Tyrannosaurus Rex Classroom

Total Page:16

File Type:pdf, Size:1020Kb

Tyrannosaurus Rex Classroom ISBN 1-56767-216-7 Developed in Southern California by Educational Insights. © Educational Insights, Inc., Gardena, CA (U.S.A.). All rights reserved. Learning Resources Ltd., Oldmedow Road, King’s Lynn, Norfolk, PE30 4JX, UK. Please retain this information. Made in China. www.educationalinsights.com Table of Contents What Is in Dueling Dino Dig? . .2 Welcome to Tyrannosaurus’s World . .4 Mealtime in the Mesozoic . .5 Tyrannosaurus Findings . .10 A Dinosaur Dig . .12 You’ll DIG These Fossils! . .14 Get Ready to Dig . .16 Dino Drawing . .18 Draw Your Own . .18 Tyrannosaurus Fact Sheet . .20 Picture Gallery . .21 Making Your Tyrannosaurus Model . .22 Displaying Tyrannosaurus . .24 © Copyright 1997 Educational Insights Inc., Carson, CA (USA), St Albans, Herts. (UK). All rights reserved. Please retain this information. Conforms to ASTM F-963-96a, EN-71. Printed in China. EI-5176 The Age of Dinosaurs . .26 Where Did They Go? . .29 1 Paleontologist’s tools: What Is in Dueling Just like a paleontologist, you will get to dig the “fossils” from the “earth.” The digging tool Dino Dig? will help you break apart the clay, separate the fossils from Dueling Dino Dig Guide Book—Tyrannosaurus kit: the clay, and clean bits of clay from the fossils. The brush This will let you clean the dust from the fossils as you excavate. book contains an exciting story featuring Tyrannosaurus, set Fossils: in the Mesozoic era. You will also find background The fossils that you excavate will be smaller than information and history, plus instructions on how to excavate real ones, but when you put them together you’ll have a your fossils, assemble them, and pose your model with other true-to-scale skeleton of Tyrannosaurus. Dueling Dinos! Wax: Clay block: This wax will hold your fossil parts together. It will This block of clay represents a piece of earth— not harden and you can change poses or positions whenever millions of years old. Buried inside the clay, you will find you wish! The flexibility of this wax allows your dinosaur to fossil replicas of Tyrannosaurus bones. have a little bit of movement, especially in the jaw and legs. Then you can pose them alone or with models from other Guide Book Dueling Dino Dig kits. (See back cover of this guide book.) Stand: When your Tyrannosaurus model is complete, pose it on this stand. Then attach the label (included). Wax Stand Paleontologist’s tools: Fossil Clay block 2 3 Welcome to Mealtime in the Mesozoic Tyrannosaurus’s World On a warm day in a lush swamp forest, sixty-five million years ago, a Tyrannosaurus wakes from sleep. It’s near the end of the Mesozoic era*—the age of dinosaurs. The air is Are you ready to find and study fossils, just like a still. A pteranodon spreads its huge wings and flies from a paleontologist? treetop to the water. She swoops down and catches a fish Are you ready to dig some fossils of your own? with her long, pointy beak. Are you ready to build a model of a dinosaur and pose Tyrannosaurus begins to think about eating. He watches it in action? the pteranodon glide across the sky. In the distance, a Then you are ready for Dueling Dino Dig! Troodon runs from the water. Something is dangling from Troodon’s mouth—it’s a snake! Troodon’s eyes face partly Let’s go back in time more than 65 million years to the forward, making it easy for her to find snakes, lizards, and world of dinosaurs—the time of Tyrannosaurus... small mammals to eat. Tyrannosaurus watches carefully. Suddenly, a thundering sound fills the swampland. It is not from the silent Tyrannosaurus, who hears it too. This is the sound of dinosaurs in battle! 4 5 *To find out more about the Mesozoic era and the age of dinosaurs, see page 26. The Battle Tyrannosaurus lifts his huge head. He uses his tiny arms At the water’s edge, he sees the source of the battle cries— for balance as he raises his 7-ton body. When he stands, two Triceratops, heads lowered, long horns locked in he is more than 46 feet (14 meters) tall! Tyrannosaurus fierce conflict. smells the moist air. He listens. The thundering warfare Tyrannosaurus, the “tyrant-lizard,” watches and waits. continues. Tyrannosaurus can sense the direction of the For a few seconds, the two Triceratops are at a standoff— sounds. He turns toward the swamp. horns locked—unable to move. Suddenly, they break Slowly, carefully, Tyrannosaurus moves his giant body. loose. One Triceratops thrusts its bony horns into the neck The earth rumbles with each step. A Parksosaurus, of the other, but even its sharp point can’t tear the other’s heading for the water, feels the rumble and bolts in the tough neck frill. The second Triceratops lowers his head— opposite direction! almost to the ground. Then, with a quick move, he raises It only takes a few long steps for the huge Tyrannosaurus his top horn into the lower shoulder of the other, forcing to reach the battle sounds. He peers through the brush at the mighty dinosaur to the ground, defeated. The battle is the water hole, surrounded by flowering plants. over. The victor steps on his victim with a heavy foot, then stalks away. 6 7 Tyrannosaurus seizes the moment. With a bolt of speed, he All of a sudden the sky darkens. Dark clouds burst into bursts through the brush and attacks the wounded heavy rainfall. The water hits the earth fast and hard. The Triceratops. He uses his own body weight to pin down the water hole fills and overflows. Flood waters rush across the struggling animal. Then he sinks his teeth into its flesh. lands. Plants and animals are carried away by the sweeping Tyrannosaurus’s teeth are like knives: 7 inches (18 cm) long flow. Tyrannosaurus, trying to keep his feet planted in the and curved, with a rough, jagged edge to rip apart his prey. muddy swampland, is lifted by the rushing water. He is The Triceratops tries to defend himself but he is trapped in swept away by the newly formed river of water. He the grip of Tyrannosaurus’s tiny arms as the tyrant lizard disappears, never to be seen again... tears off another chunk of flesh. Tyrannosaurus twists and ...at least, not for 65 million years! turns his powerful neck as he rips away each morsel. Finally, Tyrannosaurus is satisfied. He moves on through the swamp grasses, leaving the Triceratops body behind. 8 9 Tyrannosaurus Findings Montana, 1902 Sixty-five million years after all dinosaurs had disappeared, paleontologists gathered at a dig site in Montana, United States of America, to study plant and animal fossils. The year was 1902. Excitement filled the air as the scientists dug deeper into the earth’s mysterious secrets. They found the bones of one of the largest, most powerful animals that ever lived (that we know of!)—Tyrannosaurus, the tyrant lizard. This is a drawing of Tyrannosaurus’s front arm from the humerus, or shoulder The fossilized bones were in excellent condition. This is why bone, to the finger claws. scientists believed he or she may have died in a flash flood. Scavenger or Hunter? When the flood was over, Tyrannosaurus was left buried in tiny particles of earth, sand, and mud. Over the years, this Was the great meat-eating Tyrannosaurus a terrifying sediment hardened into rock. The rock lay unnoticed for hunter or a cunning scavenger? Scientists disagree about the millions of years, until this day. evidence. Some believe Tyrannosaurus was the most vicious meat-eating creature of the Cretaceous period—a powerful From this and other digs that followed, paleontologists have threat to any living animal who may have been in the way. found many Tyrannosaurus fossils, including a 7-inch (18 cm) Its long, sharp teeth could have gripped the flesh of any prey tooth. The curved tooth has a serrated, or saw-like edge. it wanted. Other scientists say Tyrannosaurus’s enormous They learned that Tyrannosaurus had three toes on its feet size and weight would have prevented it from moving fast and two claws on its two tiny hands. They determined that enough to catch any live prey. They believe the great Tyrannosaurus probably walked with its huge, heavy tail dinosaur relied on the weak, sick, or dead for its meals. raised to balance the weight of its large head, not lowered to the ground as was earlier believed. Like some other animal One thing scientists do agree on about the Tyrannosaurus— species, the female Tyrannosaurus may have been larger it was one of the last species of dinosaur to disappear from than the male. By the 1990s, scientists had found two almost the face of the earth. complete skeletons of this remarkable dinosaur. 10 11 5 A Dinosaur Dig The fossil is uncovered with a brush. It is protected with wrappings of plaster-soaked cloth or sprayed with a resin to Dinosaur digs require very hard work. It can take months, make it stronger. even years, and a lot of work to find a fossil and remove it 6 When the plaster hardens, it is safe to remove the fossil from the earth. It’s worth it, though, for the excitement of from the ground. Sometimes a whole rock is excavated to discovery and new scientific knowledge! protect a fragile fossil. Let’s take a look at what happens at many fossil digs: 7 1 After it is removed from the ground, each fossil is care- Fossil hunters search rock layers of the Mesozoic era fully placed in a padded crate.
Recommended publications
  • Tyrannosaurus Rex by Guy Belleranti
    Name: ______________________________ Tyrannosaurus Rex By Guy Belleranti One of the most dangerous dinosaurs was the Tyrannosaurus rex. It looked like a huge lizard with sharp teeth. It lived over 60 million years ago. From nose to tail, T-rex was as long as a school bus. It was taller than a house. It weighed more than an airplane. T-rex’s head was as long as a kitchen table. T-rex was the biggest meat-eating dinosaur. It could eat hundreds of pounds of meat in one bite. Animals that eat meat have sharp teeth. T-rex had 60 of them! Some of the teeth were as big as bananas. When T-rex lost a tooth, it grew a new one. T-rex stood on two powerful legs. It also had two small arms. Its strong tail helped keep it from falling over. It might be fun to see a live Tyrannosaurus rex, but I wouldn’t want to meet one. Would you? Super Teacher Worksheets - www.superteacherworksheets.com Name: ______________________________ Tyrannosaurus Rex By Guy Belleranti 1. How many teeth did a Tyrannosaurus rex have? a. thirty b. sixteen c. sixty d. seventy 2. How long ago did Tyrannosaurus rex live? ________________________________________________________________ 3. What did Tyrannosaurus rex eat? a. leaves from tall trees b. other dinosaurs c. small insects d. people 4. A T-rex was as long as a ______________________________________. 5. A T-rex weighed as much as an _______________________________. 6. Which dinosaurs had sharp teeth? a. all dinosaurs b. dinosaurs that had tails c. dinosaurs that were big d.
    [Show full text]
  • A Neoceratopsian Dinosaur from the Early Cretaceous of Mongolia And
    ARTICLE https://doi.org/10.1038/s42003-020-01222-7 OPEN A neoceratopsian dinosaur from the early Cretaceous of Mongolia and the early evolution of ceratopsia ✉ Congyu Yu 1 , Albert Prieto-Marquez2, Tsogtbaatar Chinzorig 3,4, Zorigt Badamkhatan4,5 & Mark Norell1 1234567890():,; Ceratopsia is a diverse dinosaur clade from the Middle Jurassic to Late Cretaceous with early diversification in East Asia. However, the phylogeny of basal ceratopsians remains unclear. Here we report a new basal neoceratopsian dinosaur Beg tse based on a partial skull from Baruunbayan, Ömnögovi aimag, Mongolia. Beg is diagnosed by a unique combination of primitive and derived characters including a primitively deep premaxilla with four pre- maxillary teeth, a trapezoidal antorbital fossa with a poorly delineated anterior margin, very short dentary with an expanded and shallow groove on lateral surface, the derived presence of a robust jugal having a foramen on its anteromedial surface, and five equally spaced tubercles on the lateral ridge of the surangular. This is to our knowledge the earliest known occurrence of basal neoceratopsian in Mongolia, where this group was previously only known from Late Cretaceous strata. Phylogenetic analysis indicates that it is sister to all other neoceratopsian dinosaurs. 1 Division of Vertebrate Paleontology, American Museum of Natural History, New York 10024, USA. 2 Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, c/de les Columnes s/n Campus de la Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès Sabadell, Barcelona, Spain. 3 Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA. 4 Institute of Paleontology, Mongolian Academy of Sciences, ✉ Ulaanbaatar 15160, Mongolia.
    [Show full text]
  • Fused and Vaulted Nasals of Tyrannosaurid Dinosaurs: Implications for Cranial Strength and Feeding Mechanics
    Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics ERIC SNIVELY, DONALD M. HENDERSON, and DOUG S. PHILLIPS Snively, E., Henderson, D.M., and Phillips, D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51 (3): 435–454. Tyrannosaurid theropods display several unusual adaptations of the skulls and teeth. Their nasals are fused and vaulted, suggesting that these elements braced the cranium against high feeding forces. Exceptionally high strengths of maxillary teeth in Tyrannosaurus rex indicate that it could exert relatively greater feeding forces than other tyrannosaurids. Areas and second moments of area of the nasals, calculated from CT cross−sections, show higher nasal strengths for large tyrannosaurids than for Allosaurus fragilis. Cross−sectional geometry of theropod crania reveals high second moments of area in tyrannosaurids, with resulting high strengths in bending and torsion, when compared with the crania of similarly sized theropods. In tyrannosaurids trends of strength increase are positively allomeric and have similar allometric expo− nents, indicating correlated progression towards unusually high strengths of the feeding apparatus. Fused, arched nasals and broad crania of tyrannosaurids are consistent with deep bites that impacted bone and powerful lateral movements of the head for dismembering prey. Key words: Theropoda, Carnosauria, Tyrannosauridae, biomechanics, feeding mechanics, computer modeling, com− puted tomography. Eric Snively [[email protected]], Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Donald M. Henderson [[email protected]], Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta T0J 0Y0, Canada; Doug S.
    [Show full text]
  • At Carowinds
    at Carowinds EDUCATOR’S GUIDE CLASSROOM LESSON PLANS & FIELD TRIP ACTIVITIES Table of Contents at Carowinds Introduction The Field Trip ................................... 2 The Educator’s Guide ....................... 3 Field Trip Activity .................................. 4 Lesson Plans Lesson 1: Form and Function ........... 6 Lesson 2: Dinosaur Detectives ....... 10 Lesson 3: Mesozoic Math .............. 14 Lesson 4: Fossil Stories.................. 22 Games & Puzzles Crossword Puzzles ......................... 29 Logic Puzzles ................................. 32 Word Searches ............................... 37 Answer Keys ...................................... 39 Additional Resources © 2012 Dinosaurs Unearthed Recommended Reading ................. 44 All rights reserved. Except for educational fair use, no portion of this guide may be reproduced, stored in a retrieval system, or transmitted in any form or by any Dinosaur Data ................................ 45 means—electronic, mechanical, photocopy, recording, or any other without Discovering Dinosaurs .................... 52 explicit prior permission from Dinosaurs Unearthed. Multiple copies may only be made by or for the teacher for class use. Glossary .............................................. 54 Content co-created by TurnKey Education, Inc. and Dinosaurs Unearthed, 2012 Standards www.turnkeyeducation.net www.dinosaursunearthed.com Curriculum Standards .................... 59 Introduction The Field Trip From the time of the first exhibition unveiled in 1854 at the Crystal
    [Show full text]
  • A Revision of the Ceratopsia Or Horned Dinosaurs
    MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY VOLUME III, 1 A.R1 A REVISION orf tneth< CERATOPSIA OR HORNED DINOSAURS BY RICHARD SWANN LULL STERLING PROFESSOR OF PALEONTOLOGY AND DIRECTOR OF PEABODY MUSEUM, YALE UNIVERSITY LVXET NEW HAVEN, CONN. *933 MEMOIRS OF THE PEABODY MUSEUM OF NATURAL HISTORY YALE UNIVERSITY Volume I. Odontornithes: A Monograph on the Extinct Toothed Birds of North America. By Othniel Charles Marsh. Pp. i-ix, 1-201, pis. 1-34, text figs. 1-40. 1880. To be obtained from the Peabody Museum. Price $3. Volume II. Part 1. Brachiospongidae : A Memoir on a Group of Silurian Sponges. By Charles Emerson Beecher. Pp. 1-28, pis. 1-6, text figs. 1-4. 1889. To be obtained from the Peabody Museum. Price $1. Volume III. Part 1. American Mesozoic Mammalia. By George Gaylord Simp- son. Pp. i-xvi, 1-171, pis. 1-32, text figs. 1-62. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $5. Part 2. A Remarkable Ground Sloth. By Richard Swann Lull. Pp. i-x, 1-20, pis. 1-9, text figs. 1-3. 1929. To be obtained from the Yale University Press, New Haven, Conn. Price $1. Part 3. A Revision of the Ceratopsia or Horned Dinosaurs. By Richard Swann Lull. Pp. i-xii, 1-175, pis. I-XVII, text figs. 1-42. 1933. To be obtained from the Peabody Museum. Price $5 (bound in cloth), $4 (bound in paper). Part 4. The Merycoidodontidae, an Extinct Group of Ruminant Mammals. By Malcolm Rutherford Thorpe. In preparation.
    [Show full text]
  • Tyrannosaurus Rex.Pmd
    North Dakota Stratigraphy Tyrannosaurus rex ROCK ROCK UNIT COLUMN PERIOD EPOCH AGES MILLIONS OF YEARS AGO Common Name: Holocene Oahe .01 Tyrant reptile king Coleharbor Pleistocene QUATERNARY Classification: 1.8 Pliocene Unnamed 5 Miocene Class: Reptilia 25 Arikaree Order: Saurischia Family: Tyrannosauridae Brule Oligocene 38 Tyrannosaurus rex shed tooth. Tooth collected in Morton South Heart Chadron Chalky Buttes County. Height of tooth is 64 mm. North Dakota State Fossil Camels Butte Eocene Golden Collection. 55 Valley Bear Den Description: Sentinel Butte Tyrannosaurus rex was one of the largest carnivorous (meat TERTIARY eating) dinosaurs and was one of the largest terrestrial carnivores yet known. The adults grew to lengths of 40 feet from the end of the tail to tip of the nose and weighed about 8 tons. When they Bullion Paleocene Creek stood on their hind legs they were up to about 20 feet tall. They had huge heads, about 5 feet long, and possessed large, Slope approximately 50, dagger-like teeth, some as large as bananas. Cannonball The teeth, which were serrated, could puncture bone and carve Ludlow through flesh of prey. Its back legs were long, heavily built, and 65 powerful with 3 clawed toes on each foot. Each foot was broad Hell Creek with three forward-pointing toes. Each toe ended in a sharply- curved talon. T. rex’s arms were very short and contained hands Fox Hills with only two, clawed fingers on each hand. Its tail was long, heavy, and held off the ground to act as a counterbalance. They ACEOUS could tear off as much as about 500 pounds of flesh at one time Pierre with their powerful jaws.
    [Show full text]
  • Skulls of Tarbosaurus Bataar and Tyrannosaurus Rex Compared
    Giant theropod dinosaurs from Asia and North America: Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared Jørn H. Hurum and Karol Sabath Acta Palaeontologica Polonica 48 (2), 2003: 161-190 The skull of a newly prepared Tarbosaurus bataar is described bone by bone and compared with a disarticulated skull of Tyrannosaurus rex. Both Tarbosaurus bataar and Tyrannosaurus rex skulls are deep in lateral view. In dorsal view, the skull of T. rex is extremely broad posteriorly but narrows towards the snout; in Ta. bataar the skull is narrower (especially in its ventral part: the premaxilla, maxilla, jugal, and the quadrate complex), and the expansion of the posterior half of the skull is less abrupt. The slender snout of Ta. bataar is reminiscent of more primitive North American tyrannosaurids. The most obvious difference between T. rex and Ta. bataar is the doming of the nasal in Ta. bataar which is high between the lacrimals and is less attached to the other bones of the skull, than in most tyrannosaurids. This is because of a shift in the handling of the crushing bite in Ta. bataar . We propose a paleogeographically based division of the Tyrannosaurinae into the Asiatic forms (Tarbosaurus and possibly Alioramus) and North American forms (Daspletosaurus and Tyrannosaurus). The division is supported by differences in anatomy of the two groups: in Asiatic forms the nasal is excluded from the major series of bones participating in deflecting the impact in the upper jaw and the dentary-angular interlocking makes a more rigid lower jaw. Key words: Dinosauria, Theropoda, Tyrannosauridae, Tarbosaurus, Tyrannosaurus, skull, anatomy, Mongolia.
    [Show full text]
  • Ankylosaurus Magniventris
    FOR OUR ENGLISH-SPEAKING GUESTS: “Dinosauria” is the scientific name for dinosaurs, and derives from Ancient Greek: “Deinos”, meaning “terrible, potent or fearfully great”, and “sauros”, meaning “lizard or reptile”. Dinosaurs are among the most successful animals in the history of life on Earth. They dominated the planet for nearly 160 million years during the entire Mesozoic era, from the Triassic period 225 million years ago. It was followed by the Jurassic period and then the Cretaceous period, which ended 65 million years ago with the extinction of dinosaurs. Here follows a detailed overview of the dinosaur exhibition that is on display at Dinosauria, which is produced by Dinosauriosmexico. Please have a look at the name printed on top of the Norwegian sign right by each model to identify the correct dinosaur. (Note that the shorter Norwegian text is similar, but not identical to the English text, which is more in-depth) If you have any questions, please ask our staff wearing colorful shirts with flower decorations. We hope you enjoy your visit at INSPIRIA science center! Ankylosaurus magniventris Period: Late Cretaceous (65 million years ago) Known locations: United States and Canada Diet: Herbivore Size: 9 m long Its name means "fused lizard". This dinosaur lived in North America 65 million years ago during the Late Cretaceous. This is the most widely known armoured dinosaur, with a club on its tail. The final vertebrae of the tail were immobilized by overlapping the connections, turning it into a solid handle. The tail club (or tail knob) is composed of several osteoderms fused into one unit, with two larger plates on the sides.
    [Show full text]
  • Immigrant Species, Or Native Species?
    The Journal of Paleontological Sciences: JPS.C.2017.01 TESTING THE HYPOTHESES OF THE ORIGIN OF TYRANNOSAURUS REX: IMMIGRANT SPECIES, OR NATIVE SPECIES? __________________________________________________________________________________________________________________ Chan-gyu Yun Vertebrate Paleontological Institute of Incheon, Incheon 21974, Republic of Korea & Biological Sciences, Inha University, Incheon 22212, Republic of Korea [email protected] __________________________________________________________________________________________________________________ Abstract: It is an undoubtable fact that Tyrannosaurus rex is the most iconic dinosaur species of all time. However, it is currently debatable whether this species has a North American origin or Asian origin. In this paper, I test these two hypotheses based on current fossil records and former phylogenetic analyses. Phylogenetic and fossil evidence, such as derived tyrannosaurine fossils of Asia, suggests that the hypothesis of an Asian origin of Tyrannosaurus rex is the most plausible one, but this is yet to be certain due to the scarcity of fossil records. INTRODUCTION The most famous and iconic dinosaur of all time, Tyrannosaurus rex, is only known from upper Maastrichtian geological formations in Western North America (e.g. Carr and Williamson, 2004; Larson, 2008). However, older relatives of Tyrannosaurus rex (e.g. Daspletosaurus, Tarbosaurus) are known from both Asia and North America. This leads to an evolutionary question: is the origin of Tyrannosaurus rex from Asia, or North America? About six of the currently valid tyrannosaurine taxa were described in the twenty-first century (based on parsimony analysis of Brusatte and Carr, 2016), with new species which are being described (Sebastian Dalman, Pers. Comm., 2016; Thomas Carr, Pers. Comm., 2016). It can be said that "now" is the "golden age” for studying tyrannosaurine evolution.
    [Show full text]
  • Limb Design, Function and Running Performance in Ostrich-Mimics and Tyrannosaurs
    GAIA Nº 15, LISBOA/LISBON, DEZEMBRO/DECEMBER 1998, pp. 257-270 (ISSN: 0871-5424) LIMB DESIGN, FUNCTION AND RUNNING PERFORMANCE IN OSTRICH-MIMICS AND TYRANNOSAURS Gregory S. PAUL 3109 N Calvert St. Side Apt., BALTIMORE MD 21218. USA ABSTRACT: Examination of the limb morphology of small ornithomimids and large tyranno- saurids shows that they remained remarkably constant in design regardless of size. The changes that were present were consistent with maintaining limb strength and function constant with size. It is concluded that ornithomimid and tyrannosaurid legs functioned in a similar manner, and always exhibit the features normally associated with a fast running gait. This is in contrast to modern animals, in which elephants as gigantic as large tyranno- saurids have limbs that are modified for a slow walking gait. INTRODUCTION to run observed in elephants. The hypothesis can be challenged if it can be shown that at least some ex- Because they had long, gracile, bird-like legs, it tinct giants retained the skeletal adaptations for run- has long been accepted that the smaller predatory ning observed in smaller species, and in their own dinosaurs were swift runners (O [& GREG- SBORN offspring. In turn, the hypothesis that giants can run ], 1916; COLBERT, 1961; RUSSELL, 1972; ORY fast if they retain limbs similar to smaller runners can C , 1978; THULBORN, 1982; PAUL, 1988; OOMBS be challenged if it is shown that the skeleton is too H , 1994). Much more controversial has been OLTZ vulnerable to structural failure. the locomotory abilities of their giant relatives, which have been restored as no faster than elephants BODY MASSES (LAMBE, 1917; HALSTEAD &HALSTEAD, 1981; THUL- BORN, 1982; BARSBOLD, 1983), able to run at only Sources for mass data for extinct and extant ani- modest speeds (COOMBS, 1978; MOLNAR &FAR- mals include PAUL (1988, 1997), NOWAK (1991) and LOW, 1990; HORNER &LESSEM, 1993; FARLOW, MATTHEWS (1994).
    [Show full text]
  • Analysis of Hindlimb Muscle Moment Arms in Tyrannosaurus Rex Using a Three-Dimensional Musculoskeletal Computer Model: Implications for Stance, Gait, and Speed
    Paleobiology, 31(4), 2005, pp. 676±701 Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed John R. Hutchinson, Frank C. Anderson, Silvia S. Blemker, and Scott L. Delp Abstract.ÐMuscle moment arms are important determinants of muscle function; however, it is chal- lenging to determine moment arms by inspecting bone specimens alone, as muscles have curvilin- ear paths that change as joints rotate. The goals of this study were to (1) develop a three-dimen- sional graphics-based model of the musculoskeletal system of the Cretaceous theropod dinosaur Tyrannosaurus rex that predicts muscle-tendon unit paths, lengths, and moment arms for a range of limb positions; (2) use the model to determine how the T. rex hindlimb muscle moment arms varied between crouched and upright poses; (3) compare the predicted moment arms with previous assessments of muscle function in dinosaurs; (4) evaluate how the magnitudes of these moment arms compare with those in other animals; and (5) integrate these ®ndings with previous biome- chanical studies to produce a revised appraisal of stance, gait, and speed in T. rex. The musculo- skeletal model includes ten degrees of joint freedom (¯exion/extension, ab/adduction, or medial/ lateral rotation) and 33 main muscle groups crossing the hip, knee, ankle, and toe joints of each hindlimb. The model was developed by acquiring and processing bone geometric data, de®ning joint rotation axes, justifying muscle attachment sites, and specifying muscle-tendon geometry and paths. Flexor and extensor muscle moment arms about all of the main limb joints were estimated, and limb orientation was statically varied to characterize how the muscle moment arms changed.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muira, and Ian B. Butlera aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom; bZoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; cDepartment of Sedimentary Geology, Saint Petersburg State University, St. Petersburg 199178, Russia; and dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 29, 2016 (received for review January 5, 2016) Tyrannosaurids—the familiar group of carnivorous dinosaurs in- We here report the first diagnostic tyrannosauroid from the mid- cluding Tyrannosaurus and Albertosaurus—were the apex predators Cretaceous, a new species from the Turonian (ca. 90–92 million in continental ecosystems in Asia and North America during the years ago) Bissekty Formation of Uzbekistan. This formation has latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes recently emerged as one of the most important records of mid- and keen senses are considered key to their evolutionary and eco- Cretaceous dinosaurs globally (9–11). Possible tyrannosauroid logical success, but little is known about how these features devel- specimens from the Bissekty Formation were reported more than oped as tyrannosaurids evolved from smaller basal tyrannosauroids a half century ago (12), and, more recently, several isolated fossils that first appeared in the fossil record in the Middle Jurassic (ca. 170 were assigned to the group (9, 13), but none of these has been million years ago).
    [Show full text]