Three Cases of Achondroplasia with Neurological Complications by John D

Total Page:16

File Type:pdf, Size:1020Kb

Three Cases of Achondroplasia with Neurological Complications by John D J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.15.4.246 on 1 November 1952. Downloaded from J. Neurol. Neurosurg. Psychiat., 1952, 15, 246. THREE CASES OF ACHONDROPLASIA WITH NEUROLOGICAL COMPLICATIONS BY JOHN D. SPILLANE From the Department ofNeurology and Neurosurgery, United Cardiff Hospitals The role played by congenital malformations of normal. Abdominal reflexes the skull and spine in the production of lesions of were present. Power in both the central nervous system has been increasingly legs was considerably reduced, appreciated in recent years. In the skull premature especially below the knees, with synostosis of the sutures of the vault (craniostenosis) bilateral partial foot drop. Knee can lead to optic atrophy and symptoms of intra- and ankle jerks were absent cranial hypertension. on each side. Plantar reflexes Hydrocephalus and compres- were flexor. There was no sion of the brain stem and upper cervical cord can wasting or fibrillation. Sensation result from deformities of the base of the skull, such was moderately impaired bi- as platybasia and narrowing of theforamen magnum. laterally (L.5, S.1, and 2), guest. Protected by copyright. In the spine congenital deformities, such as hemi- and analgesia was marked vertebrae, absence of cervical segments, scoliosis, (S.3, 4, and 5) bilaterally. There and kyphosis, may also result in cord compression was lumbar kyphosis (Fig. 1) in adult life. with slight generalized restriction In of spinal movements. this paper attention is drawn to the possible Lumbar effects on the nervous system of achondroplasia. puncture at L.4--5 This showed clear orange coloured condition of foetal chondrodystrophy is well fluid (protein 2,060 mg. per known and is characterized by failure of endo- 100 ml.) and absolute block on FIG. I.-Gibbus defor- chondral ossification. It results in a striking dis- bilateral jugular compression. spinemity ofin lumbarCase 1. proportion of the body; a large head, short limbs, Radiological Examinationi. and a spine of relatively normal length. The patient had a fairly large head, with a shallow pos- The complications of hydrocephalus and com- terior fossa, a normal foramen magnum, no platybasia, pression of the spinal cord and cauda equina are and small facial bones with a slight degree of hyper- demonstrated in the following case reports. telorism. Cisternal air encephalography showed slight sym- Case 1.-This was a man aged 40, an achondroplasic dwarf. He was 4 ft. 71 in. high, with a head circum- ference of 23 in. He was of average intelligence. His father was similarly afflicted and in his forties developed paralysis of the legs, for which a spinal operation was *:. http://jnnp.bmj.com/ performed in 1913. The patient stated that some recovery took place, but he died a few years later when paralysis of the lower limbs was then complete. .... The patient was well until January, 1951, when he began to suffer from pains in the lumbo-sacral region which later radiated down the outer aspects of both thighs. Six months afterwards he felt tingling sensa- tions in both feet and two weeks before admission to hospital in July, 1951, he felt that his buttocks and the on September 29, 2021 by soles of his feet were numb. There had been some difficulty in micturition for seven days. On examination speech was normal. His gait was waddling with noticeable weakness of dorsiflexion of the feet. The cranial nerves were normal. The arms were FIG. 2.-Air encepha!ogram showing dilatation of lateral ventricles in Case 1. J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.15.4.246 on 1 November 1952. Downloaded from A,CHONDROPLASIA WITH NEUROLOGICAL COMPLICATIONS 247 metrical ventricular dilatation (Fig. 2) including the third the evidence of block at these levels. It was concluded ventricle. The aqueduct and fourth ventricles were normal. that there was cauda equina compression opposite the The cervical spine was normal, except for loss of the bodies and discs L.3, 4, and 5. lordotic curve. The dorsal spine was normal. The lumbar Lamiiiectomy.-Professor Lambert Rogers performed spine had marked kyphosis centred at L.2 (Fig. 3), the a laminectomy at L.2, 3, 4, and 5. The dural tube was body of which vertebra displaced posteriorly at L.2, 3, and 4 by massively was slightly wedged in protruding intervertebral discs which were removed. the lateral view. The The dura was then opened and the cauda equina found posterior surfaces of to be slack and relieved of pressure. W- ; ^-i E the lumbar vertebrae Progi'ess.-Following this operation the patient made WIifi were hollowed out, . ,producing an undulat- good progress and has now returned to his work and -ii11 ing anterior margin of regained good function in both legs. The reflexes are the spinal canal. The still absent but the sensory disturbance has practically intervertebral disc cleared. spaces were abnormally wide. There was no Case 2.-This woman was aged 37 years and was a spondylolisthesis. The typical achondroplasic dwarf (Fig. 5), standing 4 ft. 5 in. interpedicular widths high with a head circumference of 24 in. She was of were normal and it good intelligence, and had no family history of dwarfism. ...... was no ttpossible to She was well until nine years ago when she first ..-S.....demon strpaotse any noticed numbness of the left of the foot. Subsequently she developed I shorterning pedicles. low back pain with radiation 4. of sciatic distribution. Weakness L !mr bar Mi'elo- of the legs developed two years guest. Protected by copyright. g1JIraphv.--The myodil ago with bilateral foot drop. collectedi in three pools She had no symptoms referable opposite the bodies of to the head, trunk, neck, or upper L.3, 4, a nd 5 (Figs. 4a limbs. Precipitancy and fre- and b). Tilting to 800 quency of micturition were pre- FIG. 3.-Lumbar spine; kyphosis, demonsttrated that these sent. She had worn a caliper wedging of L.V.2, wide disc spaces, and concave posterior pools of myodil were on the left leg for the past year. borders of vertebral bodies in fixed. Subsequent On examination it was seen Case 1. examina.tion confirmed that she was only able to walk slowly .with the aid of two sticks. Speech was normal. The cranial nerves were normal. The upper limbs were normal. The upper abdominal reflex was present, the lower reduced. There was V+ bilateral foot drop with corre. sponding muscular atrophy and loss of both ankle jerks. The right knee jerk was reduced, the 5 left normal. Plantar reflexes FIG. lum-barSlight kyphosisdorso- - j* were flexor. All movements and horizontal sac- at the ankle were weak, but rum illCaise 2. http://jnnp.bmj.com/ those at the hip and knee were nearly normal. All forms of cutaneous sensation below both knees were markedly impaired. Between the knees and groin pin-prick and temperature differences were not fully appreciated. Vibration and joint position sense were grossly defective in the feet. < Lumbar puncture at L.3-4 demonstrated absolute manometric block on bilateral jugular compression. on September 29, 2021 by The cerebrospinal protein was 575 mg. per 100 ml. Radiological Examination-.-The skull was large, with a normal foramen magnum and no platybasia. FIG. 4a and b.-Lumbar myelograam; myodil arrested opposite Cistemal air encephalography showed marked sym- bodies and discs of L.V. 33, 4, and 5 in Case 1. metrical dilatation ot the lateral ventricles (Fig. 6) with c J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.15.4.246 on 1 November 1952. Downloaded from 248 JOHN SPILLANE Fi&. 6.-Air encephalogram of Case 2 showing dilatation of lateral ventricles. some dilatation also of the third ventricle, the aqueduct, and the fourth ventricle. No other deformity or dis- placement was shown. In the cervical spine the verte- brae were tall but there was no other abnormality. FIG. 8a and b.-Cisternal myelogram of Case 2 showing myodil arrested at L.V.1-2 disc space guest. Protected by copyright. There was lower dorsal lordosis only. There was slight with pool of myodil opposite each vertebral dorso-lumbar kyphosis (Fig. 7) with exaggerated lower body from D.8 to L.1. lumbar lordosis. The posterior surfaces of the vertebral bodies were concave with large intervertebral disc The patient's subsequent progress was slow. spaces, and osteophytes at L. 1-2 and L. 2-3. The sacrum She has not regained power in the left foot but there lay horizontally. Pedicles and interpedicular widths is moderate improvement in the power of the right were normal. lower limb and her gait is better. 4.s _ Lumbar myelo- Case 3.-This was a man aged 29, a typical achondro- graphy showed partial plasic dwarf, standing 4 ft. 10 in. high, with a head block at L.4 and com- circumference of 24 5 in. His intelligence was below plete block at L.3. average. He had no family history of dwarfism. Myodil was arrested The patient was well until two years ago when he at the L.1-2 disc space. first began to notice weakness and stiffness of the lower A pool of myodil col- limbs. At first there was dragging and periodic trembling lected opposite each of the left leg. Later both legs became weak and he vertebral body from found increasing difficulty in walking. He was forced D.8 to L.A, and the to give up his work three months ago. Recently he had myodil column was had some pain in the cervico-occipital region and periodic interrupted opposite substernal discomfort. each disc between these On examination it was seen that he was unable to walk levels (Figs.
Recommended publications
  • Saethre-Chotzen Syndrome
    Saethre-Chotzen syndrome Authors: Professor L. Clauser1 and Doctor M. Galié Creation Date: June 2002 Update: July 2004 Scientific Editor: Professor Raoul CM. Hennekam 1Department of craniomaxillofacial surgery, St. Anna Hospital and University, Corso Giovecca, 203, 44100 Ferrara, Italy. [email protected] Abstract Keywords Disease name and synonyms Excluded diseases Definition Prevalence Management including treatment Etiology Diagnostic methods Genetic counseling Antenatal diagnosis Unresolved questions References Abstract Saethre-Chotzen Syndrome (SCS) is an inherited craniosynostotic condition, with both premature fusion of cranial sutures (craniostenosis) and limb abnormalities. The most common clinical features, present in more than a third of patients, consist of coronal synostosis, brachycephaly, low frontal hairline, facial asymmetry, hypertelorism, broad halluces, and clinodactyly. The estimated birth incidence is 1/25,000 to 1/50,000 but because the phenotype can be very mild, the entity is likely to be underdiagnosed. SCS is inherited as an autosomal dominant trait with a high penetrance and variable expression. The TWIST gene located at chromosome 7p21-p22, is responsible for SCS and encodes a transcription factor regulating head mesenchyme cell development during cranial tube formation. Some patients with an overlapping SCS phenotype have mutations in the FGFR3 (fibroblast growth factor receptor 3) gene; especially the Pro250Arg mutation in FGFR3 (Muenke syndrome) can resemble SCS to a great extent. Significant intrafamilial
    [Show full text]
  • Oral Surgery Procedures in a Patient with Hajdu-Cheney Syndrome Treated with Denosumab—A Rare Case Report
    International Journal of Environmental Research and Public Health Article Oral Surgery Procedures in a Patient with Hajdu-Cheney Syndrome Treated with Denosumab—A Rare Case Report Magdalena Kaczoruk-Wieremczuk 1,†, Paulina Adamska 1,† , Łukasz Jan Adamski 1, Piotr Wychowa ´nski 2 , Barbara Alicja Jereczek-Fossa 3,4 and Anna Starzy ´nska 1,* 1 Department of Oral Surgery, Medical University of Gda´nsk,7 D˛ebinkiStreet, 80-211 Gda´nsk,Poland; [email protected] (M.K.-W.); [email protected] (P.A.); [email protected] (Ł.J.A.) 2 Department of Oral Surgery, Medical University of Warsaw, 6 St. Binieckiego Street, 02-097 Warsaw, Poland; [email protected] 3 Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy; [email protected] 4 Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy * Correspondence: [email protected] † Co-first author, these authors contributed equally to this work. Abstract: Background: Hajdu-Cheney syndrome (HCS) is a very rare autosomal-dominant congenital disease associated with mutations in the NOTCH2 gene. This disorder affects the connective tissue and is characterized by severe bone resorption. Hajdu-Cheney syndrome most frequently affects Citation: Kaczoruk-Wieremczuk, M.; the head and feet bones (acroosteolysis). Case report: We present an extremely rare case of a 34- Adamska, P.; Adamski, Ł.J.; Wychowa´nski,P.; Jereczek-Fossa, year-old male with Hajdu-Cheney syndrome. The patient was admitted to the Department of Oral B.A.; Starzy´nska,A. Oral Surgery Surgery, Medical University of Gda´nsk,in order to perform the extraction of three teeth.
    [Show full text]
  • The Filum Disease and the Neuro-Cranio-Vertebral Syndrome
    Royo-Salvador et al. BMC Neurology (2020) 20:175 https://doi.org/10.1186/s12883-020-01743-y RESEARCH ARTICLE Open Access The Filum disease and the Neuro-Cranio- vertebral syndrome: definition, clinical picture and imaging features Miguel B. Royo-Salvador1*, Marco V. Fiallos-Rivera1, Horia C. Salca1 and Gabriel Ollé-Fortuny2 Abstract Background: We propose two new concepts, the Filum Disease (FD) and the Neuro-cranio-vertebral syndrome (NCVS), that group together conditions thus far considered idiopathic, such as Arnold-Chiari Syndrome Type I (ACSI), Idiopathic Syringomyelia (ISM), Idiopathic Scoliosis (IS), Basilar Impression (BI), Platybasia (PTB) Retroflexed Odontoid (RO) and Brainstem Kinking (BSK). Method: We describe the symptomatology, the clinical course and the neurological signs of the new nosological entities as well as the changes visible on imaging studies in a series of 373 patients. Results: Our series included 72% women with a mean age of 33.66 years; 48% of the patients had an interval from onset to diagnosis longer than 10 years and 64% had a progressive clinical course. The commonest symptoms were: headache 84%, lumbosacral pain 72%, cervical pain 72%, balance alteration 72% and paresthesias 70%. The commonest neurological signs were: altered deep tendon reflexes in upper extremities 86%, altered deep tendon reflexes in lower extremities 82%, altered plantar reflexes 73%, decreased grip strength 70%, altered sensibility to temperature 69%, altered abdominal reflexes 68%, positive Mingazzini’s test 66%, altered sensibility to touch 65% and deviation of the uvula and/or tongue 64%. The imaging features most often seen were: altered position of cerebellar tonsils 93%, low-lying Conus medullaris below the T12L1 disc 88%, idiopathic scoliosis 76%, multiple disc disease 72% and syringomyelic cavities 52%.
    [Show full text]
  • Cervical Medullary Syndrome Secondary to Craniocervical
    Neurosurgical Review https://doi.org/10.1007/s10143-018-01070-4 ORIGINAL ARTICLE Cervical medullary syndrome secondary to craniocervical instability and ventral brainstem compression in hereditary hypermobility connective tissue disorders: 5-year follow-up after craniocervical reduction, fusion, and stabilization Fraser C. Henderson Sr1,2 & C. A. Francomano1 & M. Koby1 & K. Tuchman2 & J. Adcock3 & S. Patel4 Received: 10 October 2018 /Revised: 28 November 2018 /Accepted: 10 December 2018 # The Author(s) 2019 Abstract A great deal of literature has drawn attention to the Bcomplex Chiari,^ wherein the presence of instability or ventral brainstem compression prompts consideration for addressing both concerns at the time of surgery. This report addresses the clinical and radiological features and surgical outcomes in a consecutive series of subjects with hereditary connective tissue disorders (HCTD) and Chiari malformation. In 2011 and 2012, 22 consecutive patients with cervical medullary syndrome and geneticist-confirmed hereditary connective tissue disorder (HCTD), with Chiari malformation (type 1 or 0) and kyphotic clivo-axial angle (CXA) enrolled in the IRB-approved study (IRB# 10-036-06: GBMC). Two subjects were excluded on the basis of previous cranio-spinal fusion or unrelated medical issues. Symptoms, patient satisfaction, and work status were assessed by a third-party questionnaire, pain by visual analog scale (0–10/10), neurologic exams by neurosurgeon, function by Karnofsky performance scale (KPS). Pre- and post-operative radiological measurements of clivo-axial angle (CXA), the Grabb-Mapstone- Oakes measurement, and Harris measurements were made independently by neuroradiologist, with pre- and post-operative imaging (MRI and CT), 10/20 with weight-bearing, flexion, and extension MRI.
    [Show full text]
  • Klippel Feil Syndrome: a Case Report
    Chattogram Maa-O-Shishu Hospital Medical College Journal Volume 19, Issue 1, January 2020 Case Report Klippel Feil Syndrome: A Case Report Dhananjoy Das1* Abstract M A Chowdhury (Arzu)1 Klippel-Feil Syndrome (KFS) is a complex syndrome comprises of classical clinical S M Zafar Hossain1 triad of short neck, limitation of head and neck movements and low posterior hairline. This syndrome is resulting from failure of the normal segmentation of cervical vertebra. 1Autism and Child Development Centre & In this present case in addition to classical clinical triad we have found short stature, Child Neurology Unit scoliosis at cervico- dorsal junction and sprengel deformity of the shoulder. We Chattogram Maa Shishu-O-Shishu Hospital Medical College didn’t find any association of hearing impairment, congenital heart disease and Chattogram, Bangladesh. renal abnormalities. There was no any neurological deficit and normal school performance. Patient with KFS usually have good prognosis if cardiopulmonary, genitourinary, auditory problems are identified and treated early. Key words: Congenital; Fusion; Klippel-Feil syndrome; Cervical vertebrae. INTRODUCTION Klippel-Feil Syndrome (KFS) was first discovered by Maurice Klippel and Andre Feil in 19121. KFS is a complex syndrome comprises of classical clinical triad of short neck, limitation of head and neck movements (Especially lateral bending) and low posterior hairline2. In 50% cases have all three component of this syndrome. It occurs in 1 of every 42,000 births and 60% cases are Female2. KF syndrome is group of deformities that result due to failure of the normal segmentation and fusion processes of mesodermal somites, which occurs between the third and seventh week of embryonic life3,4.
    [Show full text]
  • Neurocranial Defects with Neuro-Ophthalmic Significance
    11 Neurocranial Defects with Neuro-Ophthalmic Significance Ronald M. Minzter and Edward G. Buckley atients with cranial/skeletal defects often exhibit neuro- Pophthalmic abnormalities, which may be caused by specific anomalies within the spectrum of a given condition, or by an associated malformation of the nervous system, or be secondary to mechanical forces such as hydrocephalus. This chapter reviews the ophthalmic abnormalities found in progressive hemifacial atrophy, which are primarily due to structural defects, as well as ophthalmic abnormalities in Arnold–Chiari malformations, meningomyelocele, platybasia, and the Klippel–Feil syndrome, which are related to both structural and secondary neurological mechanisms. PROGRESSIVE HEMIFACIAL ATROPHY (PARRY–ROMBERG DISEASE) Progressive hemifacial atrophy (PHA), described by Parry in 1825, and by Romberg in 1846 as “trophoneurosis facialis,” is a progressive variable hemiatrophy of facial fat and subcutaneous tissues.102,111 Eulenburg34 later named this condition “progressive facial hemiatrophy.” The atrophy begins in childhood, pro- gresses intermittently and rapidly over the next 2 to 10 years, and usually decelerates by young adulthood.48,49,99 If onset is early enough, bone and cartilage may be affected because the facial structures have not yet fully matured104 (Fig. 11-1, top). In addition to facial atrophy, there can be dental/oral changes, migraine headaches, and neurological disturbances such as 371 372 handbook of pediatric neuro-ophthalmology A B CD FIGURE 11-1A–D. Progressive nature of progressive hemifacial atrophy (PHA) in a patient at 8 years old (A) and again at 15 years (B), showing left-sided atrophy. Fundus photos of the normal contralateral side (C) and the ipsilateral affected side with hypopigmentary disturbances (D), par- ticularly along the inferior arcade.
    [Show full text]
  • Part I, Cervical Spine
    Open Access Review Article DOI: 10.7759/cureus.8667 Anatomical Variations That Can Lead to Spine Surgery at the Wrong Level: Part I, Cervical Spine Manan Shah 1 , Dia R. Halalmeh 2 , Aubin Sandio 1 , R. Shane Tubbs 3, 4, 5 , Marc D. Moisi 2 1. Neurosurgery, Wayne State University, Detroit Medical Center, Detroit, USA 2. Neurosurgery, Detroit Medical Center, Detroit, USA 3. Neurosurgery and Structural & Cellular Biology, Tulane University School of Medicine, New Orleans, USA 4. Anatomical Sciences, St. George's University, St. George's, GRD 5. Neurosurgery and Ochsner Neuroscience Institute, Ochsner Health System, New Orleans, USA Corresponding author: Dia R. Halalmeh, [email protected] Abstract Spine surgery at the wrong level is an adversity that many spine surgeons will encounter in their career, and it falls under the wrong-site surgery sentinel events reporting system. The cervical spine is the second most common location in the spine at which surgery is performed at the wrong level. Anatomical variations of the cervical spine are one of the most important incriminating risk factors. These anomalies include craniocervical junction abnormalities, cervical ribs, hemivertebrae, and block/fused vertebrae. In addition, patient characteristics, such as tumors, infection, previous cervical spine surgery, obesity, and osteoporosis, play an important role in the development of cervical surgery at the wrong level. These were described, and several effective techniques to prevent this error were provided. A thorough review of the English-language literature was performed in the database PubMed between 1981 and 2019 to review and summarize these risk factors. Compulsive attention to these factors is essential to ensure patient safety.
    [Show full text]
  • Neurological Manifestations of Achondroplasia
    Current Neurology and Neuroscience Reports (2019) 19:105 https://doi.org/10.1007/s11910-019-1008-x NEUROLOGY OF SYSTEMIC DISEASES (J BILLER, SECTION EDITOR) Neurological Manifestations of Achondroplasia John B. Bodensteiner1,2,3 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose of review This review is to delineate the neurological complications seen in patients with achondroplasia. Recent findings As the understanding of the genetics of this disorder has advanced, the possibility of targets for intervention which might modify the development and management of the neurological complications of this disease may be identified. Summary Achondroplasia is a hereditary short-limbed dwarfism which has been known for millennia. The genetic defect is a gain of function sequence variation in the fibroblast growth factor receptor 3 (FGFR3). This gene normally regulates (inhibits) bone growth thus the gain of function results in abnormal or excessive inhibition of growth. The resulting bone is subject to distortion and the result is that bone impinges on nervous tissue, most commonly at the foramen magnum, spinal canal, and nerve root outlet foramen. Awareness of the range of these complications will, hopefully, allow early and more effective intervention so as to ameliorate the nature and severity of the long-term effects of the neurological complications in patients with achondroplasia. Keywords Achondroplasia . Spinal stenosis . Macrocephaly . Communicating hydrocephalus . Craniovertebral impingement . Claudication Introduction impact of the interplay between the skeletal abnormalities and the underlying nervous system on functions including respi- Achondroplasia is the most completely delineated of the ration and sleep in addition to the more widely recognized short-limbed dwarfing conditions.
    [Show full text]
  • Identification of Clinical and Radiographic Predictors of Central
    www.nature.com/scientificreports OPEN Identifcation of clinical and radiographic predictors of central nervous system injury in genetic skeletal disorders Antônio L Cunha Jr1*, Ana P S Champs1, Carla M. Mello1, Mônica M. M. Navarro1, Frederico J. C. Godinho1, Cássia M. B. Carvalho1 & Teresa C. A. Ferrari2 Some studies report neurological lesions in patients with genetic skeletal disorders (GSDs). However, none of them describe the frequency of neurological lesions in a large sample of patients or investigate the associations between clinical and/or radiological central nervous system (CNS) injury and clinical, anthropometric and imaging parameters. The project was approved by the institution’s ethics committee (CAAE 49433215.5.0000.0022). In this cross-sectional observational analysis study, 272 patients aged four or more years with clinically and radiologically confrmed GSDs were prospectively included. Genetic testing confrmed the diagnosis in the FGFR3 chondrodysplasias group. All patients underwent blinded and independent clinical, anthropometric and neuroaxis imaging evaluations. Information on the presence of headache, neuropsychomotor development (NPMD), low back pain, joint deformity, ligament laxity and lower limb discrepancy was collected. Imaging abnormalities of the axial skeleton and CNS were investigated by whole spine digital radiography, craniocervical junction CT and brain and spine MRI. The diagnostic criteria for CNS injury were abnormal clinical and/or radiographic examination of the CNS. Brain injury included malacia, encephalopathies and malformation. Spinal cord injury included malacia, hydrosyringomyelia and spinal cord injury without radiographic abnormalities. CNS injury was diagnosed in more than 25% of GSD patients. Spinal cord injury was found in 21.7% of patients, and brain injury was found in 5.9%.
    [Show full text]
  • The 22Q11.2 Deletion Syndrome As a Model for Idiopathic Scoliosis
    UITNODIGING Uitnodiging voor het bijwonen The 22q11.2 Deletion Syndrome van de openbare verdediging van as a Model for Idiopathic Scoliosis mijn proefschrift The 22q11.2 Deletion Syndrome Deletion The 22q11.2 The 22q11.2 Deletion Syndrome as a Model for Idiopathic Scoliosis J.F. Homans as a Model for Idiopathic Scoliosis Jelle F. Homans, 2020 Donderdag 23 januari 2020 16.15 uur Academiegebouw Domplein 29 Utrecht Aansluitend zal een receptie plaatsvinden. U bent van harte uitgenodigd! Paranimfen: Rob Brink Cor Homans [email protected] Jelle Homans [email protected] Jelle F. Homans The 22q11.2 Deletion Syndrome as a Model for Idiopathic Scoliosis Jelle Frederik Homans Colofon © 2020 Jelle F. Homans. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, whitout prior written permission of the author. The research in this thesis was financially supported by: K2M research grant - Scoliosis Research Society. The reproduction of this thesis was supported by: Dutch Spine Society - Nederlandse Orthopaedische Vereniging - Castor EDC - Chipsoft - InSpine Netherlands B.V. - Loopvisie B.V. - Sectra Benelux ISBN: 978-94-6380-672-5 Layout: Fenna Schaap Printed by: Proefschriftmaken.nl The 22q11.2 Deletion Syndrome as a Model for Idiopathic Scoliosis Het 22q11.2 Deletie Syndroom als Model voor Idiopathische Scoliose (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op donderdag 23 januari 2020 des middags te 4.15 uur door Jelle Frederik Homans geboren op 11 mei 1989 te Hengelo Promotoren: Prof.
    [Show full text]
  • Cover and Comments 23-2
    BARROW QUARTERLY VOLUME 23 ◊ NUMBER 2 ◊ 2007 BARROW NEUROLOGICAL INSTITUTE OF ST. JOSEPH’S HOSPITAL AND MEDICAL CENTER • PHOENIX, ARIZONA Copyright © 2006, Barrow CRANIOFACIAL SURGERY Copyright © 2007, Barrow Neurological Institute COMMENTS No single discipline has the expertise to fully treat children with a craniofacial anomaly. Consequently, such children require care from many different disciplines. Typically, surgical, medical, dental, and psy- chosocial specialists are involved. When a large number of professionals are involved in the multifaceted care of patients, healthcare teams develop. Cleft and craniofacial teams, which were formed in response to the complex, life-long, ongoing clinical and psychosocial needs of this patient population, are widely considered an effective means to avoid fragmentation and dehumanization in the delivery of such highly specialized health care. Team care represents an improvement over splintered, community-based, multispecialty care. The benefits of healthcare delivery by the team approach include the abilities to provide interdisciplinary ser- vices, to address the emotional and psychological needs of patients and their family, and to perform mul- tifaceted examinations that enable comprehensive treatment plans to be formed based on the team’s rec- ommendations and the family’s preferences. Since 1986 the Barrow Craniofacial Center (formerly the Southwest Craniofacial Center) has been treating children and adults with cleft and craniofacial disorders from Arizona and the Southwest through this essential interdisciplinary team approach. The team helps address parental concerns about the choice and timing of treatment and the coordination of ongoing care. In addition to providing these clinical craniofacial services, the team conducts clinical research and provides education for students of these dis- ciplines.
    [Show full text]
  • Nasopharyngeal Dysmorphology in the Syndromes of Apert and Crouzon SALLY J. PETERSON-FALZONE, Ph.D. SAMUEL PRUZANSKY, D.D.S., M
    Nasopharyngeal Dysmorphology In The Syndromes of Apert and Crouzon SALLY J. PETERSON-FALZONE, Ph.D. SAMUEL PRUZANSKY, D.D.S., M.S. PAMELA J. PARRIS, M.S. JOANNE L. LAFFER, M.S. Chicago, Illinors 60680 Serial cephalometric studies on 29 patients with Apert syndrome and 26 patients with Crouzon disease confirmed and expanded previously reported observations of dysmor- phology of the nasopharynx and contiguous structures. Particularly remarkable were alterations in pharyngeal depth, pharyngeal height, length of the posterior cranial base, and length of the hard and soft palate. The distortions and displacements contributing to diminition of the nasopharyngeal space were typically present early in life and became more severe as the patient matured. Implications for care and treatment planning are discussed. KEY WORDS: Cephalometrics, Apert syndrome, Crouzon disease, nasopharynx In 1974, the current authors reported on tine processes. Peterson and Pruzansky (1974) palatal anomalies in a series of 19 patients found these accumulations to occur in both with Apert syndrome and 13 patients with Apert and Crouzon patients but to be more Crouzon disease. The focus of that report was consistent in occurrence and more severe in twofold: (a) a detailed description of the the former. No relationship was found be- anomalous configuration of the maxillary tween presence of either a bifid uvula or an arch and palatal vault, both of which had overt cleft palate and either the abnormal size been at least partially described by previous of the soft palate or the aberrant configuration investigators but only in Apert patients of the palatal vault, which creates the image (Blank, 1960; Buchanan, 1968; Buckley and of a pseudo-cleft.
    [Show full text]