Tyrannosaurus Rex.Pmd

Total Page:16

File Type:pdf, Size:1020Kb

Tyrannosaurus Rex.Pmd North Dakota Stratigraphy Tyrannosaurus rex ROCK ROCK UNIT COLUMN PERIOD EPOCH AGES MILLIONS OF YEARS AGO Common Name: Holocene Oahe .01 Tyrant reptile king Coleharbor Pleistocene QUATERNARY Classification: 1.8 Pliocene Unnamed 5 Miocene Class: Reptilia 25 Arikaree Order: Saurischia Family: Tyrannosauridae Brule Oligocene 38 Tyrannosaurus rex shed tooth. Tooth collected in Morton South Heart Chadron Chalky Buttes County. Height of tooth is 64 mm. North Dakota State Fossil Camels Butte Eocene Golden Collection. 55 Valley Bear Den Description: Sentinel Butte Tyrannosaurus rex was one of the largest carnivorous (meat TERTIARY eating) dinosaurs and was one of the largest terrestrial carnivores yet known. The adults grew to lengths of 40 feet from the end of the tail to tip of the nose and weighed about 8 tons. When they Bullion Paleocene Creek stood on their hind legs they were up to about 20 feet tall. They had huge heads, about 5 feet long, and possessed large, Slope approximately 50, dagger-like teeth, some as large as bananas. Cannonball The teeth, which were serrated, could puncture bone and carve Ludlow through flesh of prey. Its back legs were long, heavily built, and 65 powerful with 3 clawed toes on each foot. Each foot was broad Hell Creek with three forward-pointing toes. Each toe ended in a sharply- curved talon. T. rex’s arms were very short and contained hands Fox Hills with only two, clawed fingers on each hand. Its tail was long, heavy, and held off the ground to act as a counterbalance. They ACEOUS could tear off as much as about 500 pounds of flesh at one time Pierre with their powerful jaws. They had a keen sense of smell and could CRET travel at high speeds for short distances. Hadrosaurs, the 84 duckbilled dinosaurs, were among the prey of T. rex. Niobrara Carlile No complete skeletons of T. rex have been found in North Carbonate Calcareous Shale Claystone/Shale Dakota, but T. rex teeth and bones have been recovered from Siltstone Sandstone Sand & Gravel several fossil sites in the state. Mudstone Lignite Glacial Drift Tyrannosaurus rex. Painting by, and courtesy of, John Sibbick. Locations where fossils have been found ND State Fossil Collection Prehistoric Life of ND Map North Dakota Geological Survey Home Page.
Recommended publications
  • Tyrannosaurus Rex by Guy Belleranti
    Name: ______________________________ Tyrannosaurus Rex By Guy Belleranti One of the most dangerous dinosaurs was the Tyrannosaurus rex. It looked like a huge lizard with sharp teeth. It lived over 60 million years ago. From nose to tail, T-rex was as long as a school bus. It was taller than a house. It weighed more than an airplane. T-rex’s head was as long as a kitchen table. T-rex was the biggest meat-eating dinosaur. It could eat hundreds of pounds of meat in one bite. Animals that eat meat have sharp teeth. T-rex had 60 of them! Some of the teeth were as big as bananas. When T-rex lost a tooth, it grew a new one. T-rex stood on two powerful legs. It also had two small arms. Its strong tail helped keep it from falling over. It might be fun to see a live Tyrannosaurus rex, but I wouldn’t want to meet one. Would you? Super Teacher Worksheets - www.superteacherworksheets.com Name: ______________________________ Tyrannosaurus Rex By Guy Belleranti 1. How many teeth did a Tyrannosaurus rex have? a. thirty b. sixteen c. sixty d. seventy 2. How long ago did Tyrannosaurus rex live? ________________________________________________________________ 3. What did Tyrannosaurus rex eat? a. leaves from tall trees b. other dinosaurs c. small insects d. people 4. A T-rex was as long as a ______________________________________. 5. A T-rex weighed as much as an _______________________________. 6. Which dinosaurs had sharp teeth? a. all dinosaurs b. dinosaurs that had tails c. dinosaurs that were big d.
    [Show full text]
  • Fused and Vaulted Nasals of Tyrannosaurid Dinosaurs: Implications for Cranial Strength and Feeding Mechanics
    Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics ERIC SNIVELY, DONALD M. HENDERSON, and DOUG S. PHILLIPS Snively, E., Henderson, D.M., and Phillips, D.S. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: Implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51 (3): 435–454. Tyrannosaurid theropods display several unusual adaptations of the skulls and teeth. Their nasals are fused and vaulted, suggesting that these elements braced the cranium against high feeding forces. Exceptionally high strengths of maxillary teeth in Tyrannosaurus rex indicate that it could exert relatively greater feeding forces than other tyrannosaurids. Areas and second moments of area of the nasals, calculated from CT cross−sections, show higher nasal strengths for large tyrannosaurids than for Allosaurus fragilis. Cross−sectional geometry of theropod crania reveals high second moments of area in tyrannosaurids, with resulting high strengths in bending and torsion, when compared with the crania of similarly sized theropods. In tyrannosaurids trends of strength increase are positively allomeric and have similar allometric expo− nents, indicating correlated progression towards unusually high strengths of the feeding apparatus. Fused, arched nasals and broad crania of tyrannosaurids are consistent with deep bites that impacted bone and powerful lateral movements of the head for dismembering prey. Key words: Theropoda, Carnosauria, Tyrannosauridae, biomechanics, feeding mechanics, computer modeling, com− puted tomography. Eric Snively [[email protected]], Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; Donald M. Henderson [[email protected]], Royal Tyrrell Museum of Palaeontology, Box 7500, Drumheller, Alberta T0J 0Y0, Canada; Doug S.
    [Show full text]
  • Skulls of Tarbosaurus Bataar and Tyrannosaurus Rex Compared
    Giant theropod dinosaurs from Asia and North America: Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared Jørn H. Hurum and Karol Sabath Acta Palaeontologica Polonica 48 (2), 2003: 161-190 The skull of a newly prepared Tarbosaurus bataar is described bone by bone and compared with a disarticulated skull of Tyrannosaurus rex. Both Tarbosaurus bataar and Tyrannosaurus rex skulls are deep in lateral view. In dorsal view, the skull of T. rex is extremely broad posteriorly but narrows towards the snout; in Ta. bataar the skull is narrower (especially in its ventral part: the premaxilla, maxilla, jugal, and the quadrate complex), and the expansion of the posterior half of the skull is less abrupt. The slender snout of Ta. bataar is reminiscent of more primitive North American tyrannosaurids. The most obvious difference between T. rex and Ta. bataar is the doming of the nasal in Ta. bataar which is high between the lacrimals and is less attached to the other bones of the skull, than in most tyrannosaurids. This is because of a shift in the handling of the crushing bite in Ta. bataar . We propose a paleogeographically based division of the Tyrannosaurinae into the Asiatic forms (Tarbosaurus and possibly Alioramus) and North American forms (Daspletosaurus and Tyrannosaurus). The division is supported by differences in anatomy of the two groups: in Asiatic forms the nasal is excluded from the major series of bones participating in deflecting the impact in the upper jaw and the dentary-angular interlocking makes a more rigid lower jaw. Key words: Dinosauria, Theropoda, Tyrannosauridae, Tarbosaurus, Tyrannosaurus, skull, anatomy, Mongolia.
    [Show full text]
  • Immigrant Species, Or Native Species?
    The Journal of Paleontological Sciences: JPS.C.2017.01 TESTING THE HYPOTHESES OF THE ORIGIN OF TYRANNOSAURUS REX: IMMIGRANT SPECIES, OR NATIVE SPECIES? __________________________________________________________________________________________________________________ Chan-gyu Yun Vertebrate Paleontological Institute of Incheon, Incheon 21974, Republic of Korea & Biological Sciences, Inha University, Incheon 22212, Republic of Korea [email protected] __________________________________________________________________________________________________________________ Abstract: It is an undoubtable fact that Tyrannosaurus rex is the most iconic dinosaur species of all time. However, it is currently debatable whether this species has a North American origin or Asian origin. In this paper, I test these two hypotheses based on current fossil records and former phylogenetic analyses. Phylogenetic and fossil evidence, such as derived tyrannosaurine fossils of Asia, suggests that the hypothesis of an Asian origin of Tyrannosaurus rex is the most plausible one, but this is yet to be certain due to the scarcity of fossil records. INTRODUCTION The most famous and iconic dinosaur of all time, Tyrannosaurus rex, is only known from upper Maastrichtian geological formations in Western North America (e.g. Carr and Williamson, 2004; Larson, 2008). However, older relatives of Tyrannosaurus rex (e.g. Daspletosaurus, Tarbosaurus) are known from both Asia and North America. This leads to an evolutionary question: is the origin of Tyrannosaurus rex from Asia, or North America? About six of the currently valid tyrannosaurine taxa were described in the twenty-first century (based on parsimony analysis of Brusatte and Carr, 2016), with new species which are being described (Sebastian Dalman, Pers. Comm., 2016; Thomas Carr, Pers. Comm., 2016). It can be said that "now" is the "golden age” for studying tyrannosaurine evolution.
    [Show full text]
  • Limb Design, Function and Running Performance in Ostrich-Mimics and Tyrannosaurs
    GAIA Nº 15, LISBOA/LISBON, DEZEMBRO/DECEMBER 1998, pp. 257-270 (ISSN: 0871-5424) LIMB DESIGN, FUNCTION AND RUNNING PERFORMANCE IN OSTRICH-MIMICS AND TYRANNOSAURS Gregory S. PAUL 3109 N Calvert St. Side Apt., BALTIMORE MD 21218. USA ABSTRACT: Examination of the limb morphology of small ornithomimids and large tyranno- saurids shows that they remained remarkably constant in design regardless of size. The changes that were present were consistent with maintaining limb strength and function constant with size. It is concluded that ornithomimid and tyrannosaurid legs functioned in a similar manner, and always exhibit the features normally associated with a fast running gait. This is in contrast to modern animals, in which elephants as gigantic as large tyranno- saurids have limbs that are modified for a slow walking gait. INTRODUCTION to run observed in elephants. The hypothesis can be challenged if it can be shown that at least some ex- Because they had long, gracile, bird-like legs, it tinct giants retained the skeletal adaptations for run- has long been accepted that the smaller predatory ning observed in smaller species, and in their own dinosaurs were swift runners (O [& GREG- SBORN offspring. In turn, the hypothesis that giants can run ], 1916; COLBERT, 1961; RUSSELL, 1972; ORY fast if they retain limbs similar to smaller runners can C , 1978; THULBORN, 1982; PAUL, 1988; OOMBS be challenged if it is shown that the skeleton is too H , 1994). Much more controversial has been OLTZ vulnerable to structural failure. the locomotory abilities of their giant relatives, which have been restored as no faster than elephants BODY MASSES (LAMBE, 1917; HALSTEAD &HALSTEAD, 1981; THUL- BORN, 1982; BARSBOLD, 1983), able to run at only Sources for mass data for extinct and extant ani- modest speeds (COOMBS, 1978; MOLNAR &FAR- mals include PAUL (1988, 1997), NOWAK (1991) and LOW, 1990; HORNER &LESSEM, 1993; FARLOW, MATTHEWS (1994).
    [Show full text]
  • Analysis of Hindlimb Muscle Moment Arms in Tyrannosaurus Rex Using a Three-Dimensional Musculoskeletal Computer Model: Implications for Stance, Gait, and Speed
    Paleobiology, 31(4), 2005, pp. 676±701 Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed John R. Hutchinson, Frank C. Anderson, Silvia S. Blemker, and Scott L. Delp Abstract.ÐMuscle moment arms are important determinants of muscle function; however, it is chal- lenging to determine moment arms by inspecting bone specimens alone, as muscles have curvilin- ear paths that change as joints rotate. The goals of this study were to (1) develop a three-dimen- sional graphics-based model of the musculoskeletal system of the Cretaceous theropod dinosaur Tyrannosaurus rex that predicts muscle-tendon unit paths, lengths, and moment arms for a range of limb positions; (2) use the model to determine how the T. rex hindlimb muscle moment arms varied between crouched and upright poses; (3) compare the predicted moment arms with previous assessments of muscle function in dinosaurs; (4) evaluate how the magnitudes of these moment arms compare with those in other animals; and (5) integrate these ®ndings with previous biome- chanical studies to produce a revised appraisal of stance, gait, and speed in T. rex. The musculo- skeletal model includes ten degrees of joint freedom (¯exion/extension, ab/adduction, or medial/ lateral rotation) and 33 main muscle groups crossing the hip, knee, ankle, and toe joints of each hindlimb. The model was developed by acquiring and processing bone geometric data, de®ning joint rotation axes, justifying muscle attachment sites, and specifying muscle-tendon geometry and paths. Flexor and extensor muscle moment arms about all of the main limb joints were estimated, and limb orientation was statically varied to characterize how the muscle moment arms changed.
    [Show full text]
  • New Tyrannosaur from the Mid-Cretaceous of Uzbekistan Clarifies Evolution of Giant Body Sizes and Advanced Senses in Tyrant Dinosaurs
    New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs Stephen L. Brusattea,1, Alexander Averianovb,c, Hans-Dieter Suesd, Amy Muira, and Ian B. Butlera aSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, United Kingdom; bZoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia; cDepartment of Sedimentary Geology, Saint Petersburg State University, St. Petersburg 199178, Russia; and dDepartment of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved January 29, 2016 (received for review January 5, 2016) Tyrannosaurids—the familiar group of carnivorous dinosaurs in- We here report the first diagnostic tyrannosauroid from the mid- cluding Tyrannosaurus and Albertosaurus—were the apex predators Cretaceous, a new species from the Turonian (ca. 90–92 million in continental ecosystems in Asia and North America during the years ago) Bissekty Formation of Uzbekistan. This formation has latest Cretaceous (ca. 80–66 million years ago). Their colossal sizes recently emerged as one of the most important records of mid- and keen senses are considered key to their evolutionary and eco- Cretaceous dinosaurs globally (9–11). Possible tyrannosauroid logical success, but little is known about how these features devel- specimens from the Bissekty Formation were reported more than oped as tyrannosaurids evolved from smaller basal tyrannosauroids a half century ago (12), and, more recently, several isolated fossils that first appeared in the fossil record in the Middle Jurassic (ca. 170 were assigned to the group (9, 13), but none of these has been million years ago).
    [Show full text]
  • A Tyrannosauroid Metatarsus from the Merchantville Formation of Delaware Increases the Diversity of Non-Tyrannosaurid Tyrannosauroids on Appalachia
    A tyrannosauroid metatarsus from the Merchantville Formation of Delaware increases the diversity of non-tyrannosaurid tyrannosauroids on Appalachia Chase D. Brownstein Collections and Exhibitions, Stamford Museum & Nature Center, Stamford, CT, USA ABSTRACT During the Late Cretaceous, the continent of North America was divided into two sections: Laramidia in the west and Appalachia in the east. Although the sediments of Appalachia recorded only a sparse fossil record of dinosaurs, the dinosaur faunas of this landmass were different in composition from those of Laramidia. Represented by at least two taxa (Appalachiosaurus montgomeriensis and Dryptosaurus aquilunguis), partial and fragmentary skeletons, and isolated bones, the non-tyrannosaurid tyrannosauroids of the landmass have attracted some attention. Unfortunately, these eastern tyrants are poorly known compared to their western contemporaries. Here, one specimen, the partial metatarsus of a tyrannosauroid from the Campanian Merchantville Formation of Delaware, is described in detail. The specimen can be distinguished from A. montgomeriensis and D. aquilunguis by several morphological features. As such, the specimen represents a potentially previously unrecognized taxon of tyrannosauroid from Appalachia, increasing the diversity of the clade on the landmass. Phylogenetic analysis and the morphology of the bones suggest the Merchantville specimen is a tyrannosauroid of “intermediate” grade, thus supporting the notion that Appalachia was a refugium Submitted 18 July 2017 for relict dinosaur
    [Show full text]
  • The Jurassic Period
    The Jurassic Period Presentation by Isabella Siler and Robin Schneider Dilophosaurus. You’ll learn about them later. The Jurassic period: what does it mean? The word Jurassic means of or to the Jurassic period, which occurred between the Triassic and Cretaceous periods in the Mesozoic era, which means “The Age of Reptiles”. How long did it last? This period lasted from 199.6 to 145.5 million years ago and ended with a mass extinction and the beginning of Cretaceous period. It started with a major extinction event as well, with most invertebrates going extinct. The Jurassic period was a part of the Mid-Mesozoic era. Earth’s Climate During this time The Earth’s climate during the Jurassic period was quite warm, with tropical climates and temperate ones. Scientists have found that there weren’t many glaciers during this time and many lush forests, indicating that it was warmer during this period. The atmosphere during this time Science shows the atmosphere was humid, cloudy, and had much more carbon dioxide in the air than the current atmosphere. Earth’s continents during the Jurassic Period This was right after pangea broke up, so there were only 2 supercontinents: Laurasia and Gondwana. Laurasia was in the north while Gondwana was in the south. Laurasia is now North America, Europe and Asia; Gondwana is currently South America, India, Africa, Australia and Antarctica. Dinosaurs of the Jurassic - On The Ground Although the term Jurassic may conjure up images of dinosaurs like Tyrannosaurus rex, stegosaurus, or triceratops. However, none of those dinosaurs lived during this time.
    [Show full text]
  • Tyrannosaurs in Science
    Media Inquiries: Kristin Elise Phillips, Department of Communications September 2010 212-496-3419; [email protected] www.amnh.org ________________________________________________________________________ SCIENTIFIC UNDERSTANDING OF T. REX REVISED BY A DECADE OF NEW RESEARCH AND DISCOVERY TYRANNOSAURS ARE MORE THAN LARGE CARNIVORES AT THE TOP OF THE FOOD CHAIN We’ve all heard this story: the Late Cretaceous of Asia and North America— about 65 million years ago—was dominated by several large-headed, bipedal predatory dinosaurs like Tyrannosaurus rex and Tarbosaurus that had tiny arms. But a decade of new fossil discoveries that have more than doubled the number of known tyrannosaur species has changed this tale. Older and smaller tyrannosaurs have made the evolutionary tree of this group richer and more complex. Furthermore, a series of innovative research projects on topics like bone growth and biomechanics have added an enormous amount of information about tyrannosaurs, so much so that the group could now be considered an exemplar for studying many themes in paleontology research. A new paper describing recent research and a new evolutionary tree is published in Science this week. “T. rex is the most iconic of all dinosaurs,” says Mark Norell, curator in the Division of Paleontology at the American Museum of Natural History. “Its star power has allowed a research focus into questions not normally undertaken with fossils, questions like bone growth, biomechanics, and neurology.” “We know more about tyrannosaurs than any other group of dinosaurs—even more than some groups of living organisms,” says Stephen Brusatte, a graduate student affiliated with the Museum and first author of the paper.
    [Show full text]
  • The Origin and Evolution of the Dinosaur Infraorder Carnosauria*
    PALEONTOLOGICHESKIY ZHURNAL 1989 No. 4 KURZANOV S. M. THE ORIGIN AND EVOLUTION OF THE DINOSAUR INFRAORDER CARNOSAURIA* Paleontological Institute of the Academy of Sciences of the USSR Based on a revision of the systematic composition of the carnosaur families, a new diagram of the phylogenetic relationships within the infraorder is proposed. The question of carnosaurs cannot be considered to be resolved. Excluding the Triassic forms, carnosaurs in the broad or narrow sense have always been considered to be a group of theropods because they are only slightly different from them in fundamental features associated with large body size and a predatory lifestyle. The Late Triassic genera, such as Teratosaurus and Sinosaurus [33], were assigned to these on the basis of extremely meager material and without sufficient justification. This assignment has subsequently been rejected by most authors [13, 16, 17, 24, 25]. Huene [23] suggested that, along with the Sauropoda and Prosauropoda, the carnosaurs form a natural group Pachypodosauria, within which they are thought to be direct descendants of the prosauropods (the carnosaurs proceed directly from Teratosaurus through Magnosaurus). Studies of abundant cranial material (which actually belongs to Sellosaurus gracilis Huene) gave reason to think that the first species had been a prosauropod, whereas typical material (maxilla, ischium) belong to thecodonts from the family Poposauridae [24]. Huene’s diagram, which initially did not receive support, was widely propagated by the discovery of an unusual carnosaur Torvosaurus tanneri Galton et Jensen in the Upper Triassic deposits of Colorado [25]. The exceptionally plesiomorphic nature of some of its features, in the authors’ opinion, gave sufficient justification for removing them from the prosauropods.
    [Show full text]
  • Answers in Creation Dinosaur Curriculum Test 4 Lessons
    Answers In Creation Dinosaur Curriculum Test 4 Lessons Test 4 Lesson 22 – Daspletosaurus Lesson 23 – Gorgosaurus 1. This 30 foot long tyrannosaurid dinosaur lived from 77 Lesson 24 – Albertosaurus to 74 million years ago, and shows evidence of facial Lesson 25 – Tyrannosaurus, Part 1 biting and living in social groups. Lesson 26 – Tyrannosaurus, Part 2 a. Struthiomimus Lesson 27 – Gallimimus b. Albertosaurus Lesson 28 – Struthiomimus c. Daspletosaurus d. Gorgosaurus 2. This dinosaur lived roughly at the same time as the dinosaur in question 1. This dinosaur is the best represented tyrannosaurid in the fossil record, and is known from dozens of specimens. a. Gallimimus b. Albertosaurus c. Daspletosaurus d. Gorgosaurus 3. This dinosaur was one of the ostrich-like dinosaurs, reaching a length of 26 feet. It lived during the Maastrichtian Age of the Cretaceous Period, about 70 million years ago. a. Albertosaurus b. Gallimimus c. Struthomimus 4. This “tyrant lizard” lived from 68 to 65.5 Ma, and is one of the most recognized dinosaurs in the world. His name is… ________________________________________ 5. The other ostrich-like dinosaur in this section reached a length of 14 feet, and lived about 75 Ma, during the Campanian Age of the Cretaceous Period. a. Gallimimus b. Albertosaurus c. Struthomimus 6. Albertosaurus was a tyrannosaurid dinosaur that lived just after the time of Tyrannosaurus Rex. a. True b. False 7. This famous Tyrannosaurus fossil shows evidence of a broken and healed fibula and tail vertebrae, scarred facial bones, and a tooth from another Tyrannosaur embedded in a neck vertebra. The largest complete T-rex ever discovered, her name is_________________.
    [Show full text]