Commentary DOI 10.1007/S12038-012-9184-8
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biotic Interactions Are an Unexpected Yet Critical Control on the Complexity of an Abiotically Driven Polar Ecosystem
ARTICLE https://doi.org/10.1038/s42003-018-0274-5 OPEN Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem Charles K. Lee et al. # 123456789 0():,; Abiotic and biotic factors control ecosystem biodiversity, but their relative contributions remain unclear. The ultraoligotrophic ecosystem of the Antarctic Dry Valleys, a simple yet highly heterogeneous ecosystem, is a natural laboratory well-suited for resolving the abiotic and biotic controls of community structure. We undertook a multidisciplinary investigation to capture ecologically relevant biotic and abiotic attributes of more than 500 sites in the Dry Valleys, encompassing observed landscape heterogeneities across more than 200 km 2. Using richness of autotrophic and heterotrophic taxa as a proxy for functional complexity, we linked measured variables in a parsimonious yet comprehensive structural equation model that explained signi ficant variations in biological complexity and identi fied landscape-scale and fine-scale abiotic factors as the primary drivers of diversity. However, the inclusion of lin- kages among functional groups was essential for constructing the best- fitting model. Our findings support the notion that biotic interactions make crucial contributions even in an extremely simple ecosystem. Correspondence and requests for materials should be addressed to S.C.C. (email: [email protected] ). #A full list of authors and their af filiations appears at the end of the paper. COMMUNICATIONS BIOLOGY | (2019) 2:62 | https://doi.org/10.1038/s42003-018-0274-5 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-018-0274-5 nderstanding how ecosystems self-organize at landscape soils 20 ,21 ,24 –27 . -
Biotic Interactions Are an Unexpected Yet Critical Control on the Complexity of an Abiotically Driven Polar Ecosystem
Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem Lee, C. K., Laughlin, D. C., Bottos, E. M., Caruso, T., Joy, K., Barrett, J. E., ... Cary, S. C. (2019). Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Communications Biology, (2), [62]. Published in: Communications Biology Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2019 The Authors. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. -
Extreme Organisms on Earth Show Us Just How Weird Life Elsewhere Could Be. by Chris Impey Astrobiology
Astrobiology Extreme organisms on Earth show us just how weird life elsewhere could be. by Chris Impey How life could thrive on hostile worlds Humans have left their mark all over Earth. We’re proud of our role as nature’s generalists — perhaps not as swift as the gazelle or as strong as the gorilla, but still pretty good at most things. Alone among all species, technology has given us dominion over the planet. Humans are endlessly plucky and adaptable; it seems we can do anything. Strain 121 Yet in truth, we’re frail. From our safe living rooms, we may admire the people who conquer Everest or cross deserts. But without technology, we couldn’t live beyond Earth’s temperate zones. We cannot survive for long in temperatures below freezing or above 104° Fahrenheit (40° Celsius). We can stay underwater only as long as we can hold our breath. Without water to drink we’d die in 3 days. Microbes, on the other hand, are hardy. And within the microbial world lies a band of extremists, organisms that thrive in conditions that would cook, crush, smother, and dissolve most other forms of life. Collectively, they are known as extremophiles, which means, literally, “lovers of extremes.” Extremophiles are found at temperatures above the boiling point and below the freezing point of water, in high salinity, and in strongly acidic conditions. Some can live deep inside rock, and others can go into a freeze-dried “wait state” for tens of thousands of years. Some of these microbes harvest energy from meth- ane, sulfur, and even iron. -
18Th EANA Conference European Astrobiology Network Association
18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures. -
ELBA BIOFLUX Extreme Life, Biospeology & Astrobiology International Journal of the Bioflux Society
ELBA BIOFLUX Extreme Life, Biospeology & Astrobiology International Journal of the Bioflux Society A short review on tardigrades – some lesser known taxa of polyextremophilic invertebrates 1Andrea Gagyi-Palffy, and 2Laurenţiu C. Stoian 1Faculty of Environmental Sciences and Engineering, Babeş-Bolyai University, Cluj- Napoca, Romania; 2Faculty of Geography, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: A. Gagyi-Palffy, [email protected] Abstract. Tardigrades are polyextremophilic small organisms capable to survive in a variety of extreme conditions. By reversibly suspending their metabolism (cryptobiosis – tun state) tardigrades can dry or freeze and, thus, survive the extreme conditions like very high or low pressure and temperatures, changes in salinity, lack of oxygen, lack of water, some noxious chemicals, boiling alcohol, even the vacuum of the outer space. Despite their peculiar morphology and amazing diversity of habitats, relatively little is known about these organisms. Tardigrades are considered some lesser known taxa. Studying tardigrades can teach us about the evolution of life on our planet, can help us understand what extremophilic evolution and adaptation means and they can show us what forms of life may develop on other planets. Key Words: tardigrades, extremophiles, extreme environments, adaptation. Rezumat. Tardigradele sunt mici organisme poliextremofile capabile să supraviețuiască într-o varietate de condiţii extreme. Suspendandu-şi reversibil metabolismul (criptobioză) tardigradele pot să se usuce sau să îngheţe şi, astfel, să supravieţuiască unor condiţii extreme precum presiuni şi temperaturi foarte scăzute sau crescute, variaţii de salinitate, lipsă de oxygen, lipsă de apă, unele chimicale toxice, alcool în fierbere, chiar şi vidul spaţiului extraterestru. În ciuda morfologiei lor deosebite şi a diversittii habitatelor lor, se cunosc relativ puţine aspecte se despre aceste organisme. -
Astr 450 Assignment 5: Earth-Based Life in Extreme Environments Due Thu Feb 19, 2009
Astr 450 Assignment 5: Earth-based life in extreme environments due Thu Feb 19, 2009 An ”extremophile” is an organism that thrives in extreme environments, where ”extreme” means different from the Earth surface norms in temperature, pressure, or composition. ”Thrive” in this context means that these conditions are ideal for the organism, and in fact, most extremophiles would perish if brought to Earth-normal conditions. For each of the following categories of extremophile, identify (i) the extreme condition with numerical values, and (ii) at least one location on Earth where these extreme conditions are realized, and (iii) if in your researches you come across a type of organism that does not ultimately rely upon the Sun as its source of energy, then please make a note if it. 1. Acidophile 2. Alkalophile 3. Thermophile 4. Psychrophile 5. Piezophile (also called a barophile) 6. Lithophile (also called an endolith) 7. Halophile You must include a bibliographic entry for all sources you use. You can organize this information in chart form if you wish, but it is certainly not required. Finally, quickly skim the wikipedia article on the bacterium named “deinococcus radiodurans” and tell me the (surprising) extreme condition it can tolerate which is NOT on the list above. Ref: http://en.wikipedia.org/wiki/Deinococcus radiodurans Requirements for a good assignment • The assignment will be graded strictly, as expected for a 400-level course. The assignment is graded out of 30 points. • Have your name, SID, and a word count at the top of the paper. Use question-and-answer format when writing your assignment, do NOT hand in a run-on paragraph (50% penalty). -
Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer
diversity Article Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer Aldwin Ndhlovu 1 , Christopher D. McQuaid 1,*, Katy Nicastro 2 , Nathalie Marquet 2 , Marcos Gektidis 3, Cristián J. Monaco 1,4 and Gerardo Zardi 1 1 Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; [email protected] (A.N.); [email protected] (C.J.M.); [email protected] (G.Z.) 2 CCMAR-CIMAR–Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; [email protected] (K.N.); [email protected] (N.M.) 3 Independent Researcher, Frankfurt, D-60325 Frankfurt, Germany; [email protected] 4 Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, University of Adelaide, Adelaide 5005, Australia * Correspondence: [email protected] Received: 5 April 2019; Accepted: 23 April 2019; Published: 7 May 2019 Abstract: By altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M. -
Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome
Review Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome Gherman Uritskiy and Jocelyne DiRuggiero * Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; [email protected] * Correspondence to: [email protected] Received: 15 February 2019; Accepted: 11 March 2019; Published: 14 March 2019 Abstract: In the past decades, the study of microbial life through shotgun metagenomic sequencing has rapidly expanded our understanding of environmental, synthetic, and clinical microbial communities. Here, we review how shotgun metagenomics has affected the field of halophilic microbial ecology, including functional potential reconstruction, virus–host interactions, pathway selection, strain dispersal, and novel genome discoveries. However, there still remain pitfalls and limitations from conventional metagenomic analysis being applied to halophilic microbial communities. Deconvolution of halophilic metagenomes has been difficult due to the high G + C content of these microbiomes and their high intraspecific diversity, which has made both metagenomic assembly and binning a challenge. Halophiles are also underrepresented in public genome databases, which in turn slows progress. With this in mind, this review proposes experimental and analytical strategies to overcome the challenges specific to the halophilic microbiome, from experimental designs to data acquisition and the computational analysis of metagenomic sequences. Finally, we speculate about the potential applications of other next- generation -
A Multi-Scaled Habitat Analysis of Lichen Communities on Granite Rock in the Huron Mountains, Marquette County, Michigan
Northern Michigan University NMU Commons All NMU Master's Theses Student Works 2010 A MULTI-SCALED HABITAT ANALYSIS OF LICHEN COMMUNITIES ON GRANITE ROCK IN THE HURON MOUNTAINS, MARQUETTE OC UNTY, MICHIGAN Ryne Douglas Rutherford Northern Michigan University Follow this and additional works at: https://commons.nmu.edu/theses Recommended Citation Rutherford, Ryne Douglas, "A MULTI-SCALED HABITAT ANALYSIS OF LICHEN COMMUNITIES ON GRANITE ROCK IN THE HURON MOUNTAINS, MARQUETTE OUNC TY, MICHIGAN" (2010). All NMU Master's Theses. 495. https://commons.nmu.edu/theses/495 This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more information, please contact [email protected],[email protected]. A MULTI-SCALED HABITAT ANALYSIS OF LICHEN COMMUNITIES ON GRANITE ROCK IN THE HURON MOUNTAINS, MARQUETTE COUNTY, MICHIGAN By Ryne Douglas Rutherford THESIS Submitted to Northern Michigan University In partial fulfillment of the requirements For the degree of MASTERS OF SCIENCE Graduate Studies office 2010 SIGNATURE APPROVAL FORM This thesis by Ryne Douglas Rutherford is recommended for approval by the student's thesis committee in the Department of Biology and by the Dean of Graduate Studies. ________________________________________________________ Committee Chair: Dr. Alan Rebertus Date ________________________________________________________ First Reader: Dr. Roger M. Strand Date ________________________________________________________ -
Environmental Controls Over Bacterial Communities in Polar Desert Soils 1, 1 2 2 KEVIN M
Environmental controls over bacterial communities in polar desert soils 1, 1 2 2 KEVIN M. GEYER, ADAM E. ALTRICHTER, DAVID J. VAN HORN, CRISTINA D. TAKACS-VESBACH, 3,4 1 MICHAEL N. GOOSEFF, AND J. E. BARRETT 1Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 USA 2Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131 USA 3Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 USA Citation: Geyer, K. M., A. E. Altrichter, D. J. Van Horn, C. D. Takacs-Vesbach, M. N. Gooseff, and J. E. Barrett. 2013. Environmental controls over bacterial communities in polar desert soils. Ecosphere 4(10):127. http://dx.doi.org/10.1890/ ES13-00048.1 Abstract. Productivity-diversity theory has proven informative to many investigations seeking to understand drivers of spatial patterns in biotic communities and relationships between resource availability and community structure documented for a wide variety of taxa. For soil bacteria, availability of organic matter is one such resource known to influence diversity and community structure. Here we describe the influence of environmental gradients on soil bacterial communities of the McMurdo Dry Valleys, Antarctica, a model ecosystem that hosts simple, microbially-dominated foodwebs believed to be primarily structured by abiotic drivers such as water, organic matter, pH, and electrical conductivity. We sampled 48 locations exhibiting orders of magnitude ranges in primary production and soil geochemistry (pH and electrical conductivity) over local and regional scales. Our findings show that environmental gradients imposed by cryptogam productivity and regional variation in geochemistry influence the diversity and structure of soil bacterial communities. -
Science of the Springs Answer
SCIENCE OF THE SPRINGS Reading Guide ANSWER KEY battery acid pH 0 pH 1 Amethyst Geyser, Norris pH 2 Black Dragon’s Caldron Mud Volcano pH 3 pH 4 Emerald Spring, Norris black coffee pH 5 pH 6 water pH 7 pH 8 Arrowhead Spring, Upper Geyser Basin pH 9 pH 10 Heart Lak Geyser Basin pH 11 bleach pH 12 pH 13 liquid drain cleaner pH 14 Astrobiology Biogeocatalysis Research Center The Astrobiology Biogeocatalysis Research Center at Montana State University Our team supports the work of the NASA Astrobiology opportunities. Life in the extreme environments of Institute (NAI), a multidisciplinary umbrella for Yellowstone’s thermal features is thought to resemble conducting research on the origin and evolution of life conditions of early Earth. Yellowstone’s abundant and on Earth and elsewhere in the universe. unique thermal features give researchers insights into the origin, evolution and future of life. The origin of life, sustainable energy, and global climate change are intimately linked, and the answers we seek Whether you are a potential MSU student, a research to solve our energy needs of the future are etched into investigator, a teacher or a citizen, we welcome you Earth’s history. ABRC’s work supports NASA’s missions, to the world of astrobiology. ABRC is committed to such as Mars exploration and possibilities of habitation sharing our work and its impact with the people of of other worlds. Our research also focuses on the future Montana and beyond, through formal and informal of life on Earth. These efforts support the fundamental education; public outreach; and communications to groundwork for Goal 3 (Origins of Life) of the NASA many different audiences. -
Fungal Biodiversity in Extreme Environments and Wood Degradation Potential
http://waikato.researchgateway.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Fungal biodiversity in extreme environments and wood degradation potential A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences at The University of Waikato by Joel Allan Jurgens 2010 Abstract This doctoral thesis reports results from a multidisciplinary investigation of fungi from extreme locations, focusing on one of the driest and thermally broad regions of the world, the Taklimakan Desert, with comparisons to polar region deserts. Additionally, the capability of select fungal isolates to decay lignocellulosic substrates and produce degradative related enzymes at various temperatures was demonstrated. The Taklimakan Desert is located in the western portion of the People’s Republic of China, a region of extremes dominated by both limited precipitation, less than 25 mm of rain annually and tremendous temperature variation.