Scientific Advisory Board
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Regulated Substance List
INSTRUCTIONS FOR THE UNIFIED PROGRAM (UP) FORM REGULATED SUBSTANCE LIST CHEMICAL NAME CAS # TQ Listing CHEMICAL NAME CAS # TQ Listing (Lbs) Basis (Lbs) Basis Acetaldehyde 75-07-0 10,000 g Cantharidin 56-25-7 100/10,0001 * Acetone Cyanohydrin 75-86-5 1,000 Carbachol Chloride 51-83-2 500/10,0001 Acetone Thiosemicarbazide 1752-30-3 1,000/10,0001 Acetylene (Ethyne) 74-86-2 10,000 f Carbamic Acid, Methyl-,o- Acrolein (2-Propenal) 107-02-8 500 b (((2,4-Dimethyl-1,3-Dithiolan- Acrylamide 79-06-1 1,000/10,0001 2-YL) Methylene)Amino)- 26419-73-8 100/10,0001 Acrylonitrile (2- Propenenitrile) 107-13-1 10,000 b Carbofuran 1563-66-2 10/10,0001 Acrylyl Chloride Carbon Disulfide 75-15-0 10,000 b (2-Propenoyl Chloride) 814-68-6 100 b Carbon Oxysulfide Aldicarb 116-06-3 100/10,0001 (Carbon Oxide Sulfide (COS)) 463-58-1 10,000 f Aldrin 309-00-2 500/10,0001 Chlorine 7782-50-5 100 a,b Allyl Alcohol (2-Propen-1-ol) 107-18-6 1,000 b Chlorine Dioxide Allylamine (2-Propen-1-Amine) 107-11-9 500 b (Chlorine Oxide (ClO2)) 10049-04-4 1,000 c Aluminum Phosphide 20859-73-8 500 Chlorine Monoxide (Chlorine Oxide) 7791-21-1 10,000 f Aminopterin 54-62-6 500/10,0001 Chlormequat Chloride 999-81-5 100/10,0001 Amiton Oxalate 3734-97-2 100/10,0001 Chloroacetic Acid 79-11-8 100/10,0001 Ammonia, Anhydrous 2 7664-41-7 500 a,b Chloroform 67-66-3 10,000 b Ammonia, Aqueous Chloromethyl Ether (conc 20% or greater) 7664-41-7 20,000 a,b (Methane,Oxybis(chloro-) 542-88-1 100 b * Aniline 62-53-3 1,000 Chloromethyl Methyl Ether Antimycin A 1397-94-0 1,000/10,0001 (Chloromethoxymethane) -
Warfare Agents for Modeling Airborne Dispersion in and Around Buildings
LBNL-45475 ERNEST ORLANDO LAWRENCE BERKELEY NATIn NAL LABORATORY Databaseof Physical,Chemicaland ToxicologicalPropertiesof Chemical and Biological(CB)WarfitreAgentsfor ModelingAirborneDispersionIn and AroundBuildings TracyThatcher,RichSextro,andDonErmak Environmental Energy Technologies Division DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of Catifomia, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of anY information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommend at i on, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced -
The List of Extremely Hazardous Substances)
APPENDIX A (THE LIST OF EXTREMELY HAZARDOUS SUBSTANCES) THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 75-86-5 ACETONE CYANOHYDRIN 500 10 1752-30-3 ACETONE THIOSEMICARBAZIDE 500/500 1,000 107-02-8 ACROLEIN 500 1 79-06-1 ACRYLAMIDE 500/500 5,000 107-13-1 ACRYLONITRILE 500 100 814-68-6 ACRYLYL CHLORIDE 100 100 111-69-3 ADIPONITRILE 500 1,000 116-06-3 ALDICARB 100/500 1 309-00-2 ALDRIN 500/500 1 107-18-6 ALLYL ALCOHOL 500 100 107-11-9 ALLYLAMINE 500 500 20859-73-8 ALUMINUM PHOSPHIDE 500 100 54-62-6 AMINOPTERIN 500/500 500 78-53-5 AMITON 500 500 3734-97-2 AMITON OXALATE 100/500 100 7664-41-7 AMMONIA 500 100 300-62-9 AMPHETAMINE 500 1,000 62-53-3 ANILINE 500 5,000 88-05-1 ANILINE,2,4,6-TRIMETHYL- 500 500 7783-70-2 ANTIMONY PENTAFLUORIDE 500 500 1397-94-0 ANTIMYCIN A 500/500 1,000 86-88-4 ANTU 500/500 100 1303-28-2 ARSENIC PENTOXIDE 100/500 1 THRESHOLD REPORTABLE INVENTORY RELEASE QUANTITY QUANTITY CAS NUMBER CHEMICAL NAME (POUNDS) (POUNDS) 1327-53-3 ARSENOUS OXIDE 100/500 1 7784-34-1 ARSENOUS TRICHLORIDE 500 1 7784-42-1 ARSINE 100 100 2642-71-9 AZINPHOS-ETHYL 100/500 100 86-50-0 AZINPHOS-METHYL 10/500 1 98-87-3 BENZAL CHLORIDE 500 5,000 98-16-8 BENZENAMINE, 3-(TRIFLUOROMETHYL)- 500 500 100-14-1 BENZENE, 1-(CHLOROMETHYL)-4-NITRO- 500/500 500 98-05-5 BENZENEARSONIC ACID 10/500 10 3615-21-2 BENZIMIDAZOLE, 4,5-DICHLORO-2-(TRI- 500/500 500 FLUOROMETHYL)- 98-07-7 BENZOTRICHLORIDE 100 10 100-44-7 BENZYL CHLORIDE 500 100 140-29-4 BENZYL CYANIDE 500 500 15271-41-7 BICYCLO[2.2.1]HEPTANE-2-CARBONITRILE,5- -
War Gases .Pdf
yh&% .*i From the collection of the m Prejinger h v Jjibrary San Francisco, California 2007 THE WAR GASES WAR GASES Their Identification and Decontamination BY MORRIS B. JACOBS, Ph.D. Food, Drug and Insecticide Admin. U. S. Dept. of Agr. 1927 Chemist Department of Health, City of New York, 1928. Formerly, Lt. U. S. Chemical Warfare Service Reserve INTERSCIENCE PUBLISHERS, INC. NEW YORK, N. Y.-1942 Copyright, 1942, by INTERSCIENCE PUBLISHERS, INC. 215 Fourth Avenue, New York, N. Y. Printed in U. S. A. by WAVERLY PRESS, BALTIMORE, MD. PREFACE Relatively little has been written in the United States of America on the subject of passive defense, or as we would put it, civilian defense against poison gas. One of the very first steps in defense of this nature is a system for the detection, the sampling and the identification of the chemical war- fare agents, and the decontamination of areas and materials polluted by them. It is the aim of this book to present these subjects so that the informa- tion given will be useful to the gas identification officer, the war gas chemist, the decontamination officer, and the health officer. While this book was written primarily for the aforementioned officers, Chapters I, II, III, part of IV and VII should prove of value to the air raid warden and, in general, to all persons dealing with the above mentioned phases of gas defense. It is written so that it can be used for the training of gas identifi- cation officers, as a manual by chemists and decontamination officers, and as a source of information on the analytical chemistry of the war gases. -
Christian Gloor Journal Club Group Meeting 16 01 2014 .01.2014
Christian Gloor Journal Club Group Meeting 16.01 . 2014 Definitions • Chemical Weapons (CW): − Toxic chemicals and their precursors, except where intended for purposes not prohibited under the convention, as long as the types and quantities are consistent with such purposes − Munitions and devices, specially designed to cause death or other harm • Purposes not prohibited under the convention − Industrial, agricultural, research, medicinal, pharmaceutical or other peaceful purposes − Protective purposes, namely against chemical weapons OPCW Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction, Version 2013 Classes of chemical warfare agents y Harassing agents O Cl Cl CN CN Chloracetophenone (CN) Ortho-chlorobenzylidene malononitrile (CS) OH H N Br O O Benzyl bromide Capsaicin (OC) H Cl N As As Cl Diphenylchloroarsine (DA) Adamsite (DM) Classes of chemical warfare agents y Incapacitating agents y Choking agents y Blood agents hdhydrogen cyanide (AC); AAirsine (SA); cyanogen chlor ide (CK) Classes of chemical warfare agents y Blister agents Cl Cl N S As Cl Cl Cl Cl Cl Cl Tris(2-chloroethyl)amine (HN3) Bis(2-chloroethyl) sulfide (HD) 2-Chlorovinyldichloroarsine (L) S S S Cl Cl O Cl Cl S Bis(2-chloroethylthioethyl) ether (T) 1,2-Bis(2-chloroethylthio) ethane (Q) Symptoms of blister agents Classes of chemical warfare agents y Nerve agents Mode of action of nerve agents Antidotes for nerve agents N O O OH Atropin Cl H N O N H Cl N N O O Obidoxim chloride Antidotes y For blister agents A mixture of bleaching powder with 35% active chlorine, molecular sieve, magnesium oxide and silica. -
United States Patent (19) 11 4,362,884 Arkles (45) Dec
United States Patent (19) 11 4,362,884 Arkles (45) Dec. 7, 1982 (54) SILACROWN ETHERS, METHOD OF MAKING SAME, AND USE AS OTHER PUBLICATIONS PHASE-TRANSFER CATALYSTS C. J. Pederson, J. Am. Chem. Soc., 89, 7017, (1967). R. Kieble, C. Burkhard, J. Am. Chem. Soc., 69, 2689, (75) Inventor: Barry C. Arkles, Oreland, Pa. (1947). (73) Assignee: Petrarch Systems, Inc., Levittown, Primary Examiner-Paul F. Shaver Pa. Attorney, Agent, or Firm-Seidel, Gonda, Goldhammer & Panitch 21) Appl. No.: 323,629 57 ABSTRACT 22 Filed: Nov. 23, 1981 Organosilicon compounds referred to as silacrown ethers or "silacrowns' are of the general formula: (51) Int. Cl............................. C07F 7/08; C07F 7/18 52) U.S. C. .................................... 556/446; 260/464; 560/236; 570/143; 570/145; 570/191; 570/196; 570/197; 570/261 58 Field of Search ......................................... 556/446 where R1 and R2 are organic radicals or hydrogen and 56 References Cited n is an integer between 4 and 10 inclusive. Silacrown U.S. PATENT DOCUMENTS ethers are prepared by reacting polyethylene glycol 3,078,293 2/1963 Ender .................................. 556/446 with substituted silanes under conditions promoting 3,475,478 10/1969 Simmler ..... 556/446X cyclization over polymerization. Silacrown ethers may 3,505,380 4/1970 Berger ................................. 556/446 be employed as phase-transfer catalysts in solution or 3,539,610 1 1/1970 Berger ............................ 536/446X immobilized on siliceous supports. 3,987,061 10/1976 Pedersen ......................... 556/446X 4,098,808 7/1978 Wolfers et al. ..................... 556/446 12 Claims, No Drawings 4,362,884 1 2 SILACROWNETHERS, METHOD OF MAKING DETAILED DESCRIPTION OF THE SAME, AND USE AS PHASE-TRANSFER INVENTION CATALYSTS Silacrowns exhibit complexation properties remark 5 ably similar to crown ethers. -
House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, Or Isothiocyanate Radicals
House Fly Attractants and Arrestante: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals Agriculture Handbook No. 403 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Contents Page Methods 1 Results and discussion 3 Thiocyanic acid esters 8 Straight-chain nitriles 10 Propionitrile derivatives 10 Conclusions 24 Summary 25 Literature cited 26 This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and Federal agencies before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. ¿/áepé4áaUÁí^a¡eé —' ■ -"" TMK LABIL Mention of a proprietary product in this publication does not constitute a guarantee or warranty by the U.S. Department of Agriculture over other products not mentioned. Washington, D.C. Issued July 1971 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents House Fly Attractants and Arrestants: Screening of Chemicals Possessing Cyanide, Thiocyanate, or Isothiocyanate Radicals BY M. S. MAYER, Entomology Research Division, Agricultural Research Service ^ Few chemicals possessing cyanide (-CN), thio- cyanate was slightly attractive to Musca domes- eyanate (-SCN), or isothiocyanate (~NCS) radi- tica, but it was considered to be one of the better cals have been tested as attractants for the house repellents for Phormia regina (Meigen). -
IUPAC Provisional Recommendations
Preferred IUPAC Names 177 Chapter 6, Sect 66 September, 2004 P-66 Amides, imides, hydrazides, nitriles, aldehydes, their chalcogen analogues and derivatives P-66.0 Introduction P-66.1 Amides P-66.2 Imides P-66.3 Hydrazides P-66.4 Amidines, amidrazones, hydrazidines P-66.5 Nitriles P-66.6 Aldehydes P-66.0 Introduction The classes dealt with in this Section have in common the fact that their retained names are derived from those of acids by changing the ‘ic acid’ ending to a class name, for example ‘amide’, ‘ohydrazide’, ‘nitrile’ or ‘aldehyde’. Their systematic names are formed substitutively by the suffix mode using one of two types of suffix, one that includes the carbon atom, for example, ‘carbonitrile’ for −CN, and one that does not, for example, ‘-nitrile’ for −(C)N,. Amidines are named as amides, hydrazidines as hydrazides, and amidrazones as amides or hydrazides. P-66.1 Amides P-66.1.0 Introduction P-66.1.1 Primary amides P-66.1.2 Secondary and tertiary amides P-66.1.3 Chalcogen analogues of amides P-66.1.4 Lactams, lactims, sultams and sultims P-66.1.5 Amides of carbonic, oxalic, cyanic, and polycarbonic acids P-66.1.6 Polyfunctional amides P-66.1.0 Introduction Amides are derivatives of oxoacids in which each hydroxy group has been replaced by an amino or substituted amino group. Chalcogen replacement analogues are called thio-, seleno- and telluroamides. Compounds having one, two or three acyl groups on a single nitrogen atom are generically included and may be designated as primary, secondary and tertiary amides, respectively. -
Preparation of 2-Phenylcyclohexanone and Substituted 2-Arylcyclohenanones
THE PREPARATION OP 2-PHENYLCYCL0HEXAN0NE AND SUBSTITUTED 2-ARYLCYCL0HENAN0NES i . by J RICHARD GRANT HIS KEY A. B., Kansas State Teachers College, Emporia, 1951 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OP SCIENCE Department of Chemistry KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE 1953 ii QJUtt A- ViW3» c.cl table op contents I introduction 1 purpose of the investigation 16 results of the investigation ,16 Isolation and Identification of the Intermediate Chlorohydrins 16 Comparison of the Rearrangement of the Cis- and Trans - Chlorohydrins 28 Preparation of Some New 2-Arylcyclohexanones 31 EXPERIMENTAL , . 43 Isolation and Identification of the Intermediate Chlorohydrins 43 Rearrangement of the Cis and Trans Chlorohydrins to 2-Phenylcyclohenanone 49 Preparation of Some New 2-Arylcyclohexanones 51 ACKNOWLEDGMENT 63 BIBLIOGRAPHY 64 INTRODUCTION In recent years both partial syntheses and total syntheses of natural products have become increasingly important. The total synthesis of these products is very desirable since total synthesis of a compound affords a method by which final, con- clusive proof of its structure may be obtained. In addition, the total synthesis might prove economically feasible. For these reasons many workers have attempted to totally synthesize various natural products and their analogs. One of the outstanding examples of the synthesis of a rel- atively complex natural product was that of the female sex hor- mone, equilinln (II), by Bachmann, Cole, and Wilds (1) in 1959- 1940. The last portion of this synthesis utilized the cyclic ketone, 7-methoxy-l-keto-l ,2,5,4 tetrahydro phenanthrene (I) as a key Intermediate. -
ITAR Category
Category XIV—Toxicological Agents, Including Chemical Agents, Biological Agents, and Associated Equipment *(a) Chemical agents, to include: (1) Nerve agents: (i) O-Alkyl (equal to or less than C10, including cycloalkyl) alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonofluoridates, such as: Sarin (GB): O-Isopropyl methylphosphonofluoridate (CAS 107–44–8) (CWC Schedule 1A); and Soman (GD): O-Pinacolyl methylphosphonofluoridate (CAS 96–64–0) (CWC Schedule 1A); (ii) O-Alkyl (equal to or less than C10, including cycloalkyl) N,N-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)phosphoramidocyanidates, such as: Tabun (GA): O-Ethyl N, N- dimethylphosphoramidocyanidate (CAS 77–81–6) (CWC Schedule 1A); (iii) O-Alkyl (H or equal to or less than C10, including cycloalkyl) S–2-dialkyl (Methyl, Ethyl, n- Propyl or Isopropyl)aminoethyl alkyl (Methyl, Ethyl, n-Propyl or Isopropyl)phosphonothiolates and corresponding alkylated and protonated salts, such as: VX: O-Ethyl S-2- diisopropylaminoethyl methyl phosphonothiolate (CAS 50782–69–9) (CWC Schedule 1A); (2) Amiton: O,O-Diethyl S-[2(diethylamino)ethyl] phosphorothiolate and corresponding alkylated or protonated salts (CAS 78–53–5) (CWC Schedule 2A); (3) Vesicant agents: (i) Sulfur mustards, such as: 2-Chloroethylchloromethylsulfide (CAS 2625–76–5) (CWC Schedule 1A); Bis(2-chloroethyl)sulfide (CAS 505–60–2) (CWC Schedule 1A); Bis(2- chloroethylthio)methane (CAS 63839–13–6) (CWC Schedule 1A); 1,2-bis (2- chloroethylthio)ethane (CAS 3563–36–8) (CWC Schedule 1A); 1,3-bis (2-chloroethylthio)-n- propane (CAS -
List of Extremely Hazardous Substances
Emergency Planning and Community Right-to-Know Facility Reporting Compliance Manual List of Extremely Hazardous Substances Threshold Threshold Quantity (TQ) Reportable Planning (pounds) Quantity Quantity (Industry Use (pounds) (pounds) CAS # Chemical Name Only) (Spill/Release) (LEPC Use Only) 75-86-5 Acetone Cyanohydrin 500 10 1,000 1752-30-3 Acetone Thiosemicarbazide 500/500 1,000 1,000/10,000 107-02-8 Acrolein 500 1 500 79-06-1 Acrylamide 500/500 5,000 1,000/10,000 107-13-1 Acrylonitrile 500 100 10,000 814-68-6 Acrylyl Chloride 100 100 100 111-69-3 Adiponitrile 500 1,000 1,000 116-06-3 Aldicarb 100/500 1 100/10,000 309-00-2 Aldrin 500/500 1 500/10,000 107-18-6 Allyl Alcohol 500 100 1,000 107-11-9 Allylamine 500 500 500 20859-73-8 Aluminum Phosphide 500 100 500 54-62-6 Aminopterin 500/500 500 500/10,000 78-53-5 Amiton 500 500 500 3734-97-2 Amiton Oxalate 100/500 100 100/10,000 7664-41-7 Ammonia 500 100 500 300-62-9 Amphetamine 500 1,000 1,000 62-53-3 Aniline 500 5,000 1,000 88-05-1 Aniline, 2,4,6-trimethyl- 500 500 500 7783-70-2 Antimony pentafluoride 500 500 500 1397-94-0 Antimycin A 500/500 1,000 1,000/10,000 86-88-4 ANTU 500/500 100 500/10,000 1303-28-2 Arsenic pentoxide 100/500 1 100/10,000 1327-53-3 Arsenous oxide 100/500 1 100/10,000 7784-34-1 Arsenous trichloride 500 1 500 7784-42-1 Arsine 100 100 100 2642-71-9 Azinphos-Ethyl 100/500 100 100/10,000 86-50-0 Azinphos-Methyl 10/500 1 10/10,000 98-87-3 Benzal Chloride 500 5,000 500 98-16-8 Benzenamine, 3-(trifluoromethyl)- 500 500 500 100-14-1 Benzene, 1-(chloromethyl)-4-nitro- 500/500 -
565.Full.Pdf
Studies on the Biological Action of Malononitriles* I. The Effect of Substituted Malononitriles on the Growth of Transplanted Tumors in Mice EMERYM. GAL,| FUNG-ÜAANFUNG,ANDDAVIDM. GREENBERG ASSISTEDBYHARRIETEZRAANDSHERBURNEF.COOK,JB. (Department of Biochemistry, School of Medicine, Unirersity of California, Berkeley, Calif.') This laboratory has been engaged for a number MATERIALS of years on a program of cancer chemotherapy re Malononitrile, by virtue of its active méthylènegroup, search guided mainly by the concept of metabolite readily condenses with carbonyl compounds to yield dinitriles. The condensation products show different degrees of saturation antagonism (9) in the selection of compounds to be and can be divided into the following groups: tested for chemotherapeutic activity. The impor 1. R-CH,CH(CN), tance attributed to the components of the nucleic 2. R-CH (CH[CN]S), acids in the genesis of neoplasms and the control of 3. R-CH:C(CN)j cellular functions has, with some measure of suc R.-. cess, oriented extensive investigations on experi 4. R2-C:C(CN)S 5. R-N:N-CH(CN)2 mental tumor chemotherapy. An outstanding ex ample is the work of Kidder and his associates (13) With a few exceptions the compounds were prepared in our on the growth-inhibiting properties of the purine laboratory according to known procedures (1, 4, 14). The car analog, 8-azaguanine. bonyl compounds used in the syntheses were, for the most part, purchased from Distillation Products Industries. The prepared Our efforts have been considerably influenced compounds were checked for purity and the elementary compo by the work of Hyden and Hartelius (12), who re sition of those which were not described in the literature deter ported that administration of malononitrile mined by micro-analysis.