. https://digitalcommons.lsu.edu/gradschool_disstheses/2001 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. 71-29,382 McCLURE, Gregory Lloyd, 1993- TRANSITION METAL COMPLEXES OF DICYANOACETYLENE: A STUDY OF THE REACTION CHEMISTRY OF LOW VALENCE STATES OF THE TRANSITION METALS, PLATINUM, PALLADIUM, NICKEL, RHODIUM, AND IRIDIUM. The Louisiana State University and Agricultural and Mechanical College, Ph.D., 1971 C hem i stry, inorgan ic University Microfilms, A XEROX Company , Ann Arbor. Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED TRANSITION
    [Show full text]
  • Ionization Photophysics and Spectroscopy of Dicyanoacetylene Sydney Leach, Martin Schwell, Gustavo A
    Ionization photophysics and spectroscopy of dicyanoacetylene Sydney Leach, Martin Schwell, Gustavo A. Garcia, Yves Bénilan, Nicolas Fray, Marie-Claire Gazeau, François Gaie-Levrel, Norbert Champion, and Jean-Claude Guillemin Citation: The Journal of Chemical Physics 139, 184304 (2013); doi: 10.1063/1.4826467 View online: http://dx.doi.org/10.1063/1.4826467 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/139/18?ver=pdfcov Published by the AIP Publishing This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 193.51.99.1 On: Wed, 05 Feb 2014 16:48:49 THE JOURNAL OF CHEMICAL PHYSICS 139, 184304 (2013) Ionization photophysics and spectroscopy of dicyanoacetylene Sydney Leach,1,a) Martin Schwell,2,a) Gustavo A. Garcia,3 Yves Bénilan,2 Nicolas Fray,2 Marie-Claire Gazeau,2 François Gaie-Levrel,3,b) Norbert Champion,1 and Jean-Claude Guillemin4 1LERMA UMR CNRS 8112, Observatoire de Paris-Meudon, 5 place Jules-Jansen, 92195 Meudon, France 2LISA UMR CNRS 7583, Université Paris-Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil, France 3Synchrotron SOLEIL, L’Orme des Merisiers, St. Aubin, B.P. 48, 91192 Gif-sur-Yvette Cedex, France 4Institut des Sciences Chimiques de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France (Received 17 June 2013; accepted 8 October 2013; published online 11 November 2013) Photoionization of dicyanoacetylene was studied using synchrotron radiation over the excitation range 8–25 eV, with photoelectron-photoion coincidence techniques.
    [Show full text]
  • Synthesis of Alkylated Benzenes and Lithium Aluminium Hydride Reduction
    70 - 14,004 DAUERNHEIM, Lauren William, 1938- SYNTHESIS OF ALKYLATED BENZENES AND LITHIUM ALUMINUM HYDRIDE REDUCTION OF 1,3-DIHALIDES. The Ohio State University, Ph.D. , 1969 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED SYNTHESIS OP ALKYLATED BENZENES AND LITHIUM ALUMINUM HYDRIDE REDUCTION OF 1,3-DIHALIDES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Lauren William Dauernheim, B.A., M.A ****** The Ohio State University 1969 Approved by Adviser Department of Chemistry ACKNOWLEDGMENT I am thankful for having had the opportunity to work under Dr. Melvin S. Newman. His guidance and support made fulfillment of this research possible. ii VITA February 16, 1938 , ....... Born, St. Louis, Missouri 1960 ...................... A.B., Washington University St. Louis, Missouri 1963 M.A., University of Arizona Tucson, Arizona iii TABLE OF CONTENTS Page ACKNOWLEDGMENTS ................................... ii VITA ............................................. iii LIST OF TABLES.................................... v LIST OF FIGURES ................................... vi LIST OF C H A R T S ......... vii PART I. SYNTHETIC ROUTES TO CERTAIN ALKYLATED BENZENES INTRODUCTION ................................ 1 SYNTHETIC ROUTES TO ALKYLATED NEOPENTYLBENZENES . 12 SYNTHETIC ROUTES TO ALKYLATED ETHYLBENZENES ........ 20 PART II. SYNTHESIS AND LITHIUM ALUMINUM HYDRIDE REDUCTION OF CERTAIN 1,3-DIHALOPROPANES INTRODUCTION ..................................... 23 SYNTHESIS OF 2-BENZYL-2-METHYL-1,3-DIHALOPROPANES . 25 SYNTHESIS OF 2-BENZYL-l,3-DIHALOPROPANES .......... 27 DISCUSSION OF THE NMR SPECTRA OF 2-BENZYL-l,3- DIHALOPROPANES ................................. 29 RESULTS AND CONCLUSIONS FROM THE LITHIUM ALUMINUM HYDRIDE REDUCTION OF CERTAIN 1,3-DIHALOPROPANES . 33 EXPERIMENTAL OF PART I ..............
    [Show full text]
  • The Reaction of Sodium Borohydride
    THE REACTION OF SODIUM BOROHYDRIDE WITH N-·ACYLANILINES By ROBERT FRA.."\\JK LINDEl"J.ANN Ir Bachelor of Arts Wittenberg College Springfield, Ohio 1952 Submitted to the Faculty of the Graduate School of the Oklahoma Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of MA.STER OF SCIENCE August, 19.54 i THE REACTION OF SODIUM BOROHYDRIDE WITH N-ACYLANILINES Thesis Approved: ~ - Dean of the Graduate School ii l!l Al C! 0~ 11J/~~. 2t"'I'Ii .ACKN01rJLEDGEMENT The author-wishes to express his gratitude to Dr. H. Po Johnston for the invaluable assistance and guidance given. This project was made possible by the Chemistry Department in the form of a Graduate Fellowship and by an unnamed sponsor through the Research Foundation. iii TABLE OF CONTENTS Page · I. .Introduction ...................................... ., o ••••••·· .... 1 II o Historical ... o o • .,, • (I .. ., •.••• G ••••.•••••••• .is •••••••• "' •. o o •••••• o '°. 2 Preparation of Sodium Borohydride ........................... 2 Physical Properties ofSodium Borohydrj.de ................... 3 Chemical Properties of · Sodium Borohydride .............. " •••• 3 III. Experimental. 0 ·• •• ·•. 0 •••• 0 ·• •••• 0. (I •••• 0 0 • 0 Q • .., ••• Q e. 0. 0. 0 D. 0 e 8 Purification of Sodium Borohydride ........................... 8 Reaction of Sodium Borohydride w:i. th Acetanilide ..........._ •• 9 Reaction of Sodium Borohydride w:i. th For.manilide oo •• oe.,. .... 27 Discussion ••• o o. o. o o o o. o ·O fl o • .e. o o ........ o. o. o o • ., o ~. o" o (Io o o o .29 IV. S11ITil11ary •• 0. Cl Ct. 0 0 0. 0. 0 -0 DO O O O C. c,.. 0. 0 4 11) 0 0 0 -0 0 0 0 -0 a O O .0 0 0 .0.
    [Show full text]
  • Polymerization of Dicyanoacetylene † ‡ ○ † ○ ■ ¶ § ■ § ■ Huiyang Gou,*, , , Li Zhu, , Haw-Tyng Huang, , Arani Biswas, , Derek W
    Article pubs.acs.org/cm From Linear Molecular Chains to Extended Polycyclic Networks: Polymerization of Dicyanoacetylene † ‡ ○ † ○ ■ ¶ § ■ § ■ Huiyang Gou,*, , , Li Zhu, , Haw-Tyng Huang, , Arani Biswas, , Derek W. Keefer, , ∥ ◆ ⊥ † ‡ † ‡ † Brian L. Chaloux, , Clemens Prescher, Liuxiang Yang, , Duck Young Kim, , Matthew D. Ward, ■ # # ∇ ∥ § ■ ¶ □ Jordan Lerach, Shengnan Wang, Artem R. Oganov, , Albert Epshteyn, John V. Badding, , , , † and Timothy A. Strobel*, † Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, United States ‡ Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China § Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States ■ Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States ¶ Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States □ Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States ∥ Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375, United States ⊥ Center for Advanced Radiation Sources, University of Chicago, Argonne, Illinois 60437, United States # Department of Geosciences, Center for Materials by Design, and Institute for Advanced Computational Science, State University of New York, Stony Brook, New York 11794-2100, United States ∇ Skolkovo Institute of Science and Technology,
    [Show full text]
  • The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) Dr
    _ ; i •_ '. : .' _ ";¢ hi-__¸_:_7 NASA-CR-204199 The Center For The Study Of Terrestrial And Extraterrestrial Atmospheres (CSTEA) Dr. Arthur N. Thorpe, Director Dr. Vernon R. Morris, Deputy Director Funded By The National Aeronautics And Space Administration (NASA) NAGW 2950 Five-Year Report April 1992-December 1996 Howard University 2216 6th Street, NW Room 103 Washington, DC 20059 202-806-5172 202-806-4430 (FAX) URL Home Page: http://www.cstea.howard.edu e-mail: thorpe@ cstea.cstea.howard.edu TABLE OF CONTENTS CSTEA's Existence ... Then And Now 1 The CSTEA PIs ... Their Research And Students 6 Dr. Peter Bainum ... 7 Dr. Anand Batra ... 10 Dr. Robert Catchings ... 10 Dr. L. Y. Chiu ... 11 Dr. Balaram Dey ... 13 Dr. Joshua Halpern ... 14 Dr. Peter Hambright ... 20 Dr. Gary Harris ... 24 Dr. Lewis Klein ... 26 Dr. Cidambi Kumar ... 28 Dr. James Lindesay ... 29 Dr. Prabhakar Misra ... 32 Dr. Vernon Morris ... 35 Dr. Hideo Okabe ... 39 Dr. Steven Pollack ... 41 Dr. Steven Richardson ... 42 Dr. Yehuda Salu ... 43 Dr. Sonya Smith ... 45 Dr. Michael Spencer ... 46 Dr. George Morgenthaler ... 48 Five Year Report (April 1992-31 December 1996) Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) Dr. Arthur N. Thorpe, Director CSTEA's EXISTENCE ... THEN AND NOW The Center for the Study of Terrestrial and Extraterrestrial Atmospheres (CSTEA) was established in 1992 by a grant from the National Aeronautics and Space Administra- tion (NASA) Minority University Research and Education Division (MURED). Since CSTEA was first proposed in October of 1991 by Dr. William Gates, then Chairman of the Department of Physics at Howard University, it has become a world-class, comprehen- sive, nationally competitive university center for atmospheric research ..
    [Show full text]
  • Fluorinated Butatrienes
    Fluorinated Butatrienes Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin vorgelegt von Dipl.-Chem. Christian Ehm aus Berlin Berlin, April 2010 1. Gutachter: Prof. Dr. Dieter Lentz 2. Gutachter: Prof. Dr. Beate Paulus Disputation am 28.6.2010 I Acknowledgements It would not have been possible to write this doctoral thesis without the help and support of the kind people around me, to only some of whom it is possible to give particular mention here. First and foremost I would like to thank my principal supervisor, Professor Dieter Lentz, for the opportunity of doing research in his group. Without his continuous support and encouragement this thesis would not be in the present state. I highly appreciate that Professor Beate Paulus has agreed to be co-referee of my thesis. I would like to cordially thank Lada for her love and patience as well as her interest in my research. Special thanks to my family for their continuous support and love. I would like to thank Mike Roland, Sten Dathe and Sven Wünsche for their friendship and the fun we have had every Sunday evening. Special thanks to Sebastian Freitag, Boris Bolsinger and Frederic Heinrich for their friendship. They deserve much gratefulness for keeping me on the right way. I would like to thank all my colleagues at the Institut für Chemie und Biochemie, Abteilung Anorganische Chemie. In particular I want to thank all members of the Lentz group, Thomas Hügle, Moritz Kühnel, Dr. Floris Akkerman, Dr.
    [Show full text]
  • Sodium Hydride-Based Hydrogen Storage System
    Analysis of the Sodium Hydride-based Hydrogen Storage System being developed by PowerBall Technologies, LLC Prepared for The US Department of Energy Office of Power Technologies Hydrogen Program Prepared by J. Philip DiPietro and Edward G. Skolnik, Energetics, Incorporated October 29, 1999 v Analysis of the Sodium Hydride-Based Hydrogen Storage System being developed by PowerBall Technologies, LLC We considered the viability of a system for storing hydrogen on-board a vehicle in the form of plastic-encapsulated sodium hydride (NaH) pellets. Hydrogen is produced when the pellets are cut and immersed in water. The exposed NaH surface reacts with water, releasing hydrogen and forming sodium hydroxide (NaOH) as a byproduct. Later, in an off-board activity, the hydroxide is recycled to hydride via a multi-step regeneration process that relies on methane as both a fuel and a reactant. This is a preliminary analysis that required the development of conceptual designs for several of the process steps and the need to make several assumptions in order to complete the overall systems analysis. The analysis was peer reviewed by several members of their hydrogen community, and their comments were taken into account in the preparation of this document. Executive Summary The reaction of sodium hydride with water to form hydrogen and sodium hydroxide can be utilized onboard a vehicle to deliver hydrogen to an onboard power system. PowerBall Technologies, LLC has developed a novel means of controlling the reaction: they encapsulate small amounts of sodium hydride in plastic balls. These balls are sliced open one at a time onboard the vehicle to deliver hydrogen as needed.
    [Show full text]
  • The Neutral Photochemistry of Nitriles, Amines and Imines in the Atmosphere of Titan
    The neutral photochemistry of nitriles, amines and imines in the atmosphere of Titan J.C. Loisonc,d, E. H´ebrarda,b, M. Dobrijevica,b,∗, K.M. Hicksonc,d, F. Caralpc,d, V. Huea,b, G. Gronoffe, O. Venotf, Y. Benilang aUniversit´ede Bordeaux, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270 Floirac, France bCNRS, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France cUniversit´ede Bordeaux, Institut des Sciences Mol´eculaires, UMR 5255, F-33400 Talence, France dCNRS, Institut des Sciences Mol´eculaires, UMR 5255, F-33400 Talence, France eSSAI/NASA LaRC, Hampton, Va, USA fKatholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium gLaboratoire Interuniversitaire des Syst`emesAtmosph´eriques, UMR CNRS 7583, Universit´esParis Est Cr´eteil(UPEC) et Paris Diderot (UPD), Cr´eteil,France Abstract The photochemistry of N2 and CH4 in the atmosphere of Titan leads to a very rich chemistry which is not well understood. The aim of our study is to improve our understanding of the production of nitrogen compounds and to predict the abundances of those with high molar mass with better accuracy. We have made a careful investigation of the neutral nitrogen photochemistry to improve current chemical schemes including the most abundant species and the most efficient reactions. We also studied the propagation of uncertainties on rate constants in our model and determined the key reactions from a global sensitivity analysis. Our photochemical model contains 124 species, 60 of which are nitrogen con- taining compounds, and 1141 reactions. Our results are in reasonable agreement with Cassini/INMS data in the higher atmosphere but our model overestimates the mole fractions of several nitriles in the lower stratosphere.
    [Show full text]
  • Metal Hydride Materials for Solid Hydrogen Storage: a Reviewଁ
    International Journal of Hydrogen Energy 32 (2007) 1121–1140 www.elsevier.com/locate/ijhydene Review Metal hydride materials for solid hydrogen storage: A reviewଁ Billur Sakintunaa,∗, Farida Lamari-Darkrimb, Michael Hirscherc aGKSS Research Centre, Institute for Materials Research, Max-Planck-Str. 1, Geesthacht D-21502, Germany bLIMHP-CNRS (UPR 1311), Université Paris 13, Avenue J. B. Clément, 93430 Villetaneuse, France cMax-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany Received 31 July 2006; received in revised form 21 November 2006; accepted 21 November 2006 Available online 16 January 2007 Abstract Hydrogen is an ideal energy carrier which is considered for future transport, such as automotive applications. In this context storage of hydrogen is one of the key challenges in developing hydrogen economy. The relatively advanced storage methods such as high-pressure gas or liquid cannot fulfill future storage goals. Chemical or physically combined storage of hydrogen in other materials has potential advantages over other storage methods. Intensive research has been done on metal hydrides recently for improvement of hydrogenation properties. The present review reports recent developments of metal hydrides on properties including hydrogen-storage capacity, kinetics, cyclic behavior, toxicity, pressure and thermal response. A group of Mg-based hydrides stand as promising candidate for competitive hydrogen storage with reversible hydrogen capacity up to 7.6 wt% for on-board applications. Efforts have been devoted to these materials to decrease their desorption temperature, enhance the kinetics and cycle life. The kinetics has been improved by adding an appropriate catalyst into the system and as well as by ball-milling that introduces defects with improved surface properties.
    [Show full text]
  • Syntheses of Poly(Ethylene Oxide) Macromonomers Carrying Tertiary Amine and Quaternary Ammonium End Groups
    Polymer Journal, Vol.35, No. 6, pp 513—518 (2003) Syntheses of Poly(ethylene oxide) Macromonomers Carrying Tertiary Amine and Quaternary Ammonium End Groups † Takamichi SENYO, Yuji ATAGO, Huanan LIANG, Renhua SHEN, and Koichi ITO Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441–8580, Japan (Received January 23, 2003; Accepted March 30, 2003) ABSTRACT: p-Vinylbenzyl alcohol, partially alkoxidated with potassium naphthalene, was used successfully to initiate living polymerization of ethylene oxide to afford α-p-vinylbenzyl-ω-hydroxy poly(ethylene oxide) (PEO) macromonomers. The ω-hydroxy end-groups were quantitatively transformed to tertiary amines either by tosylation followed by reaction with potassium 2-dimethylaminoethoxide or by Williamson synthesis with 2-dimethylaminoethyl chloride in the presence of sodium hydride. ω-Quaternary ammonium-ended PEO macromonomers were also quantita- tively obtained by reaction with iodomethane. KEY WORDS Poly(ethylene oxide) / Macromonomers / p-Vinylbenzyl End-Group / Tertiary Amine End-Group / Quaternary Ammonium End-Group / End-Group Transformation / Hetero- telechelics / Poly(ethylene oxide) (PEO) is one of well- ion to afford F– and –OH end-functionalized PEO, known, water-soluble, nonionic polymers, and its F–O[CH2CH2O]n–H, after acidification. In fact, we macromonomers have also been a subject of consid- could readily have α-p-vinylphenylalkyl-ω-hydroxy- erable interest because of their unique amphiphilic ended PEO macromonomers in one step.13 On the other properties as well as their many potential applica- hand, the ω-hydroxy-end may be transformed to intro- tions in various fields, including coatings, cosmetics, duce another functionality, F , to F–O[CH2CH2O]n–F .
    [Show full text]