The First Annual Meeting of the Society for Neuroscience, 1971: Reflections Approaching the 50Th Anniversary of the Society’S Formation

Total Page:16

File Type:pdf, Size:1020Kb

The First Annual Meeting of the Society for Neuroscience, 1971: Reflections Approaching the 50Th Anniversary of the Society’S Formation The Journal of Neuroscience, October 31, 2018 • 38(44):9311–9317 • 9311 Progressions The First Annual Meeting of the Society for Neuroscience, 1971: Reflections Approaching the 50th Anniversary of the Society’s Formation R. Douglas Fields National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, Maryland 20904 The formation of the Society for Neuroscience in 1969 was a scientific landmark, remarkable for the conceptual transformation it represented by uniting all fields touching on the nervous system. The scientific program of the first annual meeting of the Society for Neuroscience,heldinWashington,DCin1971,issummarizedhere.Byreviewingthescientificprogramfromthevantagepointofthe50th anniversary of the Society for Neuroscience, the trajectory of research now and into the future can be tracked to its origins, and the impact that the founding of the Society has had on basic and biomedical science is evident. The broad foundation of the Society was firmly cast at this first meeting, which embraced the full spectrum of science related to the nervous system, emphasized the importance of public education, and attracted the most renowned scientists of the day who were drawn together by a common purpose and eagerness to share research and ideas. Some intriguing areas of investigation discussed at this first meeting blossomed into new branches of research that flourishtoday,butothersdwindledandhavebeenlargelyforgotten.Technologicaldevelopmentsandadvancesinunderstandingofbrain function have been profound since 1971, but the success of the first meeting demonstrates how uniting scientists across diversity fueled prosperity of the Society and propelled the vigorous advancement of science. Introduction and behavioral levels, but all of these scientific elements of what Before the formation of the Society for Neuroscience (Sf N), in we now recognize as “neuroscience” were represented at that first 1969, research concerning the nervous system was conducted in meeting. several separate scientific disciplines, including anatomy, physi- This review article provides a synopsis and analysis of neuro- ology, psychiatry, psychology, neurology, and zoology, but the science research presented at the first annual meeting. Held in the concept that all of these pursuits could be combined into one coher- age of typewriters, there is no digital copy of the first annual ent new field of science was revolutionary. The history of the forma- meeting program, but a personal copy of the blue, 288-page, tion of the Sf N has been reviewed elsewhere (see The Creation of program booklet bearing the inked stamp and signature of Alan Neuroscience, Society for Neuroscience, 2018), but the scientific pro- D. Grinnell, Department of Biology at University of California, gram of that first meeting is a time capsule preserving the state of Los Angeles on the cover, was preserved in the archives at the Sf N brain science at a pivotal point in history. The pioneering neurosci- headquarters in Washington, DC. Grinnell is well known for his entists meeting in 1971 grappled with many of the most fundamen- research on synaptic transmission, notably at the neuromuscular tal issues in brain function at a time of comparatively rudimentary junction, and fortunately his personal copy of the Program and techniques and limited understanding of the brain. In the fullness Abstracts of that first meeting survives (Fig. 1). of time, it is now possible to see retrospectively how the early evidence available, some of it presented at this meeting, was mis- interpreted and projected into new grand hypotheses that were The beginning of Sf N annual meetings constrained and misdirected by the limited information available The first Annual Meeting was held on October 27–30, 1971, at the at the time. Today, the field of neuroscience has grown into one of Shoreham Hotel in Washington, DC. The registration fee was the most vigorous areas of biomedical research, spanning broadly $20.00 for members and $5.00 for students. Adjusted for infla- from mathematical modeling, to molecular, cellular, systems, tion, $20 would be $126 today (Bureau of Labor Statistics, 2018). The more than quadrupled registration cost of $550 for the 2018 Annual Meeting might reflect in part the enormous success of the Received July 27, 2018; revised Sept. 5, 2018; accepted Sept. 7, 2018. Society, which has grown so large its gatherings can only be ac- ThisworkwassupportedbyNationalInstituteofChildHealthandHumanDevelopmentZIAHD000713-22(funds for intramural research). commodated at the largest convention centers in the country, The author declares no competing financial interests. drawing on all hotels in the vicinity for housing during the week- Correspondence should be addressed to Dr. R. Douglas Fields, National Institutes of Health, National Institute of long annual event (Fig. 2). In contrast, that first meeting was an Child Health and Human Development, Building 9, Room 1E126, MSC 0905, Bethesda, MD 20904. E-mail: intimate gathering of 1395 scientists, including 390 students, held [email protected]. DOI:10.1523/JNEUROSCI.3598-17.2018 in one hotel, where everyone could interact over the course of 3 Copyright © 2018 the authors 0270-6474/18/389311-07$15.00/0 days. “You could go to everything,” David Lange, an electro- 9312 • J. Neurosci., October 31, 2018 • 38(44):9311–9317 Fields • The First Sf N Annual Meeting, 1971 Figure 1. Program booklets for the first four Sf N Annual Meetings. The first annual meeting was held in 1971, in Washington, DC. physiologist at National Institute of Neurological Disorders and Synopsis of the first sessions Stroke, now retired, recalled about that first meeting. There were two types of sessions at this first meeting: long format It is notable that this first annual meeting included a press Selected Topics Seminars, held for 2.5 hours in the morning, and room, welcoming journalists to promote research on the brain to short Contributed Papers grouped thematically and held in the the general public. Today, the press room at the annual meeting is afternoons (Table 1). The Contributed Papers sessions in the abuzz with 300 registered journalists from around the world, afternoons resembled the short talks in nanosymposia at today’s furiously typing up newspaper and magazine articles on laptops, Annual Meeting, but the Selected Topic Sessions varied widely in others with microphone in hand and wearing headphones re- format, mixing together what would be considered Special Lec- cording TV and radio interviews with scientists, and attending tures, Symposia, and nanosymposia today. Typically, each Se- well-organized press conferences where leading scientists in “hot lected Topics Seminar session included one or two Introductory topic” areas of research are invited in a panel discussion to pres- Lectures by luminaries in the field, typically followed by a few ent their latest findings directly to the press. Likewise, it is notable shorter contributed papers related to that research topic, and that this first meeting devoted one morning session to education. sometimes closed by a Summarizing Lecture, but some of the A belief in promoting understanding of neuroscience in medical, Selected Topic Sessions were comprised entirely of three Invited graduate, and undergraduate education was one of the prime lectures by leading neuroscientists, and others were all short, ϳ10 reasons for forming the Sf N, and the mission of academic and min presentations of Selected Contributed Papers that pertained public education about brain science remains paramount. to topic of the session. Fields • The First Sf N Annual Meeting, 1971 J. Neurosci., October 31, 2018 • 38(44):9311–9317 • 9313 7000 jective intensity discrimination, and another described a study on the intensity and wavelength of light in vision. This session was 6000 held while two other Selected Topics Seminars on Molecular 5000 Mechanisms and Critical Periods in CNS Development were be- ing held in nearby rooms. 4000 One of the talks in the morning session on psychophysics, in contrast to the others, which were performed on human subjects, 3000 reported experiments by Stanford Psychologist, Karl Pribram Attendance Attendance and colleagues, on slow cortical potentials recorded in the rhesus 2000 monkey performing a learned task. The purpose here is not to 1000 dwell on Pribram’s research specifically, but rather to use re- search presented at this first meeting to give the flavor of the 0 status of brain research at the formation of the Sf N, and to see 1970 1972 1974 1976 1978 1980 from a current vantage point how research of that era has SfN Annual Meeting (year) developed. Pribram devoted his career to studying in humans and non- Figure2. AttendanceatSf NAnnualMeetingsintheyearsimmediatelyafterthefirstmeet- human primates what is today called systems neuroscience, ingin1971,showingaconsistentsteepriseinattendance,whichaveragesϳ30,000attendeestoday which is the study of complex electrophysiological and anatom- (http://www.brainfacts.org/Home/SfN/Annual-Meeting/Past-and-Future-Annual-Meetings/ ical interactions among different parts of the brain to produce Annual-Meeting-Attendance-Statistics). Data before 1979 are replotted from Joel Braslow (https:// perceptions, motor outputs, emotions, and behavior. In contrast www.sfn.org/About/History-of-SfN/1969-1995/Chapter-3). to the textbook concept of the sequential progression of sensory input from simple feature detection in primary sensory cortex to Three Selected
Recommended publications
  • AND OBJECT PERCEPTION * Karl H. PRIBRAM and E.H. CARLTON An
    Acta Psychologica 63 (1986) 175-210 North-Holland AND OBJECT PERCEPTION * Karl H. PRIBRAM and E.H. CARLTON Stanford ~nio'ersity,Stanford, USA Accepted September 1986 Image processing in the visual system is described utilizing some basic neurophysiological data. We propose that both sensory and cognitive operations address features already conjoined in critical receptive fields. As both sensory perception and further processing stages are critically dependent upon movement, the theory emphasizes sensory-motor reciprocity in imaging and in object perception. 'If we could find a convenient way of showing not merely the amplitudes of the envelopes but the actual oscillations of the array of resonators, we would have a notation (cf. Gabor 1946) of even greater generality and flexibility, one that would reduce under certain idealizing assumptions to the spectrum and under others to the wave form . The analogy . [to] the position-momentum and energy-time problems that led Heisenberg in 1927 to state his uncertainty principle . has led Gabor to suggest that we may find the solution [to the problems of sensory processing] in quantum mechanics.' (Licklider 1951 : 993) I. Introduction An age-old problem in philosophy is the origin of knowledge. In recent times two opposed views have dominated not only the philo- sophical scene but psychology as well: there are those who see knowl- edge as built of more elementary events to which the organism has access through his senses. Then, in opposition to this elementarist view are those who emphasize the fact that we perceive what we are set to * A full treatment of the holonomic brain theory can be found in a volume which represents the MacEachran Lectures.
    [Show full text]
  • Masakazu Konishi
    Masakazu Konishi BORN: Kyoto, Japan February 17, 1933 EDUCATION: Hokkaido University, Sapporo, Japan, B.S. (1956) Hokkaido University, Sapporo, Japan, M.S. (1958) University of California, Berkeley, Ph.D. (1963) APPOINTMENTS: Postdoctoral Fellow, University of Tübingen, Germany (1963–1964) Postdoctoral Fellow, Division of Experimental Neurophysiology, Max-Planck Institut, Munich, Germany (1964–1965) Assistant Professor of Biology, University of Wisconsin, Madison (1965–1966) Assistant Professor of Biology, Princeton University (1966–1970) Associate Professor of Biology, Princeton University (1970–1975) Professor of Biology, California Institute of Technology (1975– 1980) Bing Professor of Behavioral Biology, California Institute of Technology (1980– ) HONORS AND AWARDS (SELECTED): Member, American Academy of Arts and Sciences (1979) Member, National Academy of Sciences (1985) President, International Society for Neuroethology (1986—1989) F. O. Schmitt Prize (1987) International Prize for Biology (1990) The Lewis S. Rosenstiel Award, Brandeis University (2004) Edward M. Scolnick Prize in Neuroscience, MIT (2004) Gerard Prize, the Society for Neuroscience (2004) Karl Spencer Lashley Award, The American Philosophical Society (2004) The Peter and Patricia Gruber Prize in Neuroscience, The Society for Neuroscience (2005) Masakazu (Mark) Konishi has been one of the leaders in avian neuroethology since the early 1960’s. He is known for his idea that young birds initially remember a tutor song and use the memory as a template to guide the development of their own song. He was the fi rst to show that estrogen prevents programmed cell death in female zebra fi nches. He also pioneered work on the brain mechanisms of sound localization by barn owls. He has trained many students and postdoctoral fellows who became leading neuroethologists.
    [Show full text]
  • Understanding Human Consciousness: Theory and Application
    o Journal of Experiential Psychotherapy, vol. 21, n 2 (82) June 2018 Understanding Human Consciousness: Theory and Application Maretha Prinsloo, PhD*i *Cognadev, UK “Consciousness implies awareness: subjective, phenomenal experience of internal and external worlds... Our views of reality, of the universe, of ourselves depend on consciousness. Consciousness defines our existence.” (Hameroff & Penrose, 2014, p. 39) Abstract Introduction: The study of consciousness attracts the attention of psychologists, philosophers and scientists. It is, however, mostly dealt with in a descriptive and speculative manner, without explaining the nature of the subjective experience and the dynamics involved. Objectives: This article aims to provide a brief overview of prominent philosophical, psychological, sociological and quantum physics perspectives on consciousness. The practical implications of consciousness theory are also addressed. Methods: Literature review. Results: From a social sciences point of view, Gebser’s Structure of Human Consciousness model, Clare Graves’s Spiral Dynamics (SD) model and Ken Wilber’s Integral AQAL model are briefly discussed to understand the concept of levels of consciousness and to differentiate between the developmental themes which characterise each of these levels. This is followed by a description of scientific theories and findings. Here the work of prominent philosophers of science, including Dennett and Laszlo, is briefly explored. Neurological and quantum physics discoveries, including the work of Bohm, Pribram, McTaggart, Hameroff and Penrose are referred to and the phenomenon of collective consciousness is explained in terms of the physics concepts of quantum nonlocality and entanglement. Next, the application of consciousness theory is addressed within the contexts of societal transformation, leadership, organisational development, organisational culture and education.
    [Show full text]
  • Current Status of Consciousness Research from the Neuroscience Perspective
    Acta Scientific Neurology Volume 2 Issue 2 February 2019 Review Article Current Status of Consciousness Research from the Neuroscience Perspective Joseph Ivin Thomas* Assistant Professor, Department of Physiology, East Point College of Medical Sciences and Research Center /Adjunct Faculty, National Institute of Advanced Studies, IISc campus, Bangalore, India *Corresponding Author: Joseph Ivin Thomas, [email protected] Received: January 29, 2019; Published: February 01, 2019 Abstract In this paper, an outline of the current status of research in the study of consciousness as a neurobiological phenomenon is pre- sented. Consciousness studies forms a very vast interdisciplinary field, with more than hundreds of papers published each year in the a brief history of consciousness studies starting from its inception in philosophy upto its present state of evolution in the sciences scientific databases. The contributors come from as varied academic backgrounds as the humanities and the sciences. To begin with, is summarized. The different tools used such as neuroimaging technologies (e.g. fMRI, PET), neuroelectric recording (e.g. EEG) and Correlates of Consciousness is considered the holy grail of most consciousness research today, but there are strong reasons to doubt neuromagnetic recording (e.g. MEG) are described along with all their respective strengths and drawbacks. The quest for the Neural - whether such an approach can actually provide a satisfactory answer to the question that scientists and philosophers alike are seek ing after, which is an explanation for the first-person sensory experience of the world, otherwise referred to as qualia. A few of the many proposed theories that offer such an explanation are listed as well as the future directions which neuroscience is likely to take Keywords: Neural Correlates of Consciousness; Qualia; Neuroimaging; Electroencephalography the field in the coming decades is mused upon.
    [Show full text]
  • The Limbic System Conception and Its Historical Evolution
    Review Article TheScientificWorldJOURNAL (2011) 11, 2427–2440 ISSN 1537-744X; doi:10.1100/2011/157150 The Limbic System Conception and Its Historical Evolution Marcelo R. Roxo,1, 2 Paulo R. Franceschini,1, 2 Carlos Zubaran,3, 4 Fabrício D. Kleber,1, 5 and Josemir W. Sander6, 7 1Faculty of Medicine, University of Caxias do Sul, Caxias do Sul, RS, Brazil 2Department of Neurosurgery, Hospital São José, Complexo Hospitalar Santa Casa de Misericórdia, Porto Alegre, RS 90020-090, Brazil 3School of Medicine, University of Western Sydney, Sydney, NSW 2751, Australia 4Department of Psychiatry, Sydney West Area Health Service, Blacktown, NSW 2148, Australia 5Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil 6UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 7SEIN-Stichting Epilepsie Instellingen Nederland, 2103 SW Heemstede, The Netherlands Received 14 February 2011; Accepted 19 September 2011 Academic Editor: Roger Whitworth Bartrop Throughout the centuries, scientific observers have endeavoured to extend their knowledge of the interrelationships between the brain and its regulatory control of human emotions and behaviour. Since the time of physicians such as Aristotle and Galen and the more recent observations of clinicians and neuropathologists such as Broca, Papez, and McLean, the field of affective neuroscience has matured to become the province of neuroscientists, neuropsychologists, neurologists, and psychiatrists. It is accepted that the prefrontal cortex, amygdala, anterior cingulate cortex, hippocampus, and insula participate in the majority of emotional processes. New imaging technologies and molecular biology discoveries are expanding further the frontiers of knowledge in this arena. The advancements of knowledge on the interplay between the human brain and emotions came about as the legacy of the pioneers mentioned in this field.
    [Show full text]
  • Introduction to CNS: Anatomical Techniques
    9.14 - Brain Structure and its Origins Spring 2005 Massachusetts Institute of Technology Instructor: Professor Gerald Schneider A sketch of the central nervous system and its origins G. Schneider 2005 Part 1: Introduction MIT 9.14 Class 2 Neuroanatomical techniques Primitive cellular mechanisms present in one-celled organisms and retained in the evolution of neurons • Irritability and conduction • Specializations of membrane for irritability • Movement • Secretion • Parallel channels of information flow; integrative activity • Endogenous activity The need for integrative action in multi cellular organisms • Problems that increase with greater size and complexity of the organism: – How does one end influence the other end? – How does one side coordinate with the other side? – With multiple inputs and multiple outputs, how can conflicts be avoided (often, if not always!)? • Hence, the evolution of interconnections among multiple subsystems of the nervous system. How can such connections be studied? • The methods of neuroanatomy (neuromorphology): Obtaining data for making sense of this “lump of porridge”. • We can make much more sense of it when we use multiple methods to study the same brain. E.g., in addition we can use: – Neurophysiology: electrical stimulation and recording – Neurochemistry; neuropharmacology – Behavioral studies in conjunction with brain studies • In recent years, various imaging methods have also been used, with the advantage of being able to study the brains of humans, cetaceans and other animals without cutting them up. However, these methods are very limited for the study of pathways and connections in the CNS. A look at neuroanatomical methods Sectioning Figure by MIT OCW. Cytoarchitecture: Using dyes to bind selectively in the tissue -- Example of stains for cell bodies Specimen slide removed due to copyright reasons.
    [Show full text]
  • Julia Anne Leonard Employment Education
    JULIA ANNE LEONARD 425 S University Ave, Philadelphia, PA 19104 [email protected] November, 2020 EMPLOYMENT Yale University Assistant Professor, Department of Psychology July 2021 - University of Pennsylvania September 2018 - present MindCore postdoctoral fellow with Dr. Allyson Mackey Advisory committee: Dr. Angela Duckworth, Dr. Martha Farah, Dr. Joe Kable EDUCATION Massachusetts Institute of Technology September 2013 – May 2018 PhD in Brain and Cognitive Sciences with Dr. John Gabrieli and Dr. Laura Schulz Thesis: Social Influences on Children’s Learning Wesleyan University May 2011 B.A. Neuroscience and Behavior, Phi Beta Kappa, High Honors, GPA: 4.0 Advisor: Anna Shusterman Honors Thesis: The Effects of Touch on Compliance in Preschool-Age Children HONORS AND AWARDS MindCORE Postdoctoral Fellowship, University of Pennsylvania (2018) Walle Nauta Award for Continued Dedication to Teaching, MIT (2017, 2018) Neurohackweek Fellow, University of Washington eScience Institute (2016, 2017) UCLA-Semel Institute Neuroimaging Training Program Fellow (2016) Summer Institute in Cognitive Neuroscience Fellow, UCSB (2015) Graduate Student Summer Travel Award, MIT (2015) Latin America School for Education, Cognition, and Neural Sciences Fellow (2015, 2018) NSF Graduate Student Research Fellowship (2014) Ida M. Green Graduate School Fellowship, MIT (2013) High Honors in Neuroscience and Behavior, Wesleyan University (2011) Connecticut Higher Education Community Service Award Nominee (2011) Dean’s List, Wesleyan University (2008, 2009, 2010, 2011) Phi Beta Kappa, Chapter of Wesleyan University (2010) PUBLICATIONS Leonard, J.A., Martinez, D.N., Dashineau, S., Park, A.T. & Mackey, A.P. (In press). Children persist less when adults take over. Child Development. Julia A. Leonard 1 Leonard, J.A., Sandler, J., Nerenberg, A., Rubio, A., Schulz, L.E., & Mackey, A.
    [Show full text]
  • Spring 03 Complete
    brain and cognitive sciences MASSACHUSETTS INSTITUTE OF TECHNOLOGY Spring 2003 Volume V; Issue 2 MESSAGE FROM THE MATT WILSON small private college, and Matt developed DEPARTMENT HEAD an affinity for football. Hes been a Packer fan ever since and he and his sons go to the MRIGANKA SUR games in cheese head apparel. The affairs of the department are He attended a parochial school where usually concerned with local details, but the nuns practiced corporal punishment, as the Spring term gets into full swing, and he has vivid memories of having his two national events have assumed major mouth taped shut for talking too much significance for MIT and for us: the (even though he claims to have been very economy and the war. The downturn in shy). Matt likes to characterize himself as the economy has had a significant negative shy but devilish, not overtly delinquent, impact on the MIT operating budget and but lacking a sense of conformity. He likes hence on the departments budget. Like all doing things outside the norm, seeks new other departments, BCS faces a cut in its challenges, and particularly prefers being on budget allocation for July 03 - June 04. the forefront of mischief and academics. The war in Iraq has brought a heightened In his high school days, Matt was sense of tension and apprehension to our interested in constructing things, and spent campus. President Vest has created a a summer building a harpsichord that he Committee on the Community, led by still has. Then, when he got his first Matt and youngest son, Brian Chancellor Phil Clay, to provide guidelines computer, an Apple II, he modified it until for preserving our community and its Matts father was an anthropologist it was his own personal computing device.
    [Show full text]
  • David Bohm, Implicate Order and Holomovement 12/5/19, 7:41 PM
    David Bohm, Implicate Order and Holomovement 12/5/19, 7:41 PM David Bohm, Implicate Order and Holomovement By David Storoy “Space is not empty. It is full, a plenum as opposed to a vacuum, and is the ground for the existence of everything, including ourselves. The universe is not separate from this cosmic sea of energy.” – David Bohm. David Bohm was one of the most distinguished theoretical physicists of his generation, and a fearless challenger of scientific orthodoxy. His interests and influence extended far beyond physics and embraced biology, psychology, philosophy, religion, art, and the future of society. Underlying his innovative approach to many different issues was the fundamental idea that beyond the visible, tangible world there lies a deeper, implicate order of undivided wholeness. David Bohm was born in Wilkes-Barre, Pennsylvania, on December 20, 1917. He went to Pennsylvania State University to study physics, and later to the University of California at Berkeley to work on his PhD thesis with J.Robert Oppenheimer. While at Berkeley, Bohm, an idealist, became involved in politics and he was labeled a communist by the FBI led by J. Edgar Hoover. This prevented him from getting a clearance to work with Oppenheimer on the Manhattan Project at Los Alamos to produce the first atomic bomb during the World War II. However, while working on his doctorate at Berkeley, he discovered “the scattering calculations of collisions of protons and deuterons” which was used by the Manhattan Project team, and was immediately classified. As a result, Bohm was denied access to his own work and wasn’t allowed to write or defend his thesis.
    [Show full text]
  • Alan Peters 453
    EDITORIAL ADVISORY COMMITTEE Giovanni Berlucchi Mary B. Bunge Robert E. Burke Larry E Cahill Stanley Finger Bernice Grafstein Russell A. Johnson Ronald W. Oppenheim Thomas A. Woolsey (Chairperson) The History of Neuroscience in" Autob~ograp" by VOLUME 5 Edited by Larry R. Squire AMSTERDAM 9BOSTON 9HEIDELBERG 9LONDON NEW YORK 9OXFORD ~ PARIS 9SAN DIEGO SAN FRANCISCO 9SINGAPORE 9SYDNEY 9TOKYO ELSEVIER Academic Press is an imprint of Elsevier Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, Massachusetts 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. O Copyright 92006 by the Society for Neuroscience. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions." Library of Congress Catalog Card Number: 2003 111249 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 13:978-0-12-370514-3 ISBN 10:0-12-370514-2 For all information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com Printed in the United States of America 06 07 08 09 10 11 9 8 7 6 5 4 3 2 1 Working together to grow libraries in developing countries www.elsevier.com ] ww.bookaid.org ] www.sabre.org ER BOOK AID ,~StbFC" " " =LSEVI lnt .....
    [Show full text]
  • Free Full Text
    Cerebellum DOI 10.1007/s12311-010-0221-6 Cerebellar Zones: A Personal History Jan Voogd # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Cerebellar zones were there, of course, before Professor of Neurology at the University of Djakarta when anyone noticed them. Their history is that of young people, the Dutch no longer were tolerated in an independent unhindered by preconceived ideas, who followed up their Indonesia. At the time, the Weigert myelin stain on observations with available or new techniques. In the 1960s celloidin-embedded material and the Marchi method for of the last century, the circumstances were fortunate degenerated myelin, processed with osmic acid that Verhaart because three groups, in Leiden, Lund, and Bristol, using had smuggled out of his lab in Djakarta, were still in use. different approaches, stumbled on the same zonal pattern in However, the real innovation for the years to come was the the cerebellum of the cat. In Leiden, the Häggqvist myelin application of the Häggvist modification of the Alzheimer– stain divulged the compartments in the cerebellar white Mann method. Alzheimer used this method to stain reactive matter that channel the afferent and efferent connections of glia. Material, mordanted in potassium dichromate was the zones. In Lund, the spino-olivocerebellar pathways stained with Mann’s solution, a mixture of methyl blue and activated from individual spinal funiculi revealed the zonal eosin [1, 2]. Fixation with chromium salts still was the pattern. In Bristol, charting the axon reflex of olivocer- routine at the end of the nineteenth century.
    [Show full text]
  • Robert Galambos 178
    EDITORIAL ADVISORY COMMITTEE Albert J. Aguayo Bernice Grafstein Theodore Melnechuk Dale Purves Gordon M. Shepherd Larry W. Swanson (Chairperson) The History of Neuroscience in Autobiography VOLUME 1 Edited by Larry R. Squire SOCIETY FOR NEUROSCIENCE 1996 Washington, D.C. Society for Neuroscience 1121 14th Street, NW., Suite 1010 Washington, D.C. 20005 © 1996 by the Society for Neuroscience. All rights reserved. Printed in the United States of America. Library of Congress Catalog Card Number 96-70950 ISBN 0-916110-51-6 Contents Denise Albe-Fessard 2 Julius Axelrod 50 Peter O. Bishop 80 Theodore H. Bullock 110 Irving T. Diamond 158 Robert Galambos 178 Viktor Hamburger 222 Sir Alan L. Hodgkin 252 David H. Hubel 294 Herbert H. Jasper 318 Sir Bernard Katz 348 Seymour S. Kety 382 Benjamin Libet 414 Louis Sokoloff 454 James M. Sprague 498 Curt von Euler 528 John Z. Young 554 Robert Galambos BORN: Lorain, Ohio April 20, 1914 EDUCATION: Oberlin College, B.A., 1935 Harvard University, M.A., Ph.D. (Biology, 1941) University of Rochester, M.D., 1946 APPOINTMENTS" Harvard Medical School (1942) Emory University (1946) Harvard University (1947) Walter Reed Army Institute of Research (1951) Yale University (1962) University of California, San Diego (1968) Professor of Neurosciences Emeritus, University of California, San Diego (1981) HONORS AND AWARDS: American Academy of Arts and Sciences (1958) National Academy of Sciences USA (1960) Robert Galambos discovered, with Donald Griffin, the phenomenon of echolocation in bats. During his career he carried out fundamental physiological studies of the auditory system using microelectrodes in cats, and later studied brain waves and auditory evoked potentials in humans.
    [Show full text]