<<

Chapter 21

● Phenols and Aryl Halides

Nucleophilic Aromatic Substitution

Ch. 21 - 1 1. Structure and Nomenclature of Phenols

OH OH OH

Phenol 1-Naphthol 9-Phenanthrol (α-naphthol)

Ch. 21 - 2 1A. Nomenclature of Phenols

Cl CH3

NO2

OH OH OH

4-Chlorophenol 2-Nitrophenol 3-Methylphenol (p-chlorophenol) (o-nitrophenol) (m-cresol)

Ch. 21 - 3  The benzenediols also have common names

OH OH OH OH

OH OH 1,2-Benzenediol 1,3-Benzenediol 1,4-Benzenediol (catechol) (resorcinol) (hydroquinone)

Ch. 21 - 4 2. Naturally Occurring Phenols O CO2CH3 OH O− H + NH3 HO L-Tyrosine (oil of wintergreen) OH OH CH3 OCH3 H

H H HO Eugenol Estradiol (oil of ) Ch. 21 - 5 3. Physical Properties of Phenols

OH CH3

Phenol Toluene

M.W. 94 92

B.P. (oC) 182 110

Ch. 21 - 6 4. Synthesis of Phenols 4A. Laboratory Synthesis

NH 2 N2 2+ OH Cu2O, Cu HONO H2O R R R

e.g. NH2 OH

o 1. NaNO2, HCl, 0-5 C 2+ 2. Cu2O, Cu , H2O Cl CH3 Cl CH3

Ch. 21 - 7 4B. Industrial Syntheses  Hydrolysis of chlorobenzene (Dow Process)

Cl O Na 2 NaOH + NaCl + H2O 350oC high pressure

HCl

OH + NaCl

Ch. 21 - 8  From cumene hydroperoxide

H3PO4 + 250oC (Cumene) high pressure

O2 95-135oC

O OH + H3O + O 50-90oC OH (Cumene hydroperoxide) Ch. 21 - 9  Mechanism

● Chain initiation

Step 1

H R + R H

Ch. 21 - 10 ● Chain propagation Step 2

O O + O O

Step 3

O O H +

O O H +

Ch. 21 - 11 ● Chain propagation H O O H O O + H OH2 H

- H2O

H O O H2O O H

OH2 + + H - H3O O O O HO H Ch. 21 - 12 5. Reactions of Phenols as Acids

pKa pKa

OH 9.89 O2N OH 7.15

NO2

H3C OH 10.17 O2N OH 3.96

NO2

Cl OH 9.20 O2N OH 0.38

NO2 Ch. 21 - 13 OH OH pKa 18 9.89

O O H + + H2O + H3O

(NO resonance stabilization)

Ch. 21 - 14 O O H + + H3O

+ H2O

O O O

Ch. 21 - 15 5B. Distinguishing and Separating Phenols from Alcohols and Carboxylic Acids Question  If you are given three unknown samples: one is benzoic acid; one is phenol; and one is cyclohexyl ; how would you distinguish them by simple chemical tests? ● Recall: acidity of H H O O O H O > >

Ch. 21 - 16 O O H + Na OH + H2O R O R O Na (soluble in water)

O O Na H + NaOH

(soluble in water)

O H + NaOH No Reaction

(immiscible with H O) 2 Ch. 21 - 17 O O H O O Na + NaHCO3

+ CO2(g) + H2O (gas evolved)

O H + NaHCO3 No Reaction

O H + NaHCO3 No Reaction

Ch. 21 - 18 6. Other Reactions of the O–H Group of Phenols O O

R O R base

O

OH O O R

R Cl

base Ch. 21 - 19 6A. Phenols in the Williamson Synthesis

OH O Na

NaOH R R R X (X = halides, OTs, OMs) OR

R

e.g. OH O 1. NaOH

2. Br Ch. 21 - 20 7. Cleavage of Alkyl Aryl Ethers

O OH R conc. HX + RX heat R R

e.g. O OH conc. HCl + Cl heat

Ch. 21 - 21 8. Reactions of the Benzene Ring of Phenols  Bromination OH Br Br 3 Br2 + 3 HBr OH H2O

Br (NO Lewis acid required for the OH brominations)

Br2 + HBr o CS2, 5 C

Br Ch. 21 - 22  Nitration

OH OH OH

NO2 20% HNO3 + 25oC

NO2 (30-40%) (15%)

Ch. 21 - 23  Sulfonation OH

SO3H conc. H2SO4 25oC OH conc. H2SO4 100oC

OH

conc. H2SO4 100oC

SO3H Ch. 21 - 24  Kolbe reaction

O Na OH COOH 1. CO2 + 2. H3O

()

Ch. 21 - 25 ● Mechanism

Na O O H O O C C Na O O

tautomerization

H H O OH O O

+ O H3O O Na Salicylic acid Sodium salicylate Ch. 21 - 26 O

OH O O O COOH COOH O R O R + CH3COOH OH

(Salicylic acid) Acetylsalicylic acid ()

Ch. 21 - 27 9. The Claisen Rearrangement

OH O 1. NaH

2. Br

200oC

OH

Ch. 21 - 28  Via a [3,3] sigmatropic rearrangement

1 2 O O 1'

3 2' 3' H

keto-enol tautomerization

OH

Ch. 21 - 29 10. Quinones

OH O

- 2 e− + 2 H+ + 2 e−

OH O Hydroquinone p-Benzoquinone

Ch. 21 - 30 O

H3CO CH3 + 2 e−, + 2 H+ - 2 e−, - 2 H+ H3CO H n O CH3 OH

Ubiquinones (n = 6-10) H3CO CH3 (coenzymes Q)

H3CO H n OH CH3 Ubiquinol (hydroquinone form)

Ch. 21 - 31 O

O 1,4-Naphthoquinone O

3

CH3 O Vitamin K1

Ch. 21 - 32 11. Aryl Halides and Nucleophilic Aromatic Substitution Cl

H2O + NaOH NO substitution heat

H2O Cl + NaOH NO substitution heat X Nu: X NO reaction

Ch. 21 - 33 X X X

X X

Ch. 21 - 34 11A. Nucleophilic Aromatic Substitution by Addition–Elimination: The SNAr Mechanism

 Nucleophilic aromatic substitution can occur when strong electron-withdrawing groups are ortho or para to the halogen atom

Cl OH

NO2 + NO2 aq. NaHCO3 H3O + OH 130oC

Ch. 21 - 35 Cl OH

NO2 + NO2 aq. NaHCO3 H3O + OH 130oC

NO2 NO2 Cl

O2N NO2 aq. NaHCO3 + OH o 130 C OH

+ O2N NO2 NO2 H3O

NO2 Ch. 21 - 36  The mechanism that operates in these reactions is an addition–elimination mechanism involving the formation of a carbanion with delocalized electrons, called a Meisenheimer intermediate. The process is called nucleophilic aromatic substitution

(SNAr)

Ch. 21 - 37  The SNAr mechanism Cl Cl OH

addition + OH slow elimination NO2 NO2 fast

O OH

OH HOH + Cl +

NO2 NO2 Ch. 21 - 38 HO Cl HO Cl HO Cl

N N N O O O O O O

HO Cl

N O O Ch. 21 - 39 11B. Nucleophilic Aromatic Substitution through an Elimination–Addition Mechanism: Benzyne Cl ONa OH

+ NaOH H3O 350oC

Phenol

Br NH2

K :NH2 + KBr -33oC

Aniline Ch. 21 - 40  The benzyne elimination–addition mechanism

Br Br − (-NH3) (-Br )

H Benzyne (or dehydrobenzene) NH2

NH2 NH2 NH2

NH2 + NH3 H

Ch. 21 - 41 * NH2

Cl 50% * + − * − K NH2 NH2 NH3

*

NH elimination addition 50% 2

Ch. 21 - 42 CF3 CF3 Cl NaNH2

NH3 (-NaCl) NH2 m-(Trifluoromethyl)aniline

CF3

Ch. 21 - 43 CF3 > NH2 X

CF3 less stable carbanion NH2

CF3 CF3 >

NH3

NH2 NH2 more stable + NH carbanion 2 Ch. 21 - 44  Benzyne intermediates have been “trapped” through the use of Diels– Alder reactions O O C C O diazotization O

NH3 N N Anthranilic acid -CO2 O -N2 O

Benzyne (trapped in situ) Ch. 21 - 45 11C. Phenylation

O O Br O O 2 NaNH2 + liq. NH OEt 3 OEt

Ch. 21 - 46 12. Spectroscopic Analysis of Phenols and Aryl Halides

 Infrared spectra (IR) OH ● O H stretching: 3400-3600 cm-1 R

OH X ● and : characteristic absorptions of the benzene rings R R Ch. 21 - 47  1H NMR spectra

δ (ppm) of H

O H pure phenol: 2.55

in CCl4 (1%) 5.63

δ 0.5 – 1.0 ppm O H O intramolecular hydrogen bonding OH Ch. 21 - 48 H H Y (Y = OH or halides)

H H H

δ 7 – 9 ppm

Ch. 21 - 49  13C NMR spectra

Y (Y = OH or halides)

δ 135 – 170 ppm

Ch. 21 - 50  Mass spectra

● Mass spectra of phenols often display a prominent molecular ion peak, M

● Phenols that have a benzylic hydrogen produce an M – 1 peak that can be larger than the M peak

Ch. 21 - 51  END OF CHAPTER 21 

Ch. 21 - 52