Arsenic and Old Mustard: Chemical Problems in the Destruction of Old Arsenical and 'Mustard' Munitions NATO ASI Series Advanced Science Institute Series

Total Page:16

File Type:pdf, Size:1020Kb

Arsenic and Old Mustard: Chemical Problems in the Destruction of Old Arsenical and 'Mustard' Munitions NATO ASI Series Advanced Science Institute Series Arsenic and Old Mustard: Chemical Problems in the Destruction of Old Arsenical and 'Mustard' Munitions NATO ASI Series Advanced Science Institute Series A Series presenting the results of activities sponsored by the NATO Science Committee, which aims at the dissemination of advanced scientific and technological knowledge, with a view to strengthening links between scientific communities. The Series is published by an international board of publishers in conjunction with the NATO Scientific Affairs Division A Life Sciences Plenum Publishing Corporation B Physics London and New York C Mathematical and Physical Sciences Kluwer Academic Publishers D Behavioural and Social Sciences Dordrecht, Boston and London E Applied Sciences F Computer and Systems Sciences Springer-Verlag G Ecological Sciences Berlin, Heidelberg, New York, London, H Cell Biology Paris and Tokyo I Global Environment Change PARTNERSHIP SUB-SERIES 1. Disarmament Technologies Kluwer Academic Publishers 2. Environment Springer-Verlag / Kluwer Academic Publishers 3. High Technology Kluwer Academic Publishers 4. Science and Technology Policy Kluwer Academic Publishers 5. Computer Networking Kluwer Academic Publishers The Partnership Sub-Series incorporates activities undertaken in collaboration with NATO's Cooperation Partners, the countries of the CIS and Central and Eastern Europe, in Priority Areas of concern to those countries. NATO-PCO-DATA BASE The electronic index to the NATO ASI Series provides full bibliographical references (with keywords and/or abstracts) to about 50,000 contributions from international scientists published in all sections of the NATO ASI Series. Access to the NATO-PCO-DATA BASE is possible via a CD-ROM "NATO Science and Technology Disk" with user-friendly retrieval software in English, French, and German (©WTV GmbH and DATAWARE Technologies, Inc. 1989). The CD-ROM contains the AGARD Aerospace Data­ base. The CD-ROM can be ordered through any member of the Board of Publishers or through NATO-PCO, Overijse, Belgium. 1. Disarmament Technologies - Vol. 19 Arsenic and Old Mustard: Chemical Problems in the Destruction of Old Arsenical and 'Mustard' Munitions edited by Joseph F. Bunnett University of California, Santa Cruz, California, U.S.A. and Marian Mikolajczyk Centre of Molecular and Macromolecular Studies, Polish Academy of SCiences, l6d~ Poland Springer-Science+Business Media, B.v. Proceedings of the NATO Advanced Research Workshop on Chemical Problems Associated with Old Arsenical and 'Mustard' Munitions l6dz. Poland 17-19 March 1996 A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-5069-4 ISBN 978-94-015-9115-7 (eBook) DOI 10.1007/978-94-015-9115-7 Printed on acid-free paper All Rights Reserved © 1998 Springer Science+Business Media Oordrecht Originally published by Kluwer Academic Publishers in 1998 Softcover reprint of the hardcover 1st edition 1998 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photo­ copying, recording or by any information storage and retrieval system, without written permission from the copyright owner. CONTENTS Preface .................................................... IX Acknowledgments. .. xi Structures of Prominent Arsenical and 'Mustard' Agents . .. xii IUPAC Names of Prominent Chemical Warfare Agents ................... xiii Organizing Committee Membership ................................ xiv Glossary of Agent Codes and Common Names . .. xv LECTURES The Problem of Old Chemical Weapons which Contain "Mustard Gas" or Organoarsenic Compounds: An Overview Ron G. Manley ............................................ 1 Destruction of Old Chemical Munitions Daniel Froment ........................................... 17 Recovered Old Arsenical and 'Mustard' Munitions in Germany: Technologies, Plans and Problems Hermann Martens . 33 Practical Actions of Russia on Preparations for Destruction of Stockpiled Lewisite and 'Mustard' S. V. Petrov, V.l. Kholstov, V.P. Zoubrilin, N. V. Zavialova ............. 79 Recovered Old Arsenical and 'Mustard' Munitions in Poland: Technologies, Plans and Problems Zhigniew Wertejuk, Mieczyslaw Koch, Wlodzimierz Marciniak . ........... 91 Composition and Remediation of Tarry 'Mustard' P.R. Norman. .. 105 Kinetic and Toxicological Parameters of 'Mustard' (HD) Hydrolysis and Biodegradation Steven P. Harvey, Timothy A. Blades, Linda L. Szajraniec, William T. Beaudry, Mark V. Haley, Thomas Rosso, Gerald P. Young, James P. Earley, Robert L. Irvine . .. 115 Arsenic in the Environment W.R. Cullen ............................................ 123 Biotransformation of Arsenic in Freshwater Organisms Shigeru Maeda . .. 135 vi POSTER ABSTRACTS Investigations in Organoarsenic Chemistry Ionel Haiduc, Luminitsa Silaghi-Dumitrescu ....................... 149 HPLC-ICP-MS Methods for the Detennination of Inorganic and Organic Arsenic Compound W. Goessler, D. Kuehnelt, K.J. Irgolic . .. 151 A Method for Mutual Disposal of Old Chemical Weapons Alexander L Chimishkyan ................................... 155 Destruction of Adamsite by Sodium M. Sokolowski, E. Bilger ................................... 157 Electrochemical and Biological Approach to the Destruction of Lewisite and 'Mustard' Alexander M. Boronin, Valentin G. Sakharovski, Ivan I. Starovoitov, Konstantin I. Kashparov, Valery N. Shvetsov, Ksenija M. Morozova, Igor A. Nechaev, Vladimir I. Tugoshov, Nikolai P. Kuzmin, Alexander I. Kochergin ..................................... 159 Reductive Decomposition of Deposits in Old 'Mustard' Munitions Joseph F. Bunnett......................................... 163 Use of 'Mustard' Aminolysis Products as Catalysts for Polyurethane Foam Production AL. Chimishkyan, S.1. Orlov, T.S. Serebryakova . .. 165 Breakdown of Sulfur 'Mustard' by Phase Transfer Catalyzed HCl Elimination: A Potential Destruction Method for 'Mustard' Stocks Ernst-Christian Koch ...................................... 169 GROUP DISCUSSION REPORTS Old 'Mustard' or Yperite Munitions: Methods for Destruction and Container Detoxification Yperite Discussion Group ................................... 175 Old Arsenical Munitions: Methods for Destruction and Site Cleanup Arsenicals Discussion Group ................................. 177 On the Handling of Recovered Munitions Recovered Munitions Discussion Group .......................... 185 vii APPENDICES A. Participants in this NATO ARW ............................. 189 B. Membership of IUPAC Committee on Chemical Weapons Destruction ... 193 C. On Wholesome Warfare ................................... 195 AUTHOR INDEX.. .. 196 SUBJECT INDEX................................. ....... 197 PREFACE Chemical warfare, involving substances often called "poison gases", was initiated by Gennan forces in 1915. It was soon taken up by the Allies and was actively practiced until the end of World War I in 1918.[1] The original chemical warfare (CW) agents were truly gases (i.e., chlorine, phosgene and hydrogen cyanide), but liquid Yperite or 'mustard' caused the majority of World War I "gas" casualties. Yperite is a vesicant; it raises huge blisters on exposed skin. Its worst effects were however on persons who inhaled mists or aerosols of Yperite; the damage to delicate lung tissue was often irreversible. Some arsenic compounds were also used as chemical warfare agents. Most of them (Clark I, Adamsite, etc.) induced sneezing or vomiting and were intended mainly to disorient enemy troops. Lewisite, an arsenical vesicant, was developed during World War I and produced in large quantity by the Soviet Union in the Cold War era, but has seen little battlefield use. Forces on both sides in World War II manufactured vast amounts of chemical munitions, but they were not used in the war. During the Cold War, the Soviet Union and the United States also armed themselves with prodigious amounts of chemical weapons, but again they were not used. Problems of destruction of those huge stockpiles of chemical munitions in Russia and the United States have justifiably received much attention, in both their technological and political aspects. But the problems in destroying "non-stockpile" munitions are even greater. Those "non-stockpile" munitions lie buried on old battlefields or military posts or sunken in estuaries or the sea. It is estimated that in Europe alone over ten million lost or abandoned World War I chemical munitions, many of them still charged with agent, are yet to be retrieved and destroyed. Many European nations in which that war was fought have departments to destroy the old munitions that are frequently found by citizens as they engage in activities such as construction, farming or fishing. There are major problems also in China, where Japanese forces abandoned chemical munitions in 1945. In the United States, the U.S. Anny has surveyed its substantial non-stockpile chemical munitions problem.[I] One aspect of it came to light in 1993, when abandoned chemical munitions and precursor chemicals were found buried in Spring Valley, Washington, D.C., a district of expensive homes. During World War I it was a chemical weapons development site. Chemical Problems A discovered old munition might be of either high explosive or chemical type. Weapons destroyers must detennine which it is, and if chemical what agent it contains. The internal structure of a munition can be revealed and often indications of its chemical content obtained by ultrasound and X-ray analysis.
Recommended publications
  • Regulated Substance List
    INSTRUCTIONS FOR THE UNIFIED PROGRAM (UP) FORM REGULATED SUBSTANCE LIST CHEMICAL NAME CAS # TQ Listing CHEMICAL NAME CAS # TQ Listing (Lbs) Basis (Lbs) Basis Acetaldehyde 75-07-0 10,000 g Cantharidin 56-25-7 100/10,0001 * Acetone Cyanohydrin 75-86-5 1,000 Carbachol Chloride 51-83-2 500/10,0001 Acetone Thiosemicarbazide 1752-30-3 1,000/10,0001 Acetylene (Ethyne) 74-86-2 10,000 f Carbamic Acid, Methyl-,o- Acrolein (2-Propenal) 107-02-8 500 b (((2,4-Dimethyl-1,3-Dithiolan- Acrylamide 79-06-1 1,000/10,0001 2-YL) Methylene)Amino)- 26419-73-8 100/10,0001 Acrylonitrile (2- Propenenitrile) 107-13-1 10,000 b Carbofuran 1563-66-2 10/10,0001 Acrylyl Chloride Carbon Disulfide 75-15-0 10,000 b (2-Propenoyl Chloride) 814-68-6 100 b Carbon Oxysulfide Aldicarb 116-06-3 100/10,0001 (Carbon Oxide Sulfide (COS)) 463-58-1 10,000 f Aldrin 309-00-2 500/10,0001 Chlorine 7782-50-5 100 a,b Allyl Alcohol (2-Propen-1-ol) 107-18-6 1,000 b Chlorine Dioxide Allylamine (2-Propen-1-Amine) 107-11-9 500 b (Chlorine Oxide (ClO2)) 10049-04-4 1,000 c Aluminum Phosphide 20859-73-8 500 Chlorine Monoxide (Chlorine Oxide) 7791-21-1 10,000 f Aminopterin 54-62-6 500/10,0001 Chlormequat Chloride 999-81-5 100/10,0001 Amiton Oxalate 3734-97-2 100/10,0001 Chloroacetic Acid 79-11-8 100/10,0001 Ammonia, Anhydrous 2 7664-41-7 500 a,b Chloroform 67-66-3 10,000 b Ammonia, Aqueous Chloromethyl Ether (conc 20% or greater) 7664-41-7 20,000 a,b (Methane,Oxybis(chloro-) 542-88-1 100 b * Aniline 62-53-3 1,000 Chloromethyl Methyl Ether Antimycin A 1397-94-0 1,000/10,0001 (Chloromethoxymethane)
    [Show full text]
  • Industry Compliance Programme
    Global Chemical Industry Compliance Programme GC-ICP Chemical Weapons Convention December 2006 Version 1.0 GLOBAL CHEMICAL INDUSTRY COMPLIANCE PROGRAMME FOR IMPLEMENTING THE CHEMICAL WEAPONS CONVENTION The purpose of the handbook is to provide guidance to chemical facilities, traders and trading companies in developing a Global Chemical Industry Compliance Programme (GC-ICP) to comply with the Chemical Weapons Convention (CWC). The GC-ICP focuses first on determining if there is a reporting requirement to your National Authority and second on collecting the relevant support data used to complete the required reports. The GC-ICP is designed to provide a methodology to comply with the CWC and establish systems that facilitate and demonstrate such compliance. Each facility/company should also ensure that it follows its country’s CWC specific laws, regulations and reporting requirements. • Sections 2, 3, and 4 guide you through the process of determining if chemicals at your facility/ company should be reported to your National Authority for compliance with the CWC. • Section 5 provides recommended guidance on information that you may use to determine your reporting requirements under the CWC and administrative tools that your facility/company may use to ensure compliance with the CWC. • Section 6 provides a glossary of terms and associated acronyms. • Section 7 provides a listing of all National Authorities by country. CWC Global Chemical Industry Compliance Programme 1 TABLE OF CONTENTS Section 1 Overview What is the Chemical Weapons Convention?
    [Show full text]
  • Page 1 EXAMPLES of ACUTE TOXINS (By CAS#) APPENDIX V(H)-B
    EXAMPLES OF ACUTE TOXINS (by CAS#) APPENDIX V(h)-B Key: SA -- Readily Absorbed Through the Skin Revised: 12/2012 ___________________________________________________ _____________ _________________________ | | | CHEMICAL NAME CAS # | SA | TARGET ORGAN | ___________________________________________________ ____________ | _ | _______________________ | AFLATOXINS 000000-00-0 | | systemic | ANILINE AND COMPOUNDS 000000-00-0 | x | blood | ARSENIC ACID AND SALTS 000000-00-0 | x | systemic | ARSENIUOS ACID AND SALTS 000000-00-0 | | systemic | ARSONIC ACID AND SALTS 000000-00-0 | | systemic | BOTULINUM TOXINS 000000-00-0 | | systemic | CYANIDE AND COMPOUNDS 000000-00-0 | x | blood | CYANOGEN AND COMPOUNDS 000000-00-0 | | blood | METHYL MERCURY AND COMPOUNDS 000000-00-0 | x | CNS | VENOM, SNAKE, CROTALUS ADAMANTEUS 000000-00-0 | | systemic | VENOM, SNAKE, CROTALUS ATROX 000000-00-0 | | systemic | MITOMYCIN C 000050-07-7 | | systemic | DINITROPHENOL, 2,4- 000051-28-5 | x | systemic | ATROPINE 000051-55-8 | x | CNS | HN2 (NITROGEN MUSTARD-2) 000051-75-2 | x | systemic | THIOTEPA 000052-24-4 | | systemic | NICOTINE 000054-11-5 | x | CNS | NITROGEN MUSTARD HYDROCHLORIDE 000055-86-7 | x | systemic | PARATHION 000056-38-2 | x | CNS | CYANIDE 000057-12-5 | x | blood | STRYCHNINE 000057-24-9 | | systemic,CNS | TUBOCURARINE CHLORIDE HYDRATE,(+)- 000057-94-3 | x | systemic | METHYL HYDRAZINE 000060-34-4 | x | pulmonary,CNS,blood | ANILINE 000062-53-3 | x | blood | DICHLORVOS 000062-73-7 | x | systemic | SODIUM FLUOROACETATE 000062-74-8 | x | systemic | COLCHICINE
    [Show full text]
  • The Chemotherapy of Malignant Disease -Practical and Experimental Considerations
    Postgrad Med J: first published as 10.1136/pgmj.41.475.268 on 1 May 1965. Downloaded from POSTGRAD. MED. J. (1965), 41,268 THE CHEMOTHERAPY OF MALIGNANT DISEASE -PRACTICAL AND EXPERIMENTAL CONSIDERATIONS JOHN MATTHIAS, M.D., M.R.C.P., F.F.A., R.C.S. Physician, The Royal Marsden Hospital, London, S.W.3. THE TERM chemotherapy was introduced by positively charged alkyl (CH2) radicles of Ehrlich to describe the specific and effective the agent. treatment of infectious disease by chemical (a) The nitrogen mustards: mustine (HN2 substances. It is currently also applied to the 'nitrogen mustard', mechlorethamine, treatment of malignant disease. Unfortunately mustargen), trimustine (Trillekamin no aspect of tumour metabolism has been HN3), chlorambucil (Leukeran, phenyl discovered which has allowed the development butyric mustard), melphalan (Alkeran, of drugs capable of acting specifically upon the phenyl alanine mustard), uramustine malignant cell, so that cytotoxic drugs also (Uracil mustard), cyclophosphamide affect normal cells to a greater or lesser degree. (Endoxan or Cytoxan), mannomustine The most susceptible or sensitive of the normal (DegranoO). tissues are those with the highest rates of cell (b) The ethylenamines: tretamine (trie- turnover and include the haemopoietic and thanomelamine, triethylene melamine, lympho-reticular tissues, the gastro-intestinal TEM), thiotepa (triethylene thiopho- the the testis and the hair epithelium, ovary, sphoramide), triaziquone (Trenimon).by copyright. follicles. (c) The epoxides: triethyleneglycoldigly- Cancer chemotherapy may be said to encom- cidyl ether (Epodyl). pass all treatments of a chemical nature (d) The sulphonic acid esters: busulphan administered to patients with the purpose of (Myleran), mannitol myleran. restricting tumour growth or destroying tumour 2.
    [Show full text]
  • Warfare Agents for Modeling Airborne Dispersion in and Around Buildings
    LBNL-45475 ERNEST ORLANDO LAWRENCE BERKELEY NATIn NAL LABORATORY Databaseof Physical,Chemicaland ToxicologicalPropertiesof Chemical and Biological(CB)WarfitreAgentsfor ModelingAirborneDispersionIn and AroundBuildings TracyThatcher,RichSextro,andDonErmak Environmental Energy Technologies Division DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of Catifomia, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of anY information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommend at i on, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced
    [Show full text]
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • Medicine with Deeper, More Biochemical Conception Of
    Edinburgh Medical Journal May 1951 APPLICATIONS of chemical defence research IN MEDICINET? By Professor R. A. PETERS to be invited It is a great responsibility, as well as a great honour, to Cameron lecturers give this lecture ; and I expect that with other I this ancient seat of share a sense of awe upon standing here in is learning. For me it is an awe tinged with much feeling (it possible that this is partly because some forebears of my mother came from near to recent of the this ; it is in part due the perusal city) perhaps " address here Froude in on the Times of John Knox, given by 1865 " " entitled Influence of the Reformation upon the Scottish Character ; this address drives home to the Sassenach the sterner stuff of which all of us in the the Scots are made ; but I really think it is more that as south, even if we come as I do from a Medical School as ancient the Hospital of St Bartholomew, know full well that Edinburgh stands high indeed in the world of Medical Schools as Scotland itself stands in the world of intellect. Elsewhere I have discussed fully the historical background of our for me back researches upon Chemical Defence substances, which go to World War I.23 Again in my Dixon lecture,24 I have indicated some of the interest for pharmacology. The outlook for medicine has not the been reviewed so far. Therefore I propose to-day to discuss of British influence upon the future of therapeutics of the discovery anti-lewisite and of some of the other researches upon war gas but substances ; and to consider not only the leads towards therapy, the possible newer trends given to medicine itself.
    [Show full text]
  • Decision-Making in Chemical Warfare Agent (CWA) Response There Is a Lot of Fear Associated with Chemical Will Act Accordingly
    Application Note: 102 Decision-Making in Chemical Warfare Agent (CWA) Response There is a lot of fear associated with Chemical will act accordingly. If the first responders Warfare Agents (CWAs). The misnomer over-react and immediately jump into full “Nerve Gas” quickly brings horrible images to encapsulation protection it could panic the the minds of many civilians. But if we lay aside public and cause unnecessary worry and the politics and fear, CWA detection should even injury. treated like other gas/vapor detection challenges. It should be a collaborative Over Protection Can Be Dangerous process encompassing physical clues, threat to the Responder scenario, biological clues, and a variety of Heat stress is the number one injury in sensing technologies. No one clue or HazMat response and immediately jumping technology is always correct. Experience and into full Level A encapsulation is a good way the use of multiple clues and technologies are of overheating oneself. Level A the keys to successful CWA response. encapsulation also makes one much more Understanding what the clues are and how to susceptible to slip, trip and fall injuries. layer them to make a decision is critical to Finally, over protection makes it harder to get successful CWA response. things done. When properly used, detection allows responders to respond at lower levels Why is Gas Detection Important? of Personal Protective Equipment (PPE) to Responders cannot rely on their senses for provide the highest levels of safety to decision-making. Without effectively knowing themselves and to the community that they how to use detection techniques responders protect.
    [Show full text]
  • Warning: the Following Lecture Contains Graphic Images
    What the новичок (Novichok)? Why Chemical Warfare Agents Are More Relevant Than Ever Matt Sztajnkrycer, MD PHD Professor of Emergency Medicine, Mayo Clinic Medical Toxicologist, Minnesota Poison Control System Medical Director, RFD Chemical Assessment Team @NoobieMatt #ITLS2018 Disclosures In accordance with the Accreditation Council for Continuing Medical Education (ACCME) Standards, the American Nurses Credentialing Center’s Commission (ANCC) and the Commission on Accreditation for Pre-Hospital Continuing Education (CAPCE), states presenters must disclose the existence of significant financial interests in or relationships with manufacturers or commercial products that may have a direct interest in the subject matter of the presentation, and relationships with the commercial supporter of this CME activity. The presenter does not consider that it will influence their presentation. Dr. Sztajnkrycer does not have a significant financial relationship to report. Dr. Sztajnkrycer is on the Editorial Board of International Trauma Life Support. Specific CW Agents Classes of Chemical Agents: The Big 5 The “A” List Pulmonary Agents Phosgene Oxime, Chlorine Vesicants Mustard, Phosgene Blood Agents CN Nerve Agents G, V, Novel, T Incapacitating Agents Thinking Outside the Box - An Abbreviated List Ammonia Fluorine Chlorine Acrylonitrile Hydrogen Sulfide Phosphine Methyl Isocyanate Dibotane Hydrogen Selenide Allyl Alcohol Sulfur Dioxide TDI Acrolein Nitric Acid Arsine Hydrazine Compound 1080/1081 Nitrogen Dioxide Tetramine (TETS) Ethylene Oxide Chlorine Leaks Phosphine Chlorine Common Toxic Industrial Chemical (“TIC”). Why use it in war/terror? Chlorine Density of 3.21 g/L. Heavier than air (1.28 g/L) sinks. Concentrates in low-lying areas. Like basements and underground bunkers. Reacts with water: Hypochlorous acid (HClO) Hydrochloric acid (HCl).
    [Show full text]
  • Salvage Chemotherapy for Recurrent Primary Brain Tumors in Children
    Salvage chemotherapy for recurrent primary brain tumors in children Jan van Eys, PhD, MD, Tallie Z. Baram, MD, PhD, Ayten Cangir, MD, Janet M. Bruner, MD, and J. Martinez-Prieto, MD From the Departments of Pediatrics, Neurooncology, and Pathology, The Universityof Texas M, D. Anderson Cancer Center at Houston Sixty consecutive evaluable children with recurrent primary tumors of the central nervous system were treated with a regimen of vincristine, nitrogen mustard, procarbazine, and prednisone over a 12-year period. Tumor types included medulloblastoma (19), brain-stem glioma (16), astrocytoma (13), and a miscellaneous glioma (12). Responses and sustained survivals were achieved. Responses were highly dependent on tumor type. Disease progres- sion was halted in 73% of the children with medulloblastoma, and three have survived in complete remission for more than 10 years from the start of therapy with vincristine, nitrogen mustard, procarbazine, and prednisone. Two of four patients with anaplastic glioma, are long-term survivors. In contrast, less than one third of children with brain-stem gliomas responded. Toxicity consisted mainly of neutropenia, thrombocytopenia, infections, and rarely a procarba- zine rash. (J PEDIAI'R1988;113:601-6) Therapy for recurrent brain tumors in children remains METHODS unsatisfactory; most die of their disease regardless of Patients. Sixty-five children with a median age of 6 therapy, l We have repbrted on the responsiveness of years (range, 1 to 16 years) were treated with MOPP for recurrent brain tumors in children to chemotherapy with recurrent brain tumors. Sixty patients were eligible for vincristine, nitrogen mustard, procarbazine, and predni- evaluation; the other five patients were excluded because 1 sone.
    [Show full text]
  • Argonne Report.Pdf
    CONTENTS NOTATION ........................................................................................................................... xi ABSTRACT ........................................................................................................................... 1 1 INTRODUCTION ........................................................................................................... 5 1.1 Overview of the Emergency Response Guidebook ................................................ 5 1.2 Organization of this Report ..................................................................................... 7 2 GENERAL METHODOLOGY ....................................................................................... 9 2.1 TIH List ................................................................................................................... 10 2.1.1 Background ................................................................................................. 10 2.1.2 Changes in the TIH List for the ERG2012 ................................................. 11 2.2 Shipment and Release Scenarios ............................................................................ 11 2.2.1 Shipment Profiles ........................................................................................ 12 2.2.2 Treatment of Chemical Agents ................................................................... 14 2.3 Generics, Mixtures, and Solutions .......................................................................... 17 2.4 Analysis of Water-Reactive
    [Show full text]
  • New Compositions Containing Carbon and Sulfur
    71 New Compositions Containing Carbon and Sulfur Collin Galloway Final Seminar March 30, 1994 Because binary phases are particularly fundamental to chemistry and materials sci­ ence, most have been rather heavily studied, especially those that might afford molecular species. Nonetheless, compositions of the type CnSm have been overlooked and remain a promising source of new binary molecular and polymeric materials [l]. The known molecu­ lar architectures based on carbon and sulfur are quite varied although they are constructed from only C=C, C=S, and S-S bonds [2]. Using the zinc salt (NBu4)2[Zn(a-C3S5)2], pure [C3Ss]n was prepared via its oxida­ tion with sulfuryl chloride [3]. Raman and reactivity studies indicate that [C3S sln is probably polymeric although it can be converted to the dimer C6S 10 by treatment with CS2 [4]. s SAS / SIS~ s ... s~s s s>= H s=< s ~ sI +s s+n Treatment of the above [Zn(a-C3S5)2]2- with HCl gave the dithiol, C3S5H2. Like cis­ dimercaptoethylene [5], this alkene dithiol is unstable with respect to loss of H2S. Thermoly­ sis of the dithiol afforded the new binary carbon sulfide C6S8 as an insoluble red-brown powder. Both C6S 10 and C6S8 were converted to dicarbonyl derivatives through an Hg2+ pro­ moted 0 for S exchange of the thiocarbonyl groups. For C6S10, this reaction was accompa­ nied by a skeletal rearrangement of the central l,2,5,6-S4C4 ring to a 1,2,3,6 isomer as shown by single crystal X-ray diffraction. When a mixture of the previously reported [6] carbon sulfides C6S12 and C6Ss was subjected to the same 0 for S exchange conditions, only the compound C3S70 was isolated.
    [Show full text]