P-180U and MARS-L Radar Purchase from Ukraine and Turaf PYAS

Total Page:16

File Type:pdf, Size:1020Kb

P-180U and MARS-L Radar Purchase from Ukraine and Turaf PYAS P-180U and MARS-L Radar Purchase from Ukraine and TuRAF PYAS Project by İbrahim SÜNNETÇİ According to Ukrainian based combined PSR/ the SSR channel, is given the P-18MA/P-180U radar press, Ukrspetsexport SSR (Primary and as 5,000 hours. system, which is also used (the only institution Secondary Surveillance by the Ukrainian Armed authorized by the Radar) system. The The ground-based VHF Forces, could detect the Ukrainian Government to combined use of primary (metric band) P-180U F-117A Nighthawk Stealth fulfill the export potential and secondary channels (P-18MA) is a long- Fighter from 61km. of Ukraine's military- considerably increases range surveillance radar industrial complex), a the detection range and which provides the radar There are different subsidiary of the Ukrainian accuracy of finding the information and flight speculations regarding state-owned defense coordinates of aerial routes of aerial objects. the procurement company UkroBoronProm objects. Additionally, the The solid-state P-180U of the MARS-L and (UOP), delivered two availability of additional is the modernized and P-180U radars, which P-180U and two MARS-L aircraft information improved version of are considered to be radars to SSTEK Defense such as current altitude, the VHF-Band 2D (two- capable of detecting Industry Technologies in remaining fuel, condition dimensional, provides only stealth aircraft as they late December 2019, under of the onboard systems, azimuth and range data) operate on the L and VHF a contract worth US$11,144 etc., together with P-18 early warning radar bands, by SSTEK Defense million. According to the primary radar information, developed during the Industry Technologies, reports, the total cost of significantly increases Soviet Union. The system which was established in the L-Band MARS-L radar flight safety. It also has coverage of 360km km 2016 as a 100% subsidiary (on the Ural and KrAZ reduces the likelihood in range and up to 35km of the Presidency of chassis) produced by of accidental targeting in elevation, and thanks Defense Industries to NPE Aerotechnics-MLT of civilian aircraft by air to its long wavelength, operate in the fields of Company is US$ 7,544 defense systems. The the P-180U radar can defense, aviation, space, million, and the total value MBTF (mean time between detect RAM coated aerial and homeland security. of the VRF-Band P-180U failures) performance platforms with a very high Considering the number (P-18MA) radar (on the of the MARS-L, which percentage. The system of the systems supplied, KrAZ chassis) is US$3,6 is a mobile low altitude consists of a 360-degree the radars may have been Million. surveillance radar capable rotating radar antenna procured for testing/ of providing coverage and a control center based evaluation purposes in The mobile L-Band up to 110km on the PSR on KrAz tactical vehicle indigenous aircraft and MARS-L is a ground- channel and 150km on chassis. It is claimed that missile projects or may L-Band MARS-L Radar 98 have been purchased for reverse engineering or use in EHTES (P-18 radars of the Egyptian Armed Forces were upgraded to the P-180U level by the Ukrainian company). Although the history of diplomatic relations between Turkey and Ukraine dates back 28 years, the military- technical cooperation agreement between Ukraine and Turkey, which is one of the first countries to recognize Ukraine's independence, was renewed in 2014. As P-180-U VHF Radar part of this process, joint Ukroboronprom, Ukraine's radar systems to increase Israel bought a new production decisions state defense industry the long-range detection generation Kolchuga-M were made in various enterprise, for the joint Passive Radar System areas such as armored capabilities of Turkey production of the Passive and Ukraine to a range from Ukraine in March vehicles, aircraft engines, Sensor System (PASİS). of 600 km. According to 2018 via the company missile systems, joint radar During the Arms and Interfax News Agency, the Airstom, and the system production, navigation Security 2016 Fair held in development of the new was delivered in the same systems, as well as communication and Kyiv on October 11, 2016, passive radar system will year. It is considered that space projects. Turkish a cooperation agreement be financed by Turkey, the Kolchuga-M Passive and Ukrainian defense was signed between and the emerging product Radar System can be used Havelsan and Ukrinmash, will be different from the in electronic warfare tests, industry representatives a state-owned company world-renowned Kolchuga training, and exercises gathered in Ankara in under Ukroboronprom, for passive radar (ESM System to be carried out by the 2015, and a strategic cooperation agreement the production of passive can detect up to 800km). Israeli Air Force. was signed between the two countries in the field of the defense industry in 2016. In July 2018, Turkey and Ukraine conducted the first-ever Turkey- Ukraine Defense Industry Cooperation meeting to accelerate their defense cooperation. The 7th Turkey-Ukraine Defense Industry Cooperation meeting was held at the Ministry of Defense of Ukraine in Kyiv on January 21-24, 2020. The first activity between Turkey and Ukraine in the field of radar systems was the Memorandum of Understanding (MoU) signed on April 8, 2016, between Havelsan and 99 Turkish Air Force PYAS Project Turkey is no stranger to passive radars; in fact, multiple projects were carried out in this field by domestic companies and institutions. Furthermore, an indigenous passive radar system was developed for the Turkish Air Force under the Passive Broadcast Detection System (PYAS) Project, which was accomplished in cooperation with TÜBİTAK BİLGEM Information Technologies Institute (BTE) Radar Systems Laboratory, Istanbul Medipol University, and Gebze University. the Turkish Air Force was and finds their position in AOA method. It is enough for In the TÜBİTAK 2019 Annual shared with the participants three-dimensional space. a single sensor to detect the Report published recently, (the first field trials were The signals in the Lower signal, but for 3D positioning, the following information completed in 2018 at the Frequency Band (960- the signal must be detected was shared regarding TÜBİTAK Gebze campus). 1.216MHz) are broadcast by with at least 2 sensors. the latest situation in the Also, it was stated that the Mode 1, 2, 3AC, Mod-S, TDL project: "Factory Acceptance project, which started on (Link 16), and TACAN, while The main disadvantage Tests (FAT) of the Passive December 15, 2015, was the Radar and RF Jammers of passive radar systems, Broadcast Detection planned to be completed emit signals in the upper- which are difficult to detect System (PYAS) developed on December 17, 2018. Frequency band (8,000- and deceive, is that they are for the Turkish Air Force, 12,000MHz). signal-dependent, so if the which performs long- The Passive Broadcast threat does not emit a signal, range target positioning Detection System (PYAS) Capable of Broadband the system cannot detect and tracking via signals was developed as part of the frequency scanning, the target. The higher the broadcast from air targets, Passive Broadcast Detection PYAS also has phase- bandwidth of the broadcast have been successfully System Development interferometry, signal, i.e., the stronger, the carried out." Considering this Project under the TÜBİTAK highly accurate time better/longer the system's information, we can say that Public Sector Research synchronization, signal resolution and detection the PYAS FAT process was and Development Projects detection, feature range. Since there are completed in 2019, and the Support Program (SAVTAG extraction, signal binding, numerous disturbing effects Site Acceptance Test (SAT) 1007) to meet the needs and SSR Mode-S decoding and signals (background process have started. Since of the Turkish Air Force capabilities. clutter) in the environment, no information regarding Command. The project target positioning and the delivery of PYAS to the proposal was published The PYAS system can screen display in passive Turkish Air Force was shared on March 13, 2015 and was detect the arrival time radars are not as clean as in the Annual Report, the closed on May 29, 2015. (Time Difference of Arrival/ in standard radars, so the system may be delivered PYAS is a passive broadcast TDOA) between the lower possibility of false alarms is within the first half of 2020 detection system that can or upper-band signals much higher. To prevent this, following the SAT process. detect and track signals emitted by air targets and an advanced tracking and broadcast from air targets. find the air targets' position merging algorithm was used However, at the Military The system captures in 3D space by measuring in PYAS. Radar and Border Security broadcasts/signals (both the relative delays with 4 Summit held in Ankara on lower and upper frequencies) passive receivers. Unlike Since passive systems October 2-3 2018, important of various electromagnetic other Passive Emitter are very dependent on information about the energy sources on the air Tracking (PET) systems in geography, the sensors must Passive Broadcast Detection targets through the receivers the market, PYAS can also be optimally positioned System (PYAS) developed located in different locations find target aircraft positions in the field and perfectly by TÜBİTAK BİLGEM for using the Angle of Arrival/ synchronized with each 100 other to maximize system different hills at different originating from TÜBİTAK mechanical modifications of performance. A special tool/ locations) were positioned SAVTAG and Havelsan 4 STKS vehicles scheduled to software was developed to 15-20 km away from the EHSİM won the tender. The be delivered to the Air Force ensure that PYAS sensors Command unit. Although contract signed between Command at the end of can be positioned optimally the PYAS sensor was not fully TÜBİTAK, the Ministry of April 2017 were completed.
Recommended publications
  • Tracking Non-Cooperative Low Earth Orbit Objects Using GNSS Satellites As a Multi-Static Radar
    Tracking non-cooperative low earth orbit objects using GNSS satellites as a multi-static radar Md Sohrab Mahmud Andrew Lambert Craig Benson [email protected] [email protected] [email protected] School of Engineering and Information Technology University of New South Wales, Canberra Abstract Space debris is a growing hazard since space activity and the amount of space debris are both increasing. If the risks posed by space object collisions cannot be mitigated, this will hinder the future use of space. Accurate knowledge of the trajectory and behavior of satellites and debris is required to mitigate collision risks as the density of space objects increases. This requires space object tracking systems that are both affordable and scale well for very large numbers of objects under observation. Wide field of view, all-weather, passive systems scale well for reliable surveillance of very large numbers of objects. Global Navigation Satellite System (GNSS) satellites have been proposed as potential illuminators of opportunity to track Low Earth Orbit (LEO) debris, paired with ground-based receivers in a bistatic arrangement. In this paper, we discuss the signal characteristics used in these observations, the results of recent relevant laboratory-based experiments, simulation work performed in preparation for on-orbit experiments of these techniques, and our plans for the development of a system capable of tracking LEO debris to enhance space situational awareness. Introduction Space debris is an existing and growing problem for active satellites and future space missions. Since the first ever space mission, Sputnik 1, up to now, the number of tracked objects as small as 10 cm is catalogued as 43,931 (Kelso, 2018).
    [Show full text]
  • Prof. Hugh Griffiths
    Passive Radar - From Inception to Maturity Hugh Griffiths Senior Past President, IEEE AES Society 2017 IEEE Picard Medal IEEE AESS Distinguished Lecturer THALES / Royal Academy of Engineering Chair of RF Sensors University College London Radar Symposium, Ben-Gurion University of the Negev, 13 February 2017 OUTLINE • Introduction and definitions • Some history • Bistatic radar properties: geometry, radar equation, target properties • Passive radar illuminators • Passive radar systems and results • The future … 2 BISTATIC RADAR: DEFINITIONS MONOSTATIC RADAR MULTILATERATION RADAR Tx & Rx at same, or nearly Radar net using range-only data the same, location MULTISTATIC RADAR BISTATIC RADAR Bistatic radar net with multiple Txs Tx & Rx separated by a and/or RXs. considerable distance in order to achieve a technical, operational or cost benefit HITCHHIKER Bistatic Rx operating with the Tx of a monostatic radar RADAR NET Several radars linked together to improve PASSIVE BISTATIC RADAR coverage* or accuracy Bistatic Rx operating with other Txs of opportunity * Enjoys the union of individual coverage areas. All others 3 require the intersection of individual coverage areas. Coverage area: (SNR + BW + LOS) 3 BISTATIC RADAR • Bistatic radar has potential advantages in detection of stealthy targets which are shaped to scatter energy in directions away from the monostatic • The receiver is covert and therefore safer in many situations • Countermeasures are difficult to deploy against bistatic radar • Increasing use of systems based on unmanned air vehicles (UAVs) makes bistatic systems attractive • Many of the synchronisation and geolocation problems that were previously very difficult are now readily soluble using GPS, and • The extra degrees of freedom may make it easier to extract information from bistatic clutter for remote sensing applications 4 4 BISTATIC RADAR • The first radars were bistatic (till T/R switches were invented) • First resurgence (1950 – 1960): semi-active homing missiles, SPASUR, ….
    [Show full text]
  • China's Strategic Modernization: Implications for the United States
    CHINA’S STRATEGIC MODERNIZATION: IMPLICATIONS FOR THE UNITED STATES Mark A. Stokes September 1999 ***** The views expressed in this report are those of the author and do not necessarily reflect the official policy or position of the Department of the Army, the Department of the Air Force, the Department of Defense, or the U.S. Government. This report is cleared for public release; distribution is unlimited. ***** Comments pertaining to this report are invited and should be forwarded to: Director, Strategic Studies Institute, U.S. Army War College, 122 Forbes Ave., Carlisle, PA 17013-5244. Copies of this report may be obtained from the Publications and Production Office by calling commercial (717) 245-4133, FAX (717) 245-3820, or via the Internet at [email protected] ***** Selected 1993, 1994, and all later Strategic Studies Institute (SSI) monographs are available on the SSI Homepage for electronic dissemination. SSI’s Homepage address is: http://carlisle-www.army. mil/usassi/welcome.htm ***** The Strategic Studies Institute publishes a monthly e-mail newsletter to update the national security community on the research of our analysts, recent and forthcoming publications, and upcoming conferences sponsored by the Institute. Each newsletter also provides a strategic commentary by one of our research analysts. If you are interested in receiving this newsletter, please let us know by e-mail at [email protected] or by calling (717) 245-3133. ISBN 1-58487-004-4 ii CONTENTS Foreword .......................................v 1. Introduction ...................................1 2. Foundations of Strategic Modernization ............5 3. China’s Quest for Information Dominance ......... 25 4.
    [Show full text]
  • Bistatic Radar with Thinned Receiving Phased Array for Airports Surveillance
    BISTATIC RADAR WITH THINNED RECEIVED PHASED ARRAY M. Cherniakov University of Birmingham Edgbaston, B15 2TT, UK [email protected] Abstract The presented concept of bistatic radar can have significant benefit for airport surveillance. It may be described as a bistatic semi-active radar which utilizes one of the available airport area surveillance radars as the transmitter and a receiving only, slave radar. The passive radar contains an electronically scanned antenna phased array which is essentially thinned. The grating lobes are suppressed in this system by the transmitting radar acting as a space filter. At the conceptual level of the paper the advantages and limitations of the proposed radar architecture are considered. 1 Introduction The primary goal of this conceptual paper is to introduce the topology and basic performance analysis of bistatic radar (BR) with essentially different transmitting and receiving antennas. This BR can be described as bistatic semi-active radar that utilize as the illuminator (transmitter) one of the available surveillance radars (master radar - MR) and a passive, receiving only, radar (slave radar - SR). Presumably MR and SR are operating independently, but if expedient or necessary the obtained data could be collected at one position for further data or information fusion. In the SR radar, a phased array is proposed which provides essentially better angle resolution (order or more) in comparison with the master radar within a given sector. 360 0 observation Mechanical scanning MR Synchronization channel :0 SR observation Phased array antenna Electronic scanning Figure 1: System topology An example of possible system topology is shown in Figure 1.
    [Show full text]
  • GNSS Based Passive Radar for UAV Monitoring
    GNSS Based Passive Radar for UAV Monitoring Christos V. Ilioudis, Jianlin Cao, Ilias Theodorou, Pasquale Striano William Coventry, Carmine Clemente and John Soraghan Department of Electronic and Electrical Engineering University of Strathclyde Glasgow, UK Email: fc.ilioudis, jianlin.cao, ilias.theodorou, pasquale.striano, william.coventry, carmine.clemente, [email protected] Abstract—Monitoring of unmanned aerial vehicle (UAV) tar- helicopter targets when operating in near FSR configuration. gets has been a subject of great importance in both defence Moreover, in [7] the Doppler information extraction in a GNSS and security sectors. In this paper a novel system is introduced based FSR was validated, while the authors in [8] suggested a based on a passive bistatic radar using Global Navigation Satellite Systems (GNSS) as illuminators of opportunity. Particularly, a filter bank based algorithm that is able to estimate range and link budget analysis is held to determine the capabilities and velocity parameters of the moving target. limitations of such a system. Additionally, a signal reconstruction In [9] a GNSS based PBR was proposed for synthetic algorithm is provided allowing estimation of the transmitted aperture radar (SAR) applications using a synchronization signal from each satellite. Finally, the proposed system is tested algorithm to generate the reference, satellite, signal at the in outdoor acquisitions of small UAV targets where the Fractional Fourier Transform (FrFT) is used as tool to enhance target receiver. Based on the same principles, the authors in [10] detectability. proposed and experimentally validated a GNSS PBR system Index Terms—GNSS, Passive Radar, UAV, Forward Scattering design for maritime target detection.
    [Show full text]
  • Development of Passive Bistatic Radars Based on Orthogonal Frequency-Division Multiplexing Modulated Signals for Short and Medium Range Surveillance
    Development of Passive Bistatic Radars based on Orthogonal Frequency-Division Multiplexing modulated signals for short and medium range surveillance Facoltà di Ingegneria dell’Informazione, Informatica e Statistica Dottorato di Ricerca in Telerilevamento XXVIII Ciclo Candidato Claudio Palmarini 1151374 Tutor Prof. Pierfrancesco Lombardo 2 INDEX 1 Introduction ................................................................................................................................................................ 5 2 Exploited signals of opportunity ................................................................................................................................. 7 2.1 OFDM Modulation............................................................................................................................................. 7 2.2 DVB-T signal characteristics .............................................................................................................................. 8 2.3 DAB signal characteristics ............................................................................................................................... 12 2.3.1 DAB in Italy .................................................................................................................................................. 14 2.4 OFDM Modulated signals as opportunity signals ............................................................................................ 16 3 DVB-T based PBR .....................................................................................................................................................
    [Show full text]
  • Experimental Verification of the Concept of Using LOFAR Radio
    sensors Article Experimental Verification of the Concept of Using LOFAR Radio-Telescopes as Receivers in Passive Radiolocation Systems † Julia Kłos 1, Konrad J˛edrzejewski 1,* , Aleksander Droszcz 1, Krzysztof Kulpa 1 , Mariusz Pozoga˙ 2 and Jacek Misiurewicz 1 1 Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland; [email protected] (J.K.); [email protected] (A.D.); [email protected] (K.K.); [email protected] (J.M.) 2 Space Research Centre Polish Academy of Science, Bartycka 18A, 00-716 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-22-234-5883 † This paper is an extended version of the paper published in the 2020 21st International Radar Symposium (IRS). Abstract: The paper presents a new idea of using a low-frequency radio-telescope belonging to the LO- FAR network as a receiver in a passive radar system. The structure of a LOFAR radio-telescope station is described in the context of applying this radio-telescope for detection of aerial (airplanes) and space (satellite) targets. The theoretical considerations and description of the proposed signal processing schema for the passive radar based on a LOFAR radio-telescope are outlined in the paper. The results of initial experiments verifying the concept of a LOFAR station use as a receiver and Citation: Kłos, J.; J˛edrzejewski,K.; a commercial digital radio broadcasting (DAB) transmitters as illuminators of opportunity for aerial Droszcz, A.; Kulpa, K.; Pozoga,˙ M.; object detection are presented.
    [Show full text]
  • Passive Forward-Scattering Radar Using Digital Video Broadcasting Satellite Signal for Drone Detection
    remote sensing Article Passive Forward-Scattering Radar Using Digital Video Broadcasting Satellite Signal for Drone Detection Raja Syamsul Azmir Raja Abdullah 1,* , Surajo Alhaji Musa 1,2, Nur Emileen Abdul Rashid 3, Aduwati Sali 1, Asem Ahmad Salah 4 and Alyani Ismail 1 1 Wireless and Photonics Networks (WIPNET), Department of Computer and Communication System Engineering, University Putra Malaysia (UPM), Serdang 43400, Malaysia; [email protected] (S.A.M.); [email protected] (A.S.); [email protected] (A.I.) 2 Computer Engineering Department, Institute of Information Technology, Kazaure 3002, Jigawa, Nigeria 3 Microwave Research Institute, University Teknologi MARA, Shah Alam 40450, Selangor, Malaysia; [email protected] 4 Department of Computer System Engineering, Faculty of Engineering and Information Technology, Arab American University, Jenin 44862, West Bank, Palestine; [email protected] * Correspondence: [email protected] Received: 4 July 2020; Accepted: 23 August 2020; Published: 19 September 2020 Abstract: This paper presents a passive radar system using a signal of opportunity from Digital Video Broadcasting Satellite (DVB-S). The ultimate purpose of the system is to be used as an air traffic monitoring and surveillance system. However, the work focuses on drone detection as a proof of the concept. Detecting a drone by using satellite-based passive radar possess inherent challenges, such as the small radar cross section and low speed. Therefore, this paper proposes a unique method by leveraging the advantage of forward-scattering radar (FSR) topology and characteristics to detect a drone; in other words, the system is known as a passive FSR (p-FSR) system.
    [Show full text]
  • Array-Based Localization in DTV Passive Radar DISSERTATION
    Array-Based Localization in DTV Passive Radar DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Huimin Huang Graduate Program in Electrical and Computer Engineering The Ohio State University 2019 Dissertation Committee: Graeme Smith, Advisor Emre Ertin Niru Kamrun Nahar Gerald Kosicki Copyrighted by Huimin Huang 2019 Abstract This dissertation investigates the use of array-based localization to passively locate a target. Target localization in passive radar typically employs multilateration where a set of hyperbolic equations from range differences or elliptic equations from bistatic ranges are solved to determine the position of the target. To provide an unambiguous target location in three dimensions, there is another way, which is to use an efficient direction finder capable of providing a precise measurement of the target’s bearing. This direction finder can be implemented using an array of antenna elements and the intersection of ellipsoid and bearing vector gives the three-dimensional (3D) position of the target. The array-based localization method is developed by noting that the stable range resolutions afforded by digitally modulated signals, like digital television (DTV), and Doppler resolution from long integration times of passive radar can sufficiently resolve returns from multiple targets. The phase information from each array element from a resolved target can then be used with the Bartlett method of bearing estimation. Thus, target bearing can be estimated with far greater accuracy than the beamwidth resolution of the array alone. This was demonstrated in experiments conducted using a DTV-based passive radar with an electrically small array.
    [Show full text]
  • Aspects of Delay-Doppler Filtering in OFDM Passive Radar
    Aspects of Delay-Doppler Filtering in OFDM Passive Radar Stephen Searle Daniel Gustainis, Brendan Hennessy, Robert Young University of South Australia Defence Science and Technology Group, Australia Abstract—Delay-Doppler filtering enables the isolation of radar Recently emerging studies have exploited the OFDM CP returns from a designated region of the ambiguity plane. Such for purposes of clutter modelling and cancellation. Noting returns can be cancelled from the surveillance signal, lowering that in the frequency domain a time shift would manifest the ambiguity floor and reducing demands on dynamic range. Modern passive radar systems frequently use OFDM-based illu- as a frequency-dependent scalar phasor on each carrier, the minators of opportunity, and recent studies have demonstrated ZDC is estimated by projecting the observed time-history of how the structure of OFDM signals can be exploited to perform Fourier coefficients at each carrier onto the recovered symbols delay-Doppler filtering in the frequency domain. In this study [6]. Further noting that in the presence of small Doppler several aspects of one such algorithm are investigated: the shift the scalar phasor would advance over time, the method ability to cancel returns when delay is not a whole number of samples; the ability to conserve computation by approximating a was adapted to successfully estimate clutter exhibiting small projection matrix; the effect of returns having delays exceeding movements [12]. These methods could broadly be described the OFDM guard interval; and the application of the method to as Doppler filters, selecting and cancelling all returns having extended targets. The consideration of these aspects demonstrates near-zero Doppler shift.
    [Show full text]
  • Implementation of Passive Radar in a Processing Restrictive Environment
    IMPLEMENTATION OF A LOW-COST PASSIVE BISTATIC RADAR by Joshua Leigh Sendall Submitted in partial fulfilment of the requirements for the degree Master of Engineering (Electronic Engineering) in the Department of Electrical, Electronic and Computer Engineering Faculty of Engineering, Built Environment and Information Technology UNIVERSITY OF PRETORIA September 2016 © University of Pretoria SUMMARY IMPLEMNTATION OF A LOW-COST PASSIVE BISTATIC RADAR by Joshua Leigh Sendall Supervisor: Prof. W.P. du Plessis Department: Electrical, Electronic and Computer Engineering University: University of Pretoria Degree: Master of Engineering (Electronic Engineering) Keywords: Radar, passive radar, low-cost, adaptive filtering, clutter cancellation, direct-path interference cancellation, matched filtering, tracking filter, broadcast radio Passive radar detects and ranges targets by receiving signals which are reflected off targets. Communication transmissions are generally used, however, theoretically any signal with a suitable ambiguity function may be used. The exploitation of an existing transmitter and the removal of emissions allow passive radars to act as a complementary sensor which is useful in environments where conventional active radar is not well suited. Such environments are in covert operations and in situations where a low cost or spectrally efficient solution is required. Most developed passive radars employ intensive signal processing and use application specific equipment to achieve detection. The high-end processors and receiver equipment, however, detract from some of the inherent advantages in the passive radar architecture. These include the lower cost and power requirements achieved by removing transmitter hardware. This study investigates the challenges faced when removing application-specific and high end components from the system and replacing them with low-cost alternatives.
    [Show full text]
  • The Modelling and Simulation of Passive Bistatic Radar
    The Modelling and Simulation of Passive Bistatic Radar Yik Ling Lim Thesis submitted for the degree of Master of Philosophy School of Electrical and Electronic Engineering The University of Adelaide South Australia 5005 March 2013 Copyright © 2013 Yik Ling Lim All rights reserved Contents Abstract ............................................................................................................. iii Statement of Originality ..................................................................................... v Acknowledgements .......................................................................................... vii List of Figures ................................................................................................... ix List of Tables ................................................................................................... xiii List of Abbreviations ........................................................................................ xv 1 Introduction ................................................................................................ 1 1.1 Overview of Passive Radar .................................................................. 1 1.2 A Brief History of Passive Radar ........................................................ 3 1.3 Challenges of Passive Bistatic Radar .................................................. 5 1.3.1 The Bistatic Configuration ........................................................... 5 1.3.2 Direct Signal Interference ...........................................................
    [Show full text]